Recap: spectral norm of matrix

$$||A||_{2} = \max_{x} \frac{||Ax||_{2}}{||x||_{2}} = \max_{||x||_{2}=1} ||Ax||_{2} = \sigma_{1}(A)$$

Proof: Use SVD

Recap: spectral norm of matrix

$$\|A\|_{2} = \max_{x} \frac{\|Ax\|_{2}}{\|x\|_{2}} = \max_{\|x\|_{2}=1} \frac{\|Ax\|_{2}}{\|x\|_{2}} = \sigma_{1}(A)$$
Proof: Use SVD
$$\int_{|\langle \chi / |_{2}=1}^{f_{0}} ||\nabla \chi ||_{2}^{2} = \chi^{7} ||\nabla \chi ||_{2}^{2} = \chi^{7} ||\nabla \chi ||_{2}^{2} = \|\nabla \nabla^{T} x\|_{2}$$

$$= \|\nabla \nabla^{T} x\|_{2} \text{ by unitary invariance}$$

$$= \|\nabla y\|_{2} \text{ with } \|y\|_{2} = 1 \qquad \forall = \sqrt{2} \\ = \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2} y_{i}^{2}} \qquad (6_{i} \ge 6_{i} \ \forall i)$$

$$= \sqrt{\sum_{i=1}^{n} \sigma_{1}^{2} y_{i}^{2}} = \sigma_{1} \|y\|_{2}^{2} = \sigma_{1}.$$
Mow Take $\chi = V,$

$$A_{\chi =} ||\nabla V^{T} v_{i}| = ||\nabla \sum_{i=1}^{n} ||\nabla y||_{2}^{2} = \sigma_{1}.$$

Recap: spectral norm of matrix

$$||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)$$

Proof: Use SVD

$$\begin{split} \|Ax\|_{2} &= \|U\Sigma V^{T}x\|_{2} \\ &= \|\Sigma V^{T}x\|_{2} \quad \text{by unitary invariance} \\ &= \|\Sigma y\|_{2} \quad \text{with } \|y\|_{2} = 1 \quad \text{unif. Now m} \\ &= \sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}y_{i}^{2}} \quad \text{for and and for all of a state of the state of th$$

Low-rank approximation of a matrix

Given $A \in \mathbb{R}^{m \times n}$, find A_r such that

SVD optimality proof in spectral norm Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = diag(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

SVD optimality proof in spectral norm Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = diag(\sigma_1, \dots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

Since $rank(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns.

R" disl (pan(132)) <r SVD optimality proof in spectral norm Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r)$ $||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$ • Since $\operatorname{rank}(B) \leq r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have r columns. Moreover, BW = 0 if $B_{\Sigma}^{T}W = 0$ There exists orthogonal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $||A - B||_2 \ge ||(A - B)W||_2 = ||AW||_2 = ||U\Sigma(V^*W)||_2.$

if m<n, 3×=0 M siz SVD optimality proof in spectral norm Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r)$

$$||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B)=r} ||A - B||_2$$

have r columns. ▶ There exists orthogonal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. BW = 0. Then $\|A - B\|_2 \ge \|(A - B)W\|_2 = \|AW\|_2 = \|U\Sigma(V^*W)\|_2.$ Now since W is (n - r)-dimensional, there is is an V is (r - V) with the section between W and $[v_1, \dots, v_{r+1}]$, the V is $V_{(r} - V)$ with the section between W and $[v_1, \dots, v_{r+1}]$. (r+1)-dimensional subspace spanned by the leading r+1 left singular vectors $([W, v_1, \ldots, v_{r+1}] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 0$ has a solution; \mathcal{N}^{\dagger} then Wx_1 is such a vector). $|(|| || = || \times (||$

• Since $\operatorname{rank}(B) \leq r$, we can write $B = B_1 B_2^T$ where B_1, B_2

SVD optimality proof in spectral norm

Truncated SVD: $A_r = U_r \Sigma_r V_r^T$, $\Sigma_r = \text{diag}(\sigma_1, \dots, \sigma_r)$

$$\begin{split} \|A - A_r\|_2 &= \sigma_{r+1} = \min_{\text{rank}(B)=r} \|A - B\|_2 \\ A &= 0 \quad \Sigma_r \bigvee_{x=1}^r \quad \text{twe} \quad \|A - A_r\| = 0 \quad \text{form} \quad V_r \in [0, 0, 0, 0, 0, 0] \\ A &= 0 \quad \Sigma_r \bigvee_{x=1}^r \quad \text{twe} \quad \|A - A_r\| = 0 \quad \text{form} \quad V_r \in [0, 0, 0, 0, 0, 0] \\ \text{have } r \text{ columns.} \end{split}$$
Since rank(B) $\leq r$, we can write $B = B_1 B_2^T$ where $B_1, B_2 = \|D_r \cap D_r \cap$

