
Recap: spectral norm of matrix

ÎAÎ2 = max
x

ÎAxÎ2
ÎxÎ2

= max
ÎxÎ2=1

ÎAxÎ2= ‡1(A)

Proof: Use SVD
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= Î�V T xÎ2 by unitary invariance

= Î�yÎ2 with ÎyÎ2 = 1

=
ı̂ıÙ

nÿ

i=1
‡2

i y2
i

Æ
ı̂ıÙ

nÿ

i=1
‡2

1y2
i = ‡1ÎyÎ2

2 = ‡1.

Frobenius norm: ÎAÎF =
Òq

i
q

j |Aij |2 =
qn

i=1(‡i(A))2

(exercise)
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Low-rank approximation of a matrix

Given A œ Rm◊n
, find Ar such that

A ¥ Ar = U � V T

I Storage savings (data compression)



Optimal low-rank approximation by SVD

Truncated SVD: Ar = Ur�rV T
r , �r = diag(‡1, . . . , ‡r)

ÎA ≠ ArÎ2 = ‡r+1 = min
rank(B)=r

ÎA ≠ BÎ2

I Good approximation if ‡r+1 π ‡1:

A ¥ Ar = U � V T

I Optimality holds for any unitarily invariant norm

I Prominent application: PCA

I Many matrices have explicit or hidden low-rank structure

(nonexaminable)



SVD optimality proof in spectral norm

Truncated SVD: Ar = Ur�rV T
r , �r = diag(‡1, . . . , ‡r)

ÎA ≠ ArÎ2 = ‡r+1 = minrank(B)=r ÎA ≠ BÎ2

I Since rank(B) Æ r, we can write B = B1BT
2 where B1, B2

have r columns.

I There exists orthogonal W œ Cn◊(n≠r)
s.t. BW = 0. Then

ÎA ≠ BÎ2 Ø Î(A ≠ B)WÎ2 = ÎAWÎ2 = ÎU�(V úW )Î2.

I Now since W is (n ≠ r)-dimensional, there is is an

interesection between W and [v1, . . . , vr+1], the

(r + 1)-dimensional subspace spanned by the leading r + 1 left

singular vectors ([W, v1, . . . , vr+1]
# x1

x2
$

= 0 has a solution;

then Wx1 is such a vector).

I Then scale x1 to have unit norm, and

ÎU�V úWx1Î2 = ÎU�r+1y1Î2, where Îy1Î2 = 1 and �r+1 is

the leading r + 1 part of �. Then ÎU�r+1y1Î2 Ø ‡r+1 can be

verified directly.
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Low-rank approximation: image compression

grayscale image=matrix

original rank 1 rank 5

rank 10 rank 20 rank 50


