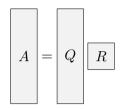
QR factorisation

For any $A \in \mathbb{C}^{m \times n}$, \exists factorisation



 $Q \in \mathbb{R}^{m \times n}$: orthonormal, $R \in \mathbb{R}^{n \times n}$: upper triangular

- Many algorithms available: Gram-Schmidt, Householder, CholeskyQR, ...
- various applications: least-squares, orthogonalisation, computing SVD, manifold retraction...
- lacktriangle With Householder, pivoting A=QRP not needed for numerical stability
 - but pivoting gives rank-revealing QR (nonexaminable)

QR via Gram-Schmidt

Gram-Schmidt: Given $A=[a_1,a_2,\ldots,a_n]\in\mathbb{R}^{m\times n}$ (assume full rank rank(A)=n), find orthonormal $[q_1,\ldots,q_n]$ s.t. $\operatorname{span}(q_1,\ldots,q_n)=\operatorname{span}(a_1,\ldots,a_n)$

G-S process: $q_1 = \frac{a_1}{\|a_1\|}$, then $\tilde{q}_2 = a_2 - q_1 q_1^T a_2$, $q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$, repeat for $j = 3, \ldots, n$: $\tilde{q}_j = a_j - \sum_{i=1}^{j-1} q_i q_i^T a_j$, $q_j = \frac{\tilde{q}_j}{\|\tilde{q}_j\|}$.

QR via Gram-Schmidt

Gram-Schmidt: Given $A=[a_1,a_2,\ldots,a_n]\in\mathbb{R}^{m\times n}$ (assume full rank rank(A)=n), find orthonormal $[q_1,\ldots,q_n]$ s.t. $\operatorname{span}(q_1,\ldots,q_n)=\operatorname{span}(a_1,\ldots,a_n)$

G-S process:
$$q_1 = \frac{a_1}{\|a_1\|}$$
, then $\tilde{q}_2 = a_2 - q_1 q_1^T a_2$, $q_2 = \frac{\tilde{q}_2}{\|\tilde{q}_2\|}$, repeat for $j = 3, \ldots, n$: $\tilde{q}_j = a_j - \sum_{i=1}^{j-1} q_i q_i^T a_j$, $q_j = \frac{\tilde{q}_j}{\|\tilde{q}_i\|}$.

This gives QR! Let $r_{ij} = q_i^T a_j$ $(i \neq j)$ and $r_{jj} = \|a_j - \sum_{i=1}^{j-1} r_{ij} q_i\|$,

$$q_{1} = \frac{a_{1}}{r_{11}}$$

$$q_{2} = \frac{a_{2} - r_{12}q_{1}}{r_{22}} \Leftrightarrow a_{1} = r_{11}q_{1}$$

$$q_{j} = \frac{a_{j} - \sum_{i=1}^{j-1} r_{ij}q_{i}}{r_{ij}} \Leftrightarrow a_{j} = r_{1j}q_{1} + r_{2j}q_{2} + \dots + r_{jj}q_{j}$$

$$A = Q$$

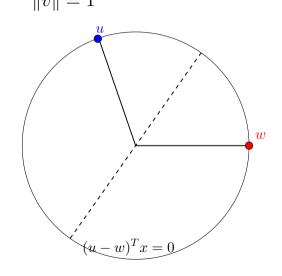
$$R$$

▶ But this isn't the recommended way to do QR; numerically unstable

Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

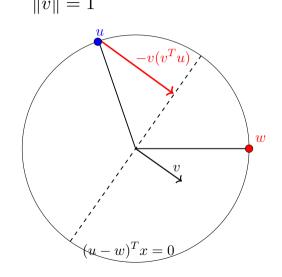
- ► H orthogonal and symmetric: $H^TH = H^2 = I$, eigvals $1 \ (n-1 \text{ copies})$ and $-1 \ (1 \text{ copy})$
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\| \text{ and } u \neq v,$ $H = I 2vv^T \text{ with }$ $v = \frac{w-u}{\|w-u\|} \text{ gives } Hu = w$ $(\Leftrightarrow u = Hw, \text{ thus 'reflector'})$
- $\qquad \qquad \mathbf{We'II} \text{ use this mostly for } \\ w = [*,0,0,\dots,0]^T$



Householder reflectors

$$H = I - 2vv^T, \qquad \|v\| = 1$$

- ▶ H orthogonal and symmetric: $H^TH = H^2 = I$, eigvals $1 \ (n-1 \text{ copies})$ and $-1 \ (1 \text{ copy})$
- For any given $u, w \in \mathbb{R}^n$ s.t. $\|u\| = \|w\| \text{ and } u \neq v,$ $H = I 2vv^T \text{ with }$ $v = \frac{w-u}{\|w-u\|} \text{ gives } Hu = w$ $(\Leftrightarrow u = Hw, \text{ thus 'reflector'})$
- We'll use this mostly for $w = [*, 0, 0, \dots, 0]^T$



Householder reflectors for QR

Householder reflectors:

$$H = I - 2vv^T$$
, $v = \frac{x - ||x||_2 e}{||x - ||x||_2 e||_2}$, $e = [1, 0, \dots, 0]^T$

satisfies
$$Hx = [||x||, 0, ..., 0]^T$$

Householder reflectors for QR

Householder reflectors:

$$H = I - 2vv^{T}, v = \frac{x - ||x||_{2}e}{||x - ||x||_{2}e||_{2}}, e = [1, 0, \dots, 0]^{T}$$

satisfies
$$Hx = [\|x\|, 0, \dots, 0]^T$$

satisfies
$$Hx=[\|x\|,0,\dots,0]^T$$
 \Rightarrow To do QR, find H_1 s.t. $H_1a_1=\begin{bmatrix}\|a_1\|_2\\0\\\vdots\\0\end{bmatrix}$,

repeat to get $H_n \cdots H_2 H_1 A = R$ upper triangular, then $A = (H_1 \cdots H_{n-1} H_n) R = QR$

