
Floating-point arithmetic
I Computers store number in base 2 with finite/fixed memory (bits)
I Irrational numbers are stored inexactly, e.g. 1/3 ≈ 0.333...
I Calculations are rounded to nearest floating-point number (rounding error)
I Thus the accuracy of the final error is nontrivial

Two examples with MATLAB
I ((sqrt(2))2 − 2) ∗ 1e15 = 0.4441 (should be 1..)
I
∑∞
n=1

1
n ≈ 30 (should be ∞..)

An important (but not main) part of numerical analysis/NLA is to study the effect of
rounding errors
Canonical reference: Higham’s book (2002)



Conditioning and stability
I Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to

perturbation in inputs, i.e., how large κ := supδx ‖f(x+ δx)− f(x)‖/‖δx‖ is in
the limit δx→ 0.
(this is absolute condition number; equally important is relative condition number
κr := supδx

‖f(x+δx)−f(x)‖
‖f(x)‖

/‖δx‖
‖x‖ )

I (Backward) Stability is a property of an algorithm, which describes if the
computed solution ŷ is a ’good’ solution, in that it is an exact solution of a nearby
input, that is, ŷ = f(x+ ∆x) for a small ∆x.

If problem is ill-conditioned κ� 1, then blame the problem not the algorithm

Notation/convention: x̂ denotes a computed approximation to x (e.g. of x = A−1b)
ε denotes a small term O(u), on the order of unit roundoff/working precision; so we
write e.g. u, 10u, (m+ n)u,mnu all as ε
I Consequently (in this lecture/discussion) norm choice does not matter



Conditioning and stability
I Conditioning is the sensitivity of a problem (e.g. of finding y = f(x) given x) to

perturbation in inputs, i.e., how large κ := supδx ‖f(x+ δx)− f(x)‖/‖δx‖ is in
the limit δx→ 0.
(this is absolute condition number; equally important is relative condition number
κr := supδx

‖f(x+δx)−f(x)‖
‖f(x)‖

/‖δx‖
‖x‖ )

I (Backward) Stability is a property of an algorithm, which describes if the
computed solution ŷ is a ’good’ solution, in that it is an exact solution of a nearby
input, that is, ŷ = f(x+ ∆x) for a small ∆x.

If problem is ill-conditioned κ� 1, then blame the problem not the algorithm

Notation/convention: x̂ denotes a computed approximation to x (e.g. of x = A−1b)
ε denotes a small term O(u), on the order of unit roundoff/working precision; so we
write e.g. u, 10u, (m+ n)u,mnu all as ε
I Consequently (in this lecture/discussion) norm choice does not matter



Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Ŷ ,
I Ideally, error ‖Y − Ŷ ‖/‖Y ‖ = ε: seldom true

(u: unit roundoff, ≈ 10−16 in standard double precision)
I Good alg. has Backward stability Ŷ = f(X + ∆X), ‖X−X̂‖‖X‖ = ε “exact solution

of slightly wrong input ”

I Justification: Input (matrix) is usually inexact anyway! f(X + ∆X) is just as
good at f(X) at approximating f(X∗) where ‖∆X‖ = O(‖X −X∗‖)
We shall ’settle with’ such solution, though it may not mean Ŷ − Y is small

I Forward stability ‖Y − Ŷ ‖/‖Y ‖ = O(κ(f)u) “error is as small as backward stable
alg.” (sometimes used to mean small error; we follow Higham’s book [2002])



Numerical stability: backward stability
For computational task Y = f(X) and computed approximant Ŷ ,
I Ideally, error ‖Y − Ŷ ‖/‖Y ‖ = ε: seldom true

(u: unit roundoff, ≈ 10−16 in standard double precision)
I Good alg. has Backward stability Ŷ = f(X + ∆X), ‖X−X̂‖‖X‖ = ε “exact solution

of slightly wrong input ”

I Justification: Input (matrix) is usually inexact anyway! f(X + ∆X) is just as
good at f(X) at approximating f(X∗) where ‖∆X‖ = O(‖X −X∗‖)
We shall ’settle with’ such solution, though it may not mean Ŷ − Y is small

I Forward stability ‖Y − Ŷ ‖/‖Y ‖ = O(κ(f)u) “error is as small as backward stable
alg.” (sometimes used to mean small error; we follow Higham’s book [2002])



Matrix condition number
κ2(A) = σmax(A)

