SVD: the most important matrix decomposition
Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$
for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$
for any $A \in \mathbb{R}^{m \times n}, m \geq n$. Here $U^{T} U=V^{T} V=I_{n}$,

$$
\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{n}
$$

SVD proof:

$$
\begin{aligned}
& \text { D proof: } \quad\left(A B B^{\prime}=8\right. \\
& A^{A T A}=V A V^{\top} \geq 0 \\
& s_{\text {sukucric }}
\end{aligned}
$$



$$
\begin{array}{r}
\lambda_{1} z \lambda_{2} z-\lambda_{n} \\
20
\end{array}
$$

$$
\begin{aligned}
& B \text { les orthogicl thus. }
\end{aligned}
$$

## SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.

Singular Value Decomposition (SVD): $A=U S V^{T}$
for any $A \in \mathbb{R}^{m \times n}, m \geq n$. Here $U^{T} U=V^{T} W=\frac{1}{n}, 1$ $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{n}$.

SVD proof: Take Gram matrix $A^{T} A$ and its eigendecomposition $A^{T} A=V \Lambda V^{T} . \Lambda$ is nonnegative, and $(A V)^{T}(A V)$ is diagonal, so $A V=U \Sigma$ for some orthonormal $U$. Right-multiply $V^{T}$.

## SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$ for any $A \in \mathbb{R}^{m \times n}, m \geq n$. Here $U^{T} U=V^{T} V=I_{n}$, $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{n}$.

SVD proof: Take Gram matrix $A^{T} A$ and its eigendecomposition $A^{T} A=V \Lambda V^{T} . \Lambda$ is nonnegative, and $(A V)^{T}(A V)$ is diagonal, so $A V=U \Sigma$ for some orthonormal $U$. Right-multiply $V^{T}$.

Full SVD: $A=U\left[\frac{\Sigma}{\Sigma}\right] V^{T}$ where $U \in \mathbb{R}^{m \times m}$ orthogonal
may

$$
A=\sqrt{2} V^{*}
$$

$$
\begin{aligned}
U_{\sim}^{*} U=V^{*} V & =I_{n}=V V^{*} \\
& \neq U U^{*} \text { unless } m=n .
\end{aligned}
$$

rank, column/row space, etc From the SVD one gets

rank $r$ of $A \in \mathbb{R}^{m \times n}$ : number of nonzero singular values $\sigma_{i}(A)$ (=\# linearly indep. columns, rows)

- column space (linear subspace spanned by vectors $A x$ ): span of $U=\left[u_{1}, \ldots, u_{r}\right]$ $\qquad$ row space: row span of $v_{1}^{T}, \ldots, v_{r}^{T}$ null space: $v_{r+1}, \ldots, v_{n}$

$$
\begin{aligned}
& A V_{r+1}=0 \text {. } \\
& \text { UEV'Ure, AViまo }
\end{aligned}
$$



SVD and eigenvalue decomposition
$\rightarrow V$ eigvecs of $A^{T} A$
$-\sqrt{U}$ eigvecs (for nonzero eigvals) of $A$ (up to sign) $)$

- $\sigma_{i}=\sqrt{\lambda_{i}\left(A^{T} A\right)}$
o erg nulls if $m>n$
- Think of eigenvalues vs. SVD of symmetric matrices, unitary, skew-symmetric, normal matrices, triangular,...

- Jordan-Wieldant matrix $\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]:$ eigvals $\pm \sigma_{i}(A)$, and $m-n$ copies of 0 . Eigvec matrix is $\left[\begin{array}{ccc}U & \bar{U} & U_{0} \\ V & -V & 0\end{array}\right], A^{T} U_{0}=0$

sorthegons
$U_{0}^{T} U=0_{m=1, n}$

Uniqueness etc

$$
\begin{aligned}
& A=U \sum_{N} V^{\top} \\
& \left.=(U S,) \Sigma\left(S_{1}, V\right]\right) \Leftarrow S U D! \\
& \begin{array}{ll} 
\pm 1 & \\
{\left[\begin{array}{ll}
1
\end{array}\right]} & S_{1}^{\top}=S_{1} \\
S_{1}^{2}=I
\end{array} \\
& \text { extreere care: } \\
& A=\frac{U}{} \text { outhomenal } \\
& =5 \text { In II } \\
& =\sqrt{2 \pi} \\
& \text { onl DOF? yes if bi are bistinct. } \\
& \tilde{y}_{\sim}^{2} \frac{1}{\Sigma} \\
& \text { No if } \sigma_{i}=b_{i+1}
\end{aligned}
$$

