Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)
The following are equivalent (how many can you name?):

1. A is nonsingular. $\Longleftrightarrow A$ inrevtible, ${ }^{7} A^{-1} \cdot A^{-1} A=I_{n}$ $\Leftrightarrow A A^{-1}=I_{n}$

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)
The following are equivalent (how many can you name?):

1. A is nonsingular.
2. A is invertible: A^{-1} exists.
3. The map $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a bijection.
4. all n eigenvalues of A are nonzero.
5. all n singular values of A are positive.
6. $\operatorname{rank}(A)=n$.
7. the rows of A are linearly independent.
8. the columns of A are linearly independent.
9. $A x=b$ has a solution for every $b \in \mathbb{C}^{n}$.
10. A has no nonzero null vector. Neither does A^{T}.
11. $A^{*} A$ is positive definite (not just semidefinite).
12. $\operatorname{det}(A) \neq 0$.
13. A^{-1} exists such that $A^{-1} A=A A^{-1}=I_{n}$.)
14. ...

Structured matrices
For square matrices, -5-densetunstructrted.

- Symmetric: $A_{i j}=A_{j i}$ (Hermitian: $A_{i j}=\overline{A_{j i}}$)

- symmetric positive (semi)definite $A \succ(\succeq) 0$: symmetric and positive eigenvalues $S P D S P S D$
- Orthogonal: $A A^{T}=A^{T} A=I$ (Unitary: $\lambda i \neq 0$ note $A^{T} A=\overline{I \text { implies } A A^{T}}=I$
- Skew-symmetric: $A_{i j}=-A_{j i}$ (skew-Hermitian: $A_{i j}=-\overline{A_{j i}}$)
- Normal: $A^{T} A=A A^{T} \lessdot A=-A^{\top}$
- Tridiagonal: $A_{i j}=0$ if $|i-j|>1$ eiguec orthogonal,
-Triangular:
For (possibly nonsquare) matrices $A \in \mathbb{C}^{m \times n}, m \geq n$
- Hessenberg: $A_{i j}=0$ if $i>j+1$
- "orthonormal": $A^{*} A=I_{n}, \quad A A^{*} \neq I_{m}$ if $m>n$

- sparse: most elements are zero
other structures: Wankel, Toeplitz, circular

Vector norms
For vectors $x=\left[x_{1}, \ldots, x_{n}\right]^{T} \in \mathbb{C}^{n}$
p-norm $\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}\right)^{1 / p}$

- Euclidean norm=2-norm $\|x\|_{2}=\sqrt{\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}}+\cdots+\left|x_{n}\right|^{2}$
- 1-norm $\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$
- ∞-norm $\|x\|_{\infty}=\max _{i}\left|x_{i}\right|$

Norm axioms

- $\|\alpha x\|=|\alpha|\|x\|$ for any $\alpha \in \mathbb{C}$
- $\|x\| \geq 0$ and $\|x\|=0 \Leftrightarrow x=0$
$-\|x+y\| \leq\|x\|+\|y\|)$ triang. ines.
Inequalities: For $x \in \mathbb{C}^{n}$,
- $\frac{1}{\sqrt{n}}\|x\|_{2} \leq\|x\|_{\infty} \leq\|x\|_{2}$
- $\frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \leq\|x\|_{1}$
- $\frac{1}{n}\|x\|_{1} \leq\|x\|_{\infty} \leq\|x\|_{1}$
$\|\cdot\|_{2}$ is unitarily invariant as $\|U x\|_{2}=\underbrace{\|x\|_{2}}$ for any unitary U and any $x \in \mathbb{C}^{n}$.

Matrix norms

For matrices $A \in \mathbb{C}^{m \times n}$,

- p-norm $\|A\|_{p}=\max _{x} \frac{\|A x\|_{p}}{\|x\|_{p}}=\max _{\| \times r_{p}=1}\|A \times\|_{p}$
- 2-norm=spectral norm (=operator norm) $\|A\|_{2}=\sigma_{\max }(A)$ (largest " singular value)

$$
\left[\begin{array}{l}
\text { 1-norm }\|A\|_{1}=\max _{i} \sum_{j=1}^{n}\left|A_{j i}\right| \\
>\infty \text {-norm }\|A\|_{\infty}=\max _{i} \sum_{j=1}^{n}\left|A_{i j}\right|
\end{array}\right. \text { exercise. }
$$

- Frobenius norm $\|A\|_{F}=\sqrt{\sum_{i} \sum_{j}\left|A_{i j}\right|^{2}}=\|\operatorname{Vec}(A)\|_{2}$ (2-norm of vectorization)
- trace norm=nuclear norm $\|A\|_{*}=\sum_{i=1}^{\min }(\eta, n) \sigma_{i}(A)$

Red: unitarily invariant norms $\|A\|=\|U A V\|$ for any unitary (or orthogonal) U, V

Norm axioms hold for each. Inequalities: For $A \in \mathbb{C}^{m \times n}$, (exercise)

$$
\begin{aligned}
& \qquad \frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty} \\
& >\frac{1}{\sqrt{m}}\|A\|_{1} \leq\|A\|_{2} \leq \sqrt{n}\|A\|_{1} \\
& >A\left\|_{2} \leq\right\| A\left\|_{F} \leq \sqrt{\min (m, n)}\right\| A \|_{2}
\end{aligned}
$$

