Recap: spectral norm of matrix
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Proof: Use SVD




Recap: spectral norm of matrix
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Recap: spectral norm of matrix
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A2 = ma

Proof: Use SVD
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Frobenius norm: \AHF = \/Z D |Aij 12 = /i1 (0i(A))?
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Low-rank approximation of a matrix
Given A € R™*"™, find A, such that\r
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» Storage savings (data compression)
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Optimal low-rank approximation by SVD C,\/Eﬁw
r)

Truncated SVD: A, = [0, %5 %, = diag(o1,...,0
J / Cyonk o) e
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Eﬁ—/—‘

c{

sl 1)

V@Q&’Q Good apprOX|mat|on iflo, 11 K o1 A

eyrsr ‘ —
St A
€\
A ~ A'r' =1\U X
\"Eoﬂ/\g rJ‘KDLV)“"‘/
S .
AN = e @-pl-
[&gtimality holds for any unitarily invariant norm A ’AWSL :L&(}i’f”(’
» Prominent application: PCA X fﬁ

{Many matrices have epr|C|t or hidden Iow rank structure ]
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SVD optimality proof in spectral norm
Truncated SVD: A, = U, X, V.l ¥, = diag(oy,...,0,)

|A = Arll2 = 0741 = minggpy . 14 - Bll:
7



SVD optimality proof in spectral norm
Truncated SVD: A, = U, X, V.l ¥, = diag(oy,...,0,)

||A — ATHQ = 0Or4+1 = min

rank(B)=r 1A _EHQ

» Since rank(B) < r, we can write B =

have r columns. >



SVD optimality proof in spectral norm ﬁ%// 45l el B £

Truncated SVD: A, = U, X, V.l ¥, = diag(oy,...,0,)

1A= Ala = o741 = minanigzy 4 = Bl B | Br [
t
Sy 7
» Since rank(B) < r, we can write B = BlB2 where By, By B, B, 70

have r columns. W“’M\ RW=2 - ET\,\/ =0.
» There exists o@g@al @ C*(n=7) st. BW = 0. Then
|A—Bllz > [|[(A = B)W|lz = [[AW ]|z = [US(V*W)]|2.
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SVD optimality proof in spectral norm L, 9)@;@
Truncated SVD: A, = UTETVTT, Y, = diag(o1,...,0.) o

||A — Ar||2 = Opt1 = minrank(B):r ||A — l?”2 @ X|=0

» Since rank(B) < r, we can write B = BlB2T where By, By
have r columns. X,
- _ 7 | oo
» There exists orthogonal W € C"*("~") st. BW = 0. Then

1
|4 = B2 > (A= BYW|l2 = [ AW ]2 = [US(V*W)]|5. |
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» Now since W is dimensional, there is is an v %
intergsection between@ and , the T\(\/ Vi, Ve 0
(r + 1)-dimensional subspace spanned by the Ieadlng r\tlleft
singular vectors ([W,v1,...,vp41] |22 ]

= 0 has a solutio
then Wxq is such a vector). u @
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SVD optimality proof in spectral norm
Truncated SVD: A, = U, X, V.l ¥, = diag(oy,...,0,)

4 = Arlle = 0y = minggng ), 14 B||2 V
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> Sincelérili(\?)/f/r we Can write B = By BI where By, By _ féwéfm

have r columns. M
» There exists orthogonal W € C"*("~") st. BW = (0. Then - Iy
|A—Bl2 = [[(A=B)W|z = [[AW ||z =|{[US(V*W)]}2 B

Now since W is (n — r)-dimensional, there is is an
W Si ( ) WMV”(%ULZ b |
W

interesection between W and [v1,...,v,41], the

(r + 1)-dimensional subspace spanned by the leading r + 1 Teft L (A-8)I 26,

singular vectors ([W,v1,...,v,4{]]| 22 | = 0 has)a solution; Ve
then Wx1 is such a vector). K =~ E&/l 9‘”‘7[&)/

» Then scale asl&t% have unit norm, and (x4 | = [m( \

|USVAWaills = S L1l2, where [|y1]l2 = 1 and 2,11 is

the leading r + 1 part of X. Then [|[UX, 1 1y1||2 > 0,41 can be

verified directly. \U.-Uvg



Low-rank approximation: image compression

grayscale image=matrix 6; pert) (gt®7
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