LU decomposition

Let A € R™*™, Suppose we can decompose (or factorise)
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upper triangular. How to find L,U?
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LU decomposition

Let A € R™*™, Suppose we can decompose (or factorise)
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L: lower triangular, U: upper triangular. How to find L,U?
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LU decomposition cont'd

First step:
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LU decomposition cont'd 2
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Solving Az = b via LU

A=LU € R"™"

L: lower triangular, U: upper triangular
» Cost %n?’ flops (floating-point operations)
» For Ax =0,
> first solve Ly = b, then Uz = y.
» triangular solve is always backward stable: e.g. (L + AL)j = b (see Higham's book)

> Pivoting crucial for numerical stability: PA = LU, where P: permutation matrix.
Then stability means LU = PA + AA
» Even with pivoting, unstable examples exist, but still always stable in practice and
used everywhere!
» Special case where A > 0 positive definite: A = RT R, Cholesky factorization,
ALWAYS stable, %n3 flops



LU decomposition with pivots
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A3y = |As1/a + k%
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Trouble if a = A1; = 0! e.g. no LU for 1 O] solution: pivot, permute rows s.t.

largest entry of first (active) column is at top. = PA = LU, P: permutation matrix

» PA = LU exists for any nonsingular A (exercise)
» for Az = b, solve LUx = PTh
> cost still 2n® + O(n?)
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Cholesky factorisation for A > 0
If A > 0 (symmetric positive definite (S)PD<A;(A4) > 0), two simplifications:

» We can take U; = LT =: R; by symmetry = %n3 flops
> No pivot needed
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Notes:
» diag(R) no longer 1's
» A can be written as A = RTR for some R € R™*" iff A = 0 (\i(A) > 0)
» Indefinite case: when A = A* but A not PSD, 3 A = LDL* where D diagonal
(when A € R™ "™, D can have 2 x 2 diagonal blocks), L has 1's on diagonal