σmin(A) (≥ 1)

e.g. for linear systems. A backward stable soln for Ax = b, s.t. (A+ ∆A)x̂ = b

satisfies, assuming backward stability ‖∆A‖ ≤ ε‖A‖ and κ2(A)� ε−1 (so
‖A−1∆A‖ � 1),

‖x̂− x‖
‖x‖

. εκ2(A)

’proof’: By Neumann series

(A+ ∆A)−1 = (A(I +A−1∆A))−1 = (I −A−1∆A+O(‖A−1∆A‖2))A−1

So x̂ = (A+ ∆A)−1b = A−1b−A−1∆AA−1b+O(‖A−1∆A‖2) =
x−A−1∆Ax+O(‖A−1∆A‖2), Hence

‖x− x̂‖ . ‖A−1∆Ax‖ ≤ ‖A−1‖‖∆A‖‖x‖ = κ2(A)‖x‖



Matrix condition number
κ2(A) = σmax(A)

σmin(A) (≥ 1)

e.g. for linear systems. A backward stable soln for Ax = b, s.t. (A+ ∆A)x̂ = b

satisfies, assuming backward stability ‖∆A‖ ≤ ε‖A‖ and κ2(A)� ε−1 (so
‖A−1∆A‖ � 1),

‖x̂− x‖
‖x‖

. εκ2(A)

’proof’: By Neumann series

(A+ ∆A)−1 = (A(I +A−1∆A))−1 = (I −A−1∆A+O(‖A−1∆A‖2))A−1

So x̂ = (A+ ∆A)−1b = A−1b−A−1∆AA−1b+O(‖A−1∆A‖2) =
x−A−1∆Ax+O(‖A−1∆A‖2), Hence

‖x− x̂‖ . ‖A−1∆Ax‖ ≤ ‖A−1‖‖∆A‖‖x‖ = κ2(A)‖x‖



Backward stable+well conditioned=accurate solution
Suppose
I Y = f(X) computed backward stably i.e., Ŷ = f(X + ∆X), ‖∆X‖ = ε.
I Conditioning ‖f(X)− f(X + ∆X)‖ . κ‖∆X‖

Then (relative version possible)

‖Ŷ − Y ‖ . κε

’proof’: ‖Ŷ − Y ‖ = ‖f(X + ∆X)− f(X)‖ . κ‖∆X‖‖f(X)‖ = κε

If well-conditioned κ = O(1), good accuracy! Important examples:
I Well-conditioned linear system Ax = b, κ2(A) ≈ 1
I Eigenvalues of symmetric matrices (via Weyl’s bound
λi(A+ E) ∈ λi(A) + [−‖E‖2, ‖E‖2] )

I Singular values of any matrix σi(A+ E) ∈ σi(A) + [−‖E‖2, ‖E‖2]
Note: eigvecs/singvecs can be highly ill-conditioned



Backward stable+well conditioned=accurate solution
Suppose
I Y = f(X) computed backward stably i.e., Ŷ = f(X + ∆X), ‖∆X‖ = ε.
I Conditioning ‖f(X)− f(X + ∆X)‖ . κ‖∆X‖

Then (relative version possible)

‖Ŷ − Y ‖ . κε

’proof’: ‖Ŷ − Y ‖ = ‖f(X + ∆X)− f(X)‖ . κ‖∆X‖‖f(X)‖ = κε

If well-conditioned κ = O(1), good accuracy! Important examples:
I Well-conditioned linear system Ax = b, κ2(A) ≈ 1
I Eigenvalues of symmetric matrices (via Weyl’s bound
λi(A+ E) ∈ λi(A) + [−‖E‖2, ‖E‖2] )

I Singular values of any matrix σi(A+ E) ∈ σi(A) + [−‖E‖2, ‖E‖2]
Note: eigvecs/singvecs can be highly ill-conditioned



Backward stable+well conditioned=accurate solution
Suppose
I Y = f(X) computed backward stably i.e., Ŷ = f(X + ∆X), ‖∆X‖ = ε.
I Conditioning ‖f(X)− f(X + ∆X)‖ . κ‖∆X‖

Then (relative version possible)

