

Numerical Linear Algebra

Numerical Linear Algebra

Notation: A € R™*": real matrix, m rows and n columns

R™*1 — R™ are (column) vectors

Common Problems
e Eigenvalue Problem: given A € R®»*™ find A € Ror C

and € R™ or C"™ such that Az = \x

e Linear System: given A € R*"*",b € R™ find x € R"
Sst. Ax =0

e Nonlinear system: almost always reduce to sequence
of linear systems eg. Newtons method for F(U) = 0

Guess Ugandfork =1,2,...
solve Jo = —F(Ug) and set Ugy1 = U + 6

Jacobian

OF;

J={J;;}, J; ;i =
{ 9.7}’ sJ 033]
0 Least Squares (Regression): glven A e R™*™ m >n

. TNy " TN) I 'Y T e N | - 9y - = =

In different situations A can be:
e Full (dense) - most entries non-zero
e Banded: 3b < nwitha; ; =0if |t — j| > b
» diagonal: b =0
» tridiagonal: b =1

e Triangular: upper triangular: a; ; = 0if ¢ > j,
correspondingly lower

e Hessenberg: upper Hessenberg: a; ; = 0ifz > 5 4 1,
correspondingly lower

e in Block form: naturally expressed in terms of
sub-matrices (matrix blocks)

e Sparse:. many zero entries, often very few non-zeros
per row

Block Matrices: If (mq,---,m;) and (nq,- - -, ng) ar
sets of positive integers with) ; m; = m, » . n; = n, and

Aij e Rm™*", 4 =1,---,p,j =1,---,qthen

" A11 Az - Agg]
A A S |
A=[ay)=| "0 T T erme
_ Apl Ap2 *ee qu _

IS a p X g block matrix.
Names for ordinary matrices apply to block matrices, e.qg.

T:[A B] r

O C S

T S

IS 2 X 2 block upper triangular;

Matrix and vector multiplication work for block matrices: eg
If as above

T:[AB]r,U:[DE]r’ w:[y]

O C | s O F | s z
r s r s
then
| AD AFE + BF | Ay + Bz
TU—[() CF]’T—[C»]

Exercise: Deduce that T—! exists if and only if A= and
C—1 do, and equals

Al —A-iBC!
O c—1!

Sparse Matrices

50

100

150

200

250

¥

]
o &
300 . . . wh .
K= . R T
“.h.t?" ! ! ! ." ! .- ! 'I)
0 50 100 150 200 250 300

nz = 4861

and in any of these structures a square matrix A € R™**"
may be

e symmetric: AT = A (aij = a;;)

e skew-symmetric: AT = —A

e positive definite: ¥ Az > 0 for all non-zero z € R

e positive semi-definite: = A= > 0 for all non-zero
x € R"

e indefinite: (! Ax)(y! Ay) < 0 for some z,y € R

Different structures call for different numerical techniques

Goal of a numerical method is often to convert a given
problem to a simpler form (where the solution may be

Orthogonal Matrices
Q € R™*"™ |s orthogonal if

)R'TQ=1 ieQ"=Q"

equivalently

(i) QQ" =1

(iti) columns of @ are an orthonormal basis for R"™

(iv) rows of QQ when transposed are an orthonormal basis
for R™

Exercise: (i) (i< (i) (iv)

2 important orthogonal matrices for computation:

(a) Householder matrices (elementary reflections)

for w € R", w # 0 defined by

’UJ’UJT

Hw)=1-2 e R?*"

wT w

Note

e wlw € R: inner product
ww? € R™*™: outer product

° Hw) = H(w)! = H(w)~! Exercise: prove this

* Geometrically H (w)x Is the reflection of x In the
hyperplane {y : wl'y = 0}

NOrms (ways of measuring size)
for vectors:

1
2

n
v e R", |lz|l2 = (Z w?) = (z"x)2
=1

or more generally ||z||, = (7, |=;|P)"/?

