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Recap: spectral norm of matrix
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Proof: Use SVD

[Azll2 = [USV ]|z
= ||2V7Tz||y by unitary invariance
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Frobenius norm: [[Allr = /32, >, [Ai|* = iz1(0i(A))

(exercise)



Low-rank approximation of a matrix
Given A € R™*" find A, such that

» Storage savings (data compression)




Optimal low-rank approximation by SVD
Truncated SVD: A, = U, %, VI, ¥, = diag(o,...,0,)

|A~Allz=0r1= min [|A— Bl
rank(B)=r

» Good approximation if 0,41 < o7:

» Optimality holds for any unitarily invariant norm

» Prominent application: PCA

> Many matrices have explicit or hidden low-rank structure
(nonexaminable)



SVD optimality proof in spectral norm
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A= Arlla = or41 = ming,py 5, |14 — B2
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SVD optimality proof in spectral norm
Truncated SVD: A, = U, %, VI, ¥, = diag(o1, ..., 0,)

A= Arlla = or41 = ming,py 5, |14 — B2

» Since rank(B) < r, we can write B = BB where By, By
have r columns.

> There exists orthonormal W € C™*("~") st. BIW = 0. Then
|A =Bz > (A= BYW|2 = [|AW |z = [US(V*W)]|o.

» Now since W is (n — r)-dimensional, there is is an intersection

between W and [v1, ..., v,4+1], the (r + 1)-dimensional
subspace spanned by the leading 7 + 1 left singular vectors
(W, v1,...,vp41][ 25 ] = 0 has a solution; then Wz is such a
vector).

» Then scale x1 to have unit norm, and
lUSV*Wz1|2 = |UEr+111]|2, where ||y1]l2 = 1 and X,y is
the leading 7+ 1 part of ¥. Then |[UX,4+1y1]l2 > or4+1 can be
verified directly.



Low-rank approximation: image compression

grayscale image=matrix
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