‖Ŷ − Y ‖ . κε

’proof’: ‖Ŷ − Y ‖ = ‖f(X + ∆X)− f(X)‖ . κ‖∆X‖‖f(X)‖ = κε

If well-conditioned κ = O(1), good accuracy! Important examples:
I Well-conditioned linear system Ax = b, κ2(A) ≈ 1
I Eigenvalues of symmetric matrices (via Weyl’s bound
λi(A+ E) ∈ λi(A) + [−‖E‖2, ‖E‖2] )

I Singular values of any matrix σi(A+ E) ∈ σi(A) + [−‖E‖2, ‖E‖2]
Note: eigvecs/singvecs can be highly ill-conditioned



Backward stability of triangular systems
Recall Ax = b via Ly = b, Ux = y (triangular systems).
The computed solution x̂ for a (upper/lower) triangular linear system Rx = b solved
via back/forward substitution is backward stable, i.e., it satisfies

(R+ ∆R)x̂ = b, ‖∆R‖ = O(ε‖R‖).

Proof: Trefethen-Bau or Higham (nonexaminable but interesting)
I backward error can be bounded componentwise
I this means ‖x̂− x‖/‖x‖ ≤ εκ2(R)

I (unavoidably) poor worst-case (and attainable) bound when ill-conditioned
I often better with triangular systems



(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies ‖L̂Û−A‖‖L‖‖U‖ = ε

(note: not ‖L̂Û−A‖‖A‖ = ε)
I If ‖L‖‖U‖ = O(‖A‖), then (L+ ∆L)(U + ∆U)x̂ = b

⇒ x̂ backward stable solution (exercise)

Question: Does LU = A+ ∆A or LU = PA+ ∆A with ‖∆A‖ = ε‖A‖ hold?

Without pivot (P = I): ‖L‖‖U‖ � ‖A‖ unboundedly (e.g.
[
ε 1
1 1
]
) unstable

With pivots:
I Worst-case: ‖L‖‖U‖ � ‖A‖ grows exponentially with n, unstable

I growth governed by that of ‖L‖‖U‖/‖A‖ ⇒ ‖U‖/‖A‖
I In practice (average case): perfectly stable

I Hence this is how Ax = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!



(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies ‖L̂Û−A‖‖L‖‖U‖ = ε

(note: not ‖L̂Û−A‖‖A‖ = ε)
I If ‖L‖‖U‖ = O(‖A‖), then (L+ ∆L)(U + ∆U)x̂ = b

⇒ x̂ backward stable solution (exercise)
Question: Does LU = A+ ∆A or LU = PA+ ∆A with ‖∆A‖ = ε‖A‖ hold?

Without pivot (P = I): ‖L‖‖U‖ � ‖A‖ unboundedly (e.g.
[
ε 1
1 1
]
) unstable

With pivots:
I Worst-case: ‖L‖‖U‖ � ‖A‖ grows exponentially with n, unstable

I growth governed by that of ‖L‖‖U‖/‖A‖ ⇒ ‖U‖/‖A‖
I In practice (average case): perfectly stable

I Hence this is how Ax = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!



(In)stability of Ax = b via LU with pivots
Fact (proof nonexaminable): Computed L̂Û satisfies ‖L̂Û−A‖‖L‖‖U‖ = ε

(note: not ‖L̂Û−A‖‖A‖ = ε)
I If ‖L‖‖U‖ = O(‖A‖), then (L+ ∆L)(U + ∆U)x̂ = b

⇒ x̂ backward stable solution (exercise)
Question: Does LU = A+ ∆A or LU = PA+ ∆A with ‖∆A‖ = ε‖A‖ hold?

Without pivot (P = I): ‖L‖‖U‖ � ‖A‖ unboundedly (e.g.
[
ε 1
1 1
]
) unstable

With pivots:
I Worst-case: ‖L‖‖U‖ � ‖A‖ grows exponentially with n, unstable

I growth governed by that of ‖L‖‖U‖/‖A‖ ⇒ ‖U‖/‖A‖
I In practice (average case): perfectly stable

I Hence this is how Ax = b is solved, despite alternatives with guaranteed stability
exist (but slower; e.g. via SVD, or QR (next))

Resolution/explanation: among biggest open problems in numerical linear algebra!



