
Recap: spectral norm of matrix

‖A‖2 = max
x

‖Ax‖2
‖x‖2

= max
‖x‖2=1

‖Ax‖2= σ1(A)

Proof: Use SVD

‖Ax‖2 = ‖UΣV Tx‖2
= ‖ΣV Tx‖2 by unitary invariance
= ‖Σy‖2 with ‖y‖2 = 1

=

√√√√ n∑
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2
i = σ1‖y‖22 = σ1.

Frobenius norm: ‖A‖F =
√∑

i

∑
j |Aij |2 =

√∑n
i=1(σi(A))2

(exercise)
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Low-rank approximation of a matrix
Given A ∈ Rm×n, find Ar such that

A ≈ Ar = U Σ V T

I Storage savings (data compression)



Optimal low-rank approximation by SVD
Truncated SVD: Ar = UrΣrV

T
r , Σr = diag(σ1, . . . , σr)

‖A−Ar‖2 = σr+1 = min
rank(B)=r

‖A−B‖2

I Good approximation if σr+1 � σ1:

A ≈ Ar = U Σ V T

I Optimality holds for any unitarily invariant norm
I Prominent application: PCA
I Many matrices have explicit or hidden low-rank structure

(nonexaminable)



SVD optimality proof in spectral norm
Truncated SVD: Ar = UrΣrV

T
r , Σr = diag(σ1, . . . , σr)

‖A−Ar‖2 = σr+1 = minrank(B)=r ‖A−B‖2

I Since rank(B) ≤ r, we can write B = B1B
T
2 where B1, B2

have r columns.
I There exists orthonormal W ∈ Cn×(n−r) s.t. BW = 0. Then
‖A−B‖2 ≥ ‖(A−B)W‖2 = ‖AW‖2 = ‖UΣ(V ∗W )‖2.

I Now since W is (n− r)-dimensional, there is is an intersection
between W and [v1, . . . , vr+1], the (r + 1)-dimensional
subspace spanned by the leading r + 1 left singular vectors
([W, v1, . . . , vr+1]

[ x1
x2

]
= 0 has a solution; then Wx1 is such a

vector).
I Then scale x1 to have unit norm, and
‖UΣV ∗Wx1‖2 = ‖UΣr+1y1‖2, where ‖y1‖2 = 1 and Σr+1 is
the leading r+ 1 part of Σ. Then ‖UΣr+1y1‖2 ≥ σr+1 can be
verified directly.
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Low-rank approximation: image compression
grayscale image=matrix

original rank 1 rank 5

rank 10 rank 20 rank 50


