Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference) The following are equivalent (how many can you name?):

1. A is nonsingular.

Basic linear algebra review

For $A \in \mathbb{R}^{n \times n}$, (or $\mathbb{C}^{n \times n}$; hardly makes difference)

The following are equivalent (how many can you name?):

- 1. A is nonsingular.
- 2. A is invertible: A^{-1} exists.
- 3. The map $A : \mathbb{R}^n \to \mathbb{R}^n$ is a bijection.
- 4. all n eigenvalues of A are nonzero.
- 5. all n singular values of A are positive.

$$6. \operatorname{rank}(A) = n.$$

- 7. the rows of A are linearly independent.
- 8. the columns of A are linearly independent.
- 9. Ax = b has a solution for every $b \in \mathbb{C}^n$.
- 10. A has no nonzero null vector. Neither does A^T .
- 11. A^*A is positive definite (not just semidefinite).
- 12. $\det(A) \neq 0$.

13.
$$A^{-1}$$
 exists such that $A^{-1}A = AA^{-1} = I_n$.

Structured matrices

For square matrices,

- Symmetric: $A_{ij} = A_{ji}$ (Hermitian: $A_{ij} = \overline{A_{ji}}$)
 - Symmetric positive (semi)definite A ≻ (≥)0: symmetric and positive eigenvalues
- ▶ Orthogonal: $AA^T = A^T A = I$ (Unitary: $AA^* = A^* A = I$) → note $A^T A = I$ implies $AA^T = I$
- Skew-symmetric: $A_{ij} = -A_{ji}$ (skew-Hermitian: $A_{ij} = -\bar{A_{ji}}$)
- $\blacktriangleright \text{ Normal: } A^T A = A A^T$
- Tridiagonal: $A_{ij} = 0$ if |i j| > 1
- Triangular: $A_{ij} = 0$ if i > j

For (possibly nonsquare) matrices $A \in \mathbb{C}^{m imes n}$, $m \geq n$

- Hessenberg: $A_{ij} = 0$ if i > j + 1
- "orthonormal": $A^*A = I_n$,
- sparse: most elements are zero

other structures: Hankel, Toeplitz, circulant, symplectic, ...

Vector norms

For vectors
$$x = [x_1, \dots, x_n]^T \in \mathbb{C}^n$$

 $\blacktriangleright p$ -norm $||x||_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$
 \blacktriangleright Euclidean norm=2-norm $||x||_2 = \sqrt{|x_1|^2 + |x_2|^2 + \dots + |x_n|^2}$
 \blacktriangleright 1-norm $||x||_1 = |x_1| + |x_2| + \dots + |x_n|$
 $\triangleright \infty$ -norm $||x||_{\infty} = \max_i |x_i|$

Norm axioms

$$\|\alpha x\| = |\alpha| \|x\| \text{ for any } \alpha \in \mathbb{C}$$
$$\|x\| \ge 0 \text{ and } \|x\| = 0 \Leftrightarrow x = 0$$
$$\|x + y\| \le \|x\| + \|y\|$$

Inequalities: For $x \in \mathbb{C}^n$,

$$\begin{array}{l} \bullet \quad \frac{1}{\sqrt{n}} \|x\|_2 \le \|x\|_{\infty} \le \|x\|_2 \\ \bullet \quad \frac{1}{\sqrt{n}} \|x\|_1 \le \|x\|_2 \le \|x\|_1 \\ \bullet \quad \frac{1}{n} \|x\|_1 \le \|x\|_{\infty} \le \|x\|_1 \end{array}$$

 $\|\cdot\|_2$ is unitarily invariant as $\|Ux\|_2 = \|x\|_2$ for any unitary Uand any $x \in \mathbb{C}^n$.

Matrix norms

For matrices $A \in \mathbb{C}^{m \times n}$, • p-norm $||A||_p = \max_x \frac{||Ax||_p}{||x||_p}$ ▶ 2-norm=spectral norm (=operator norm) $||A||_2 = \sigma_{\max}(A)$ (largest singular value) • 1-norm $||A||_1 = \max_i \sum_{i=1}^n |A_{ji}|$ • ∞ -norm $||A||_{\infty} = \max_i \sum_{i=1}^n |A_{ij}|$ Frobenius norm $||A||_F = \sqrt{\sum_i \sum_j |A_{ij}|^2}$ (2-norm of vectorization) • trace norm=nuclear norm $||A||_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A)$ Red: **unitarily invariant** norms ||A|| = ||UAV|| for any unitary (or

orthogonal) U, V

Norm axioms hold for each. Inequalities: For $A \in \mathbb{C}^{m \times n}$, (exercise)