Stability of Cholesky for A � 0
Cholesky A = RTR for A � 0
I succeeds without pivot (active matrix is always positive definite)
I R never contains entries > ‖A‖
⇒ backward stable! Hence positive definite linear system Ax = b stable via Cholesky



(In)stability of Gram-Schmidt
I Gram-Schmidt is subtle

I plain (classical) version: ‖QTQ− I‖ ≤ εκ2(A))2

I modified Gram-Schmidt (orthogonalise ’one vector at a time’): ‖QTQ− I‖ ≤ εκ2(A)

I Gram-Schmidt twice (G-S again on computed Q): ‖QTQ− I‖ ≤ ε



Stability of Householder QR
With Householder QR, the computed Q̂, R̂ satisfy

Q̂T Q̂− I = O(ε), ‖A− Q̂R̂‖ = O(ε‖A‖),

and (of course) R upper triangular.
Rough proof
I Each reflector satisfies fl(HiA) = HiA+ εi‖A‖
I Hence (R̂ =)fl(Hn · · ·H1A) = Hn · · ·H1A+ ε‖A‖
I fl(Hn · · ·H1) =: Q̂T = Hn · · ·H1 + ε,
I Thus Q̂R̂ = A+ ε‖A‖

Notes:
I This doesn’t mean ‖Q̂−Q‖, ‖R̂−R‖ are small at all! Indeed Q,R are as

ill-conditioned as A
I Ax = b via QR, least-squares stable

(please see arXiv:2009.11392 for application in low-rank approximation)



Stability of Householder QR
With Householder QR, the computed Q̂, R̂ satisfy

Q̂T Q̂− I = O(ε), ‖A− Q̂R̂‖ = O(ε‖A‖),

and (of course) R upper triangular.
Rough proof
I Each reflector satisfies fl(HiA) = HiA+ εi‖A‖
I Hence (R̂ =)fl(Hn · · ·H1A) = Hn · · ·H1A+ ε‖A‖
I fl(Hn · · ·H1) =: Q̂T = Hn · · ·H1 + ε,
I Thus Q̂R̂ = A+ ε‖A‖

Notes:
I This doesn’t mean ‖Q̂−Q‖, ‖R̂−R‖ are small at all! Indeed Q,R are as

ill-conditioned as A
I Ax = b via QR, least-squares stable

(please see arXiv:2009.11392 for application in low-rank approximation)



Orthogonality matters for stability
With orthogonal matrices Q,

‖fl(QA)−QA‖
‖QA‖

≤ ε, ‖fl(AQ)−AQ‖
‖AQ‖

≤ ε

whereas in general, ‖fl(AB)−AB‖ ≤ ε‖A‖‖B‖, so
‖fl(AB)−AB‖/‖AB‖ ≤ εmin(κ2(A), κ2(B)) (why? exercise)
Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc),
whereas those based on orthogonal matrices are stable, e.g.
I Householder QR factorisation
I QR algorithm for Ax = λx

I Golub-Kahan algorithm for A = UΣV T

I QZ algorithm for Ax = λBx

We next turn to the algorithms in boldface



Orthogonality matters for stability
With orthogonal matrices Q,

‖fl(QA)−QA‖
‖QA‖

≤ ε, ‖fl(AQ)−AQ‖
‖AQ‖

≤ ε

whereas in general, ‖fl(AB)−AB‖ ≤ ε‖A‖‖B‖, so
‖fl(AB)−AB‖/‖AB‖ ≤ εmin(κ2(A), κ2(B)) (why? exercise)

Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc),
whereas those based on orthogonal matrices are stable, e.g.
I Householder QR factorisation
I QR algorithm for Ax = λx

I Golub-Kahan algorithm for A = UΣV T

I QZ algorithm for Ax = λBx

We next turn to the algorithms in boldface



Orthogonality matters for stability
With orthogonal matrices Q,

‖fl(QA)−QA‖
‖QA‖

≤ ε, ‖fl(AQ)−AQ‖
‖AQ‖

≤ ε

whereas in general, ‖fl(AB)−AB‖ ≤ ε‖A‖‖B‖, so
‖fl(AB)−AB‖/‖AB‖ ≤ εmin(κ2(A), κ2(B)) (why? exercise)
Hence algorithms involving ill-conditioned matrices are unstable (e.g. eigenvalue
decomposition of non-normal matrices, Jordan form, etc),
whereas those based on orthogonal matrices are stable, e.g.
I Householder QR factorisation
I QR algorithm for Ax = λx

I Golub-Kahan algorithm for A = UΣV T

I QZ algorithm for Ax = λBx

We next turn to the algorithms in boldface


