
C6.1 Numerical Linear Algebra
I SVD and its properties, applications
I Direct methods for linear systems and least-squares problems
I Direct methods for eigenvalue problems
I Krylov subspace methods for linear systems
I Krylov subspace methods for eigenvalue problems
I Other topics in numerical linear algebra (randomised

algorithms etc)
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What is numerical linear algebra?
The study of numerical algorithms for problems involving matrices
Two main (only!?) problems:

1. Linear system

Ax = b
2. Eigenvalue problem

Ax = λx
λ: eigenvalue (eigval), x: eigenvector (eigvec)



Why numerical linear algebra?
I Many (in fact most) problems in scientific computing (and

even machine learning) boil down to a linear problem
I Because that’s often the only way to deal with the scale of

problems we face today! (and in future)
I For linear problems, so much is understood and reliable

algorithms available
I Ax = b: e.g. Newton’s method for F (x) = 0, F : Rn → Rn

nonlinear
1. start with initial guess x(0) ∈ Rn

2. find Jacobian matrix J ∈ Rn×n, Jij = ∂Fi(x)
∂xj
|x=x(0)

3. update x(1) := x(0) − J−1F (x(0)), repeat
I Ax = λx: e.g. Principal component analysis (PCA), data

compression, Schrödinger eqn., Google pagerank,

I Other sources: differential equations, optimisation, regression,
data analysis, ...


