Floating-point arithmetic

» Computers store number in base 2 with finite/fixed memory (bits)

» Irrational numbers are stored inexactly, e.g. 1/3 ~ 0.333...

» Calculations are rounded to nearest floating-point number (rounding error)
» Thus the accuracy of the final error is nontrivial

Two examples with MATLAB

> ((sqrt(2))? — 2) x 1e15 = 0.4441 (should be 1..)
> > L~ 30 (should be co..)

An important (but not main) part of numerical analysis/NLA is to study the effect of
rounding errors
Canonical reference: Higham's book (2002)



Conditioning and stability

» Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given z) to
perturbation in inputs, i.e., how large x := sups,, | f(z + dx) — f(z)||/||0=]| is in
the limit =z — 0.

(this is absolute condition number; equally important is relative condition number

._ |Lf (z+bz)— f(r)H L
Rr := SUPsg T/ Tal

» (Backward) Stability is a property of an algorithm, which describes if the
computed solution ¢ is a 'good’ solution, in that it is an exact solution of a nearby
input, that is, § = f(x + Ax) for a small Az.



Conditioning and stability

» Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given z) to
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» (Backward) Stability is a property of an algorithm, which describes if the
computed solution ¢ is a 'good’ solution, in that it is an exact solution of a nearby
input, that is, § = f(x + Ax) for a small Az.

If problem is ill-conditioned x >> 1, then blame the problem not the algorithm

Notation/convention: # denotes a computed approximation to = (e.g. of x = A~1b)
€ denotes a small term O(u), on the order of unit roundoff/working precision; so we

write e.g. u, 10u, (m + n)u, mnu all as €

» Consequently (in this lecture/discussion) norm choice does not matter



Numerical stability: backward stability
For computational task ¥ = f(X) and computed approximant Y,
> Ideally, error [|[Y — Y||/||Y] = e seldom true

(w: unit roundoff, ~ 1076 in standard double precision)
> Good alg. has Backward stability ¥ = f(X + AX), ”)ﬁ)}ﬂ(” = ¢ “exact solution

of slightly wrong input "
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For computational task ¥ = f(X) and computed approximant Y,
> Ideally, error [|[Y — Y||/||Y] = e seldom true

(w: unit roundoff, ~ 1076 in standard double precision)

> Good alg. has Backward stability ¥ = f(X + AX), ”)ﬁ)}f” = ¢ “exact solution

of slightly wrong input "

» Justification: Input (matrix) is usually inexact anyway! f(X + AX) is just as
good at f(X) at approximating f(X.) where ||[AX| = O(||X — X.||)
We shall 'settle with’ such solution, though it may not mean ¥ — Y is small

> Forward stability |Y — V||/||Y]| = O(k(f)u) “error is as small as backward stable
alg." (sometimes used to mean small error; we follow Higham's book [2002])



Matrix condition number

Umax(A)
2(A) = >1

hZ( ) Omill(A> (_ )
e.g. for linear systems. A backward stable soln for Az =b, s.t. (A+AA)Z =10
satisfies, assuming backward stability ||AA| < €| A|| and k2(A4) < et (so
[ATTAAll <« 1),
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e.g. for linear systems. A backward stable soln for Az =b, s.t. (A+AA)Z =10
satisfies, assuming backward stability ||AA| < €| A|| and k2(A4) < et (so
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'proof’: By Neumann series
(A+AA) P = (AT + ATTAA) P = (T - ATTAA+ O(|A71AA|?) AL

Sod=(A+AA)b=A"Th— ATAAA b+ O(|AAA|?) =
r— A7AAx + O(||A~1AAJ]?), Hence

lz — 2] S [|A7 A Az|| < [|ATH[[|AA 2]l = Ka(A)ll]



Backward stable+well conditioned=accurate solution
Suppose

» Y = f(X) computed backward stably i.e., Y = f(X +AX), |AX|| =«
» Conditioning || f(X) — f(X + AX)| < s[|AX]|

Then (relative version possible)
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Backward stable+well conditioned=accurate solution
Suppose
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Then (relative version possible)

19— ¥ S e

PrOOTE I — Y = I£(X + AX) = F(X)]| S RIAXIIFO] = e
If well-conditioned x = O(1), good accuracy! Important examples:
» Well-conditioned linear system Az = b, ka(A) ~ 1
» Eigenvalues of symmetric matrices (via Weyl's bound
Ai(A+ E) € Ai(A) + [=[|Ell2, [|E]l2] )
» Singular values of any matrix 0;(A + E) € 0;(A) + [—||E||2, || E|l2]