Householder QR factorisation, diagram

Apply sequence of Householder reflectors

Note
$$v_k = [\underbrace{0, 0, \dots, 0}_{k-1}, *, *, \dots, *]^T$$

Householder QR factorisation

$$\Leftrightarrow A = (H_1^T \cdots H_{n-1}^T H_n^T) \begin{bmatrix} R \\ 0 \end{bmatrix} =: Q_F \begin{bmatrix} R \\ 0 \end{bmatrix} \text{ (full QR; } Q_F \text{ is square orthogonal)}$$

Writing $Q_F = [Q \ Q_{\perp}]$ where $Q \in \mathbb{R}^{m \times n}$ orthonormal, A = QR ('thin' QR or just QR)

Properties

- ightharpoonup Cost $\frac{4}{3}n^3$ flops with Householder-QR (twice that of LU)
- Unconditionally backward stable: $\hat{Q}\hat{R} = A + \Delta A$, $\|\hat{Q}^T\hat{Q} I\|_2 = \epsilon$ (next lec)
- ▶ Constructive proof for A = QR existence
- ▶ To solve Ax = b, solve $Rx = Q^Tb$ via triangle solve.
 - ightarrow Excellent method, but twice slower than LU (so rarely used)

Givens rotation

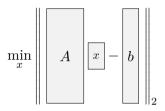
$$G = \begin{vmatrix} c & s \\ -s & c \end{vmatrix}, \quad c^2 + s^2 = 1$$

Designed to 'zero' one element at a time. E.g. QR for upper Hessenberg matrix

- $\Leftrightarrow A = G_1^T G_2^T G_3^T G_4^T R$ is the QR factorisation.
 - ► G acts locally on two rows (two columns if right-multiplied)
 - ► Non-neighboring rows/cols allowed

Least-squares problem

Given $A \in \mathbb{R}^{m \times n}, m \geq n$ and $b \in \mathbb{R}^m$, find $x \in \mathbb{R}^n$ s.t.



- ► More data than degrees of freedom
- ightharpoonup 'Overdetermined' linear system; Ax = b usually impossible
- ▶ Thus minimise ||Ax b||; usually $||Ax b||_2$ but sometimes e.g. $||Ax b||_1$ of interest (we focus on $||Ax b||_2$)
- Assume full rank rank(A) = n; this makes solution unique

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}][\begin{smallmatrix} R \\ 0 \end{smallmatrix}] = Q_F[\begin{smallmatrix} R \\ 0 \end{smallmatrix}]$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x=R^{-1}Q^Tb$ is the solution. This also gives algorithm:

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}][\begin{smallmatrix} R \\ 0 \end{smallmatrix}] = Q_F[\begin{smallmatrix} R \\ 0 \end{smallmatrix}]$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^Tb$ is the solution. This also gives algorithm:

- 1. Compute **thin** QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

Let $A = [Q \ Q_{\perp}] \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_F \begin{bmatrix} R \\ 0 \end{bmatrix}$ be 'full' QR factorization. Then

$$||Ax - b||_2 = ||Q_F^T(Ax - b)||_2 = \left\| \begin{bmatrix} R \\ 0 \end{bmatrix} x - \begin{bmatrix} Q^T b \\ Q_\perp^T b \end{bmatrix} \right\|_2$$

so $x = R^{-1}Q^Tb$ is the solution. This also gives algorithm:

- 1. Compute **thin** QR factorization A = QR
- 2. Solve linear system $Rx = Q^T b$.
- ► This is backward stable: computed \hat{x} solution for $\min_x \|(A + \Delta A)x + (b + \Delta b)\|_2$ (see Higham's book Ch.20)
- lacktriangle Unlike square system Ax=b, one really needs QR: LU won't do the job

Normal equation: Cholesky-based least-squares solver

$$\min_{x} ||Ax - b||_2, \qquad A \in \mathbb{R}^{m \times n}, m \ge n$$

 $x = R^{-1}Q^Tb$ is the solution $\Leftrightarrow x$ solution for $n \times n$ normal equation

$$(A^T A)x = A^T b$$

- ▶ $A^TA \succeq 0$ (always) and $A^TA \succ 0$ if rank(A) = n; then PD linear system; use Cholesky to solve.
- ► Fast! but NOT backward stable; $\kappa_2(A^TA) = (\kappa_2(A))^2$ where $\kappa_2(A) = \frac{\sigma_{\max}(A)}{\sigma_{\min}(A)}$ condition number (next lecture)

Application: regression/function approximation

Given function $f:[-1,1]\to\mathbb{R}$,

Consider approximating via polynomial $f(x) \approx p(x) = \sum_{i=0} c_i x^i$.

Very common technique: Regression

- 1. Sample f at points $\{z_i\}_{i=1}^m$, and
- 2. Find coefficients c defined by Vandermonde system $Ac \approx f$,

$$\begin{bmatrix} 1 & z_1 & \cdots & z_1^n \\ 1 & z_2 & \cdots & z_2^n \\ \vdots & \vdots & & \vdots \\ 1 & z_m & \cdots & z_m^n \end{bmatrix} \begin{bmatrix} c_0 \\ \vdots \\ c_n \end{bmatrix} \approx \begin{bmatrix} f(z_1) \\ f(z_2) \\ \vdots \\ f(z_m) \end{bmatrix}.$$

Numerous applications, e.g. in statistics, numerical analysis, approximation theory, data analysis!