Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)

The following are equivalent (how many can you name?):

1. A is nonsingular. \Leftrightarrow A invertible, $\stackrel{?}{\sim}$ A⁻¹. $\stackrel{?}{\wedge}$ $\stackrel{?}{\sim}$ $\stackrel{?}{\wedge}$ $\stackrel{?}{\wedge}$ $\stackrel{?}{\sim}$ $\stackrel{?}{\wedge}$ $\stackrel{?}{\sim}$ $\stackrel{?}{\wedge}$ $\stackrel{?}{\sim}$ $\stackrel{?}{\sim}$

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)

The following are equivalent (how many can you name?):

- 1. A is nonsingular.
- 2. A is invertible: A^{-1} exists.
- 3. The map $A: \mathbb{R}^n \to \mathbb{R}^n$ is a bijection.
- 4. all n eigenvalues of A are nonzero.
- 5. all n singular values of A are positive.
- 6. $\operatorname{rank}(A) = n$.
- 7. the rows of A are linearly independent.
- 8. the columns of A are linearly independent.
- 9. Ax = b has a solution for every $b \in \mathbb{C}^n$. $\lambda = A^{-1}$
- 10. \widehat{A} has no nonzero null vector. Neither does \widehat{A}^T .
- 11. A^*A is positive definite (not just semidefinite).
- 12. $\det(A) \neq 0$.
- 13. A^{-1} exists such that $A^{-1}A = AA^{-1} = I_n$.
- 14. ...

Structured matrices

- > symmetric positive (semi)definite $A \succ (\succeq)0$: symmetric and positive eigenvalues
- ► Orthogonal: $AA^T = A^TA = I$ (Unitary: $AA^* = A^*A = I$) → note $A^T A = I$ implies $AA^T = I$
- Skew-symmetric: $A_{ij} = -A_{ji}$ (skew-Hermitian: $A_{ij} = -A_{ji}$)
- Normal: $A^TA = AA^T$
- Tridiagonal: $A_{ij} = 0$ if |i j| > 1 eight of overhoods
- Triangular: $A_{ij} = 0$ if i > j

For (possibly nonsquare) matrices $A \in \mathbb{C}^{m \times n}$, $m \ge n$

- ▶ Hessenberg: $A_{ij} = 0$ if i > j + 1
- Hessenberg: $A_{ij} = 0$ if i > j + 1"orthonormal": $A^*A = I_n$, $A^*A = I_m$ sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...

Vector norms

For vectors
$$x = [x_1, \dots, x_n]^T \in \mathbb{C}^n$$

•
$$p$$
-norm $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$

- Euclidean norm=2-norm $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2}$
- ▶ 1-norm $||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$
- ightharpoonup -norm $||x||_{\infty} = \max_i |x_i|$

Norm axioms

- $ightharpoonup \|\alpha x\| = |\alpha| \|x\|$ for any $\alpha \in \mathbb{C}$
- $\|x\| \ge 0$ and $\|x\| = 0 \Leftrightarrow x = 0$
- $||x+y|| \le ||x|| + ||y||$) to any integ.
- Inequalities: For $x \in \mathbb{C}^n$,
- - $|x| \le |x| \le |x|$
 - $\| \frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1$
- $\|\cdot\|_2$ is **unitarily invariant** as $\|Ux\|_2 = \|x\|_2$ for any unitary Uand any $x \in \mathbb{C}^n$.

Matrix norms

For matrices
$$A \in \mathbb{C}^{m \times n}$$

- ▶ 2-norm=spectral norm (=operator norm) $||A||_2 = \sigma_{\max}(A)$ (largest singular value)
- ▶ 1-norm $\|A\|_1 = \max_i \sum_{j=1}^n |A_{ji}|$ ▶ ∞ -norm $\|A\|_\infty = \max_i \sum_{j=1}^n |A_{ij}|$
- Frobenius norm $\|A\|_F = \sqrt{\sum_i \sum_j |A_{ij}|^2} = \|\text{Vec}(A)\|_2$ (2-norm of vectorization) $= \int \text{Vec}(A)$ $\text{trace norm} = \text{nuclear norm } \|A\|_* = \sum_{i=1}^{\min(n,n)} \sigma_i(A)$

Red: unitarily invariant norms ||A|| = ||UAV|| for any unitary (or orthogonal) U, V

Norm axioms hold for each. Inequalities: For $A \in \mathbb{C}^{m \times n}$, (exercise)

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_{2} \le \sqrt{m} \|A\|_{\infty}$$

$$\frac{1}{\sqrt{m}} \|A\|_{1} \le \|A\|_{2} \le \sqrt{n} \|A\|_{1}$$

$$\|A\|_{2} \le \|A\|_{F} \le \sqrt{\min(m,n)} \|A\|_{2}$$