Special/useful cases:||x||1 = > |xi|, ||z||lcoc = max; |x;|

All satisfy the axioms for a norm:
* llozx]| = |afl|lz], «€R, xzeR”

° ||lx]|| >0and ||z|| =0< x =0

° |lx +y|l <|lx|| + ||ly|]l, triangle inequality
Exercise: check

Norms for matrices: operator norm:

| Az||p
|Allp = sup = sup [Az],
R 220 ||Z|lp zeRrn,|z|=1

satisfies matrix norm axioms:

aAll = |of[|A]l, o €R, AeR™ "
All > 0and ||A|| =0 < A =0 (a;,; = 0 for all z, j)

A+ Bl < ||A|| + ||B]|, triangle inequality for
matrices

Special cases:

A

A

1 = max;) . |a; ;| (max absolute column sum)

0o = max;) |a; ;| (max absolute row sum)

Also: Frobenius norm:

N =

|A|lF = Zza?,j
Y|

satisfies norm axioms.

Fact: because of compactness (finite dimensionality)

I € R™ with ||z|| = 1 and ||A|| = || Az]|

Orthogonal Matrices and Norms:

If Q, Z orthogonal of appropriate dimensions
1Qx|l2 = ||z]|2, Vz

because ||Qz||2 = zTQTQx = Tz = |||

and so also
|IQAZ||2 = ||All2, VA
because
|QAZz||2 [[AZz|2 ||[A(Zz)|2 ||[Ay]2 Y — Za
— — — LY =
|2 |2 | Zz||2 lyl|2

and take supremum over x.

Also ||QAZ||lr = ||A||lr (See exercises)

Basic/Important point;

orthogonal matrices do not change ‘size’ (in || - ||2 and

| - ||r) sO have good numerical properties in finite precisiot
arithmetic

The Singular Value Decomposition (SVD)

Theorem: Given A € R™*™ there exist orthogonal matrice
U = [u1,uz,...,Umn] € R®*™ (u; € R™ each 1)

V = [v1,v2,...,0,] € R®*™ (v; € R™ each 1)
such that

UTAV =3 = diag(o1,02,. .., op), p = min{m,n}
with o4 > 02 > ... > o, > 0 (the singular values).

{u;} are the left singular vectors,
{v;} are the right singular vectors

Properties of SVD:

If o1 > 09> ... > 0p > 0,041 =... :ap:O,then
°* r=rank(A) = dim{Ay : y € R"} = dim(range(A))
® Vpri1,...,Un € R™ are an orthonormal basis for ker(A
(=Null(A))
°* u1,...,u,r, € R™ are an orthonormal basis for
range(A)

° ||A]l2 = o1

° |A||Z =0i+05+ ...+ 02

Proof: Exercise except all basically follow from

any x € R™ can be written as .-, a;v; SO

Az = UEVlz =UX (i a,,;VTv,,;>
1=1
[0 [0
" | o n | o
= UX Z Q; = UZ o;0

Y L o
;aiaiui

Also there are ‘nearness’ results like

S
A=) o] |2 < [|A— B2
=1
for all B of rank s
lead to data compression.

The Golub-Reinsch bidiagonalisation algorithm is used to
compute the SVD: available in matlab (svd), but not
covered here

A final comment:
For a symmetric matrix which is positive (semi-)definite, the
SVD is simply diagonalisation:

U = V and X is the diagonal matrix of the (non-negative)
eigenvalues:

A=UXUY or AU =UX
That is, the columns, u; of U are the eigenvectors of A anc
A’u,,,; — O;U; —)\i’u,,,;
For a symmetrix and indefinite matrix, the singular values
are the absolute values of the eigenvalues.

QR Factorisation

Lemma: Given any two vectors u, v € R™ with
|ull2 = ||v]|2 Jw € R* s.t. H(w)u = v .

Proof: take w = r(u — v), any r» € R \ {0}, so
wlw = r?2(ufu — 2vTu + v1v)

= 2r’(ulu — v'u) as |lul|l = |lv|

= 27r%(u — v)Tu = 2rwlu

so wlu = (1/27)w!w. Thus

7 2 T 2 wlw ()
— ww’ |u=u— r(fu—v)=v C
wT w wTw 27r

In particular
v = (llull2,0,...,0) = H (v [ur — |lul|2, uz,...,un|) w.