Note: eigvecs/singvecs can be highly ill-conditioned



Backward stability of triangular systems

Recall Az = b via Ly = b, Uz = y (triangular systems).
The computed solution & for a (upper/lower) triangular linear system Rx = b solved
via back/forward substitution is backward stable, i.e., it satisfies

(R+AR)E=b,  |AR| = O(e| R|)-

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)

» backward error can be bounded componentwise

» this means || — z||/||z|| < er2(R)
» (unavoidably) poor worst-case (and attainable) bound when ill-conditioned
> often better with triangular systems



(In)stability of Az = b via LU with pivots

Fact (proof nonexaminable): Computed LU satisfies ”‘fL[ﬁ”_lj‘”” =e
: ILU-A|l _
(note: not s = €)

> If || L]|||U]| = O(||A]|), then (L +AL)(U + AU)z =b
= & backward stable solution (exercise)
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(In)stability of Az = b via LU with pivots

ILU—A]

Fact (proof nonexaminable): Computed LU satisfies el = €
: ILU-A|l _
(note: not s = €)

> If |L||||U]| = O(||A]|), then (L + AL)(U + AU)z =
= & backward stable solution (exercise)
Question: Does LU = A+ AA or LU = PA + AA with ||AA|| = ¢||A|| hold?

Without pivot (P =I): ||L||||U]| > ||A]| unboundedly (e.g. [§1]) unstable

With pivots:
» Worst-case: ||L||||U|| > ||Al|| grows exponentially with n, unstable
> growth governed by that of || L|||U||/| Al = [[U]|/||All
» In practice (average case): perfectly stable
» Hence this is how Az = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution /explanation: among biggest open problems in numerical linear algebra!



Stability of Cholesky for A = 0
Cholesky A = RTR for A =0

» succeeds without pivot (active matrix is always positive definite)
» R never contains entries > || A]|

= backward stable! Hence positive definite linear system Ax = b stable via Cholesky



(In)stability of Gram-Schmidt

» Gram-Schmidt is subtle
> plain (classical) version: [|QTQ — I]| < exa(A))?

» modified Gram-Schmidt (orthogonalise "one vector at a time'): [|QTQ —I|| < era(A)

> Gram-Schmidt twice (G-S again on computed Q): [|QTQ —I]| < ¢



Stability of Householder QR
With Householder QR, the computed Q, R satisfy

QTQ-1=0(e), [A—QR|=O0(c|Al,

and (of course) R upper triangular.
Rough proof

» Each reflector satisfies fI(H;A) = H; A + €| A||
» Hence (R =)fI(H,---HiA) = H,--- HiA+ €| A
> fU(H,---Hy)=Q" =Hy, - Hi +e,

> Thus QR = A+ €|/ 4]



Stability of Householder QR
With Householder QR, the computed Q, R satisfy

QTQ-1=0(e), [A—QR|=O0(c|Al,

and (of course) R upper triangular.
Rough proof

» Each reflector satisfies fI(H;A) = H; A + €| A]|
» Hence (R =)fI(H,---HiA) = H,--- HiA+ €| A
> fU(H, - H) = QT = Hy - Hi+ e,
> Thus QR = A+ €|/ 4]
Notes:

> This doesn't mean [|Q — Q||, ||k — R are small at all! Indeed Q, R are as
ill-conditioned as A

> Ax = b via QR, least-squares stable
(please see arXiv:2009.11392 for application in low-rank approximation)



Orthogonality matters for stability
With orthogonal matrices @,
171(QA) — Q4] _ I71(AQ) — AQ| _
QA T IAQ]] -
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|fI(AB) — AB||/||AB|| < emin(k2(A), k2(B)) (why? exercise)




Orthogonality matters for stability
With orthogonal matrices @,
IFUQA) - QA __ fUAQ) — AQ| _,
oAl =° [4Ql ©
whereas in general, || fI(AB) — AB|| < €||A||||B]|, so
|fI(AB) — AB||/||AB|| < emin(k2(A), k2(B)) (why? exercise)
Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc),
whereas those based on orthogonal matrices are stable, e.g.

» Householder QR factorisation

> QR algorithm for Az = Az

» Golub-Kahan algorithm for A = UXV7T
» QZ algorithm for Ax = \Bx

We next turn to the algorithms in boldface



