SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$
for any $A \in \mathbb{R}^{m \times n}, m \geq n$. Here $U^{T} U=V^{T} V=I_{n}$, $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{n}$.

SVD proof:

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$ for any $A \in \mathbb{R}^{m \times n}, m \geq n$. Here $U^{T} U=V^{T} V=I_{n}$, $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{n}$.

SVD proof: Take Gram matrix $A^{T} A$ and its eigendecomposition $A^{T} A=V \Lambda V^{T} . \Lambda$ is nonnegative, and $(A V)^{T}(A V)$ is diagonal, so $A V=U \Sigma$ for some orthonormal U. Right-multiply V^{T}.

SVD: the most important matrix decomposition

- Symmetric eigenvalue decomposition: $A=V \Lambda V^{T}$ for symmetric $A \in \mathbb{R}^{n \times n}$, where $V^{T} V=I_{n}, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$.
- Singular Value Decomposition (SVD): $A=U \Sigma V^{T}$

$$
\begin{aligned}
& \text { for any } A \in \mathbb{R}^{m \times n}, m \geq n \text {. Here } U^{T} U=V^{T} V=I_{n}, \\
& \Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{n}\right), \sigma_{1} \geq \sigma_{2} \geq \cdots \sigma_{n} .
\end{aligned}
$$

SVD proof: Take Gram matrix $A^{T} A$ and its eigendecomposition $A^{T} A=V \Lambda V^{T} . \Lambda$ is nonnegative, and $(A V)^{T}(A V)$ is diagonal, so $A V=U \Sigma$ for some orthonormal U. Right-multiply V^{T}.

Full SVD: $A=U\left[\begin{array}{l}\Sigma \\ 0\end{array}\right] V^{T}$ where $U \in \mathbb{R}^{m \times m}$ orthogonal

rank, column/row space, etc

From the SVD one gets

- rank r of $A \in \mathbb{R}^{m \times n}$: number of nonzero singular values $\sigma_{i}(A)$ (=\# linearly indep. columns, rows)
- column space (linear subspace spanned by vectors $A x$): span of $U=\left[u_{1}, \ldots, u_{r}\right]$
- row space: row span of $v_{1}^{T}, \ldots, v_{r}^{T}$
- null space: v_{r+1}, \ldots, v_{n}

SVD and eigenvalue decomposition

- V eigvecs of $A^{T} A$
- U eigvecs (for nonzero eigvals) of $A A^{T}$ (up to sign)
- $\sigma_{i}=\sqrt{\lambda_{i}\left(A^{T} A\right)}$
- Think of eigenvalues vs. SVD of symmetric matrices, unitary, skew-symmetric, normal matrices, triangular,...
- Jordan-Wieldant matrix $\left[\begin{array}{cc}0 & A \\ A^{T} & 0\end{array}\right]$: eigvals $\pm \sigma_{i}(A)$, and $m-n$ copies of 0 . Eigvec matrix is $\left[\begin{array}{ccc}U & U & U_{0} \\ V & -V & 0\end{array}\right], A^{T} U_{0}=0$

