Recap: spectral norm of matrix

$$
||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)
$$

Proof: Use SVD

Recap: spectral norm of matrix

$$
||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)
$$

Proof: Use SVD

$$
||Ax||_2 = ||U\Sigma V^T x||_2
$$

\n
$$
= ||\Sigma V^T x||_2 \text{ by unitary invariance}
$$

\n
$$
= ||\Sigma y||_2 \text{ with } ||y||_2 = 1
$$

\n
$$
= \sqrt{\sum_{i=1}^n \sigma_i^2 y_i^2}
$$

\n
$$
\leq \sqrt{\sum_{i=1}^n \sigma_1^2 y_i^2} = \sigma_1 ||y||_2^2 = \sigma_1.
$$

Recap: spectral norm of matrix

$$
||A||_2 = \max_x \frac{||Ax||_2}{||x||_2} = \max_{||x||_2=1} ||Ax||_2 = \sigma_1(A)
$$

Proof: Use SVD

$$
||Ax||_2 = ||U\Sigma V^T x||_2
$$

\n
$$
= ||\Sigma V^T x||_2 \text{ by unitary invariance}
$$

\n
$$
= ||\Sigma y||_2 \text{ with } ||y||_2 = 1
$$

\n
$$
= \sqrt{\sum_{i=1}^n \sigma_i^2 y_i^2}
$$

\n
$$
\leq \sqrt{\sum_{i=1}^n \sigma_i^2 y_i^2} = \sigma_1 ||y||_2^2 = \sigma_1.
$$

 $\textsf{Frobenius norm: } \|A\|_F = \sqrt{\sum_i\sum_j|A_{ij}|^2} = \sqrt{\sum_{i=1}^n(\sigma_i(A))^2}$ (exercise)

Low-rank approximation of a matrix

Given $A \in \mathbb{R}^{m \times n}$, find A_r such that

 \triangleright Storage savings (data compression)

Optimal low-rank approximation by SVD

 $\text{Truncated SVD: } A_r = U_r \Sigma_r V_r^T, \ \Sigma_r = \text{diag}(\sigma_1, \ldots, \sigma_r)$

$$
||A - A_r||_2 = \sigma_{r+1} = \min_{\text{rank}(B) = r} ||A - B||_2
$$

If Good approximation if $\sigma_{r+1} \ll \sigma_1$:

- \triangleright Optimality holds for any unitarily invariant norm
- **Prominent application: PCA**
- \blacktriangleright Many matrices have explicit or hidden low-rank structure (nonexaminable)

$$
||A - A_r||_2 = \sigma_{r+1} = \min_{\text{rank}(B) = r} ||A - B||_2
$$

$$
||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2
$$

▶ Since $\text{rank}(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have *r* columns.

$$
||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2
$$

▶ Since $\text{rank}(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have *r* columns.

▶ There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. $BW = 0$. Then $||A - B||_2 \ge ||(A - B)W||_2 = ||AW||_2 = ||U\Sigma(V^*W)||_2.$

$$
||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2
$$

- ▶ Since $\text{rank}(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have *r* columns.
- ▶ There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. $BW = 0$. Then $||A - B||_2 \ge ||(A - B)W||_2 = ||AW||_2 = ||U\Sigma(V^*W)||_2.$
- **►** Now since *W* is $(n r)$ -dimensional, there is is an intersection between *W* and $[v_1, \ldots, v_{r+1}]$, the $(r + 1)$ -dimensional subspace spanned by the leading $r + 1$ left singular vectors $([W, v_1, \ldots, v_{r+1}]$ $\left[\frac{x_1}{x_2}\right] = 0$ has a solution; then Wx_1 is such a vector).

$$
||A - A_r||_2 = \sigma_{r+1} = \min_{\mathsf{rank}(B) = r} ||A - B||_2
$$

- ▶ Since $\text{rank}(B) \le r$, we can write $B = B_1 B_2^T$ where B_1, B_2 have *r* columns.
- ▶ There exists orthonormal $W \in \mathbb{C}^{n \times (n-r)}$ s.t. $BW = 0$. Then $||A - B||_2 \ge ||(A - B)W||_2 = ||AW||_2 = ||U\Sigma(V^*W)||_2.$
- \triangleright Now since *W* is $(n r)$ -dimensional, there is is an intersection between *W* and $[v_1, \ldots, v_{r+1}]$, the $(r+1)$ -dimensional subspace spanned by the leading $r + 1$ left singular vectors $([W, v_1, \ldots, v_{r+1}]$ $\left[\frac{x_1}{x_2}\right] = 0$ has a solution; then Wx_1 is such a vector).
- \blacktriangleright Then scale x_1 to have unit norm, and $||U\Sigma V^* W x_1||_2 = ||U\Sigma_{r+1} y_1||_2$, where $||y_1||_2 = 1$ and Σ_{r+1} is the leading $r + 1$ part of Σ . Then $||U\Sigma_{r+1}y_1||_2 \geq \sigma_{r+1}$ can be verified directly.

Low-rank approximation: image compression grayscale image=matrix