Can be applied to matrices:

if u is 15¢ column of A: write H(w) = Hi,a = o

a1 | X...X 8%
0 _ 0
H A=\ |, B and If H(w)B =| .
0 | 0
then
Hy = [(1) H?’lf))] — H([O,’lf)])
satisfies])
aq X X . X
0O | as | X . X
H>H, A = 010
: C
L O 0 -

CULIUTIUIIy iriguctuvely 1Ul 76 stcpos 1 Ty~ T ylve o

H,...HH{A =

or for m — 1 steps if m, < n gives

H, 1...HH{ A =

Writing

a1

0

*

an

:RGRmX’n

:ReRmX’n

Q= (H,...H:H,)"'=H/H]...H = HH,...H,
as Householder matrices are symmetric gives

Theorem: Given any A € R™*™, 3 an orthogonal matrix
Q € R™*™ and an upper triangular matrix R € R™*X"™ s.t.

A=QR

Proof: Just take H; = I if it® column is already zero below
diacoonal and the ahove nrocediire can not hreak down

Remark: f A= | a1 a2 ... ap

and A = QR

thenQ = | q1 g2 ... qn

and {q1,q2,...,q,} IS an orthonormal basis for
span{ai,as,...,ay} If this setis linearly independent.

= QR factorization essentially same as Gramm-Schmidt.

Exercise: What happensto QR if {a1,...,an—1} IS linearl
iIndependent with a,, € span{ay,...,a,—1} ?

Example: given data y1, ..., ym at points 1, ..., zm,
find parameters in a model e.g. linear model y = ax + b
(parameters a, b)

such that

S [y; — (ax; + b)]? is min (regression)

sSame as

1]_ yl
min ” xy 1 a | | Y2 ”
a,b ; b ; 2
 Lm 1 | C Ym

QR Algorithm for eigenvalues (eig in matlab)
Set A = A,

fork=1,2,... { factor Ap = QR (QOR factorisat

set Agi1 = RpQr (matrix multip

Lemma: { A} are all similar matrices and so have same
eigenvalues

Proof: Apy1 = ReQr = Qf QeRiQr = Q" (Ar) Qi T
Fact: A, — upper triangular matrix as k — oc.

So for large k, diag (Aj) are good approximations to the
eigenvalues.

When complex conjugate eigenvalues arise, 2 x 2 real
diagonal blocks remain in A; which each have a pair of the
complex conjugate eigenvalues.

Notes:

1. Speed of convergence depends on the size of gaps
between the eigenvalues: more well separated =
faster convergence.

2. Convergence Is accelerated by the use of shifts (see
problem sheet)

3. An orthogonal similarity reduction to Hessenberg form

is always employed as a 15¢ step before apply the QR
algorithm with shifts.

Reduction to Hessenberg form

Want a similarity transform H, ... HoH1AH1H> ... H,
where H; are Householder matrices but if

X | X oo X
0| X+ X
H{A =
_() X eoe X

then H; AH; is full i.e. postmultiplication destroys zeros
created (otherwise a direct method for eigenvalues!)

f & 1] I G A T

- 1 |0.--0 " 1
0 T
Hi=1 .| g n—1 ,A:[al‘vllthen
] U1 ‘ Bl
.0 i
1 n—1
H A1H, =
[al v{][l O]__a,l U{Kll
K1u1 KlBl 0 Kl o K1u1 KlBlKl
and choosing K; to be a Householder matrix satisfying
Kiuqp = (al, 0,..., O)T we have
I al bl ’l}g] 1
A(z) = HlAH1 — a1 a2 ’Ug 1
0, U2 Bz n— 2

1 1 n — 2

iInductively (similar to before)
A=Y — g, o...HyHiAH\H> ... H,_,

IS In Hessenberg form

OR factorization can now be achieved by n — 1 Givens
rotation matrices (see problem sheet) and the Hessenberg
form is preserved by the QR algorithm ie. all of the A’s art
upper Hessenberg.

Direct Methods for linear systems Ax = b
basic point: easy to solve triangular systems

X X X etc.

0 X X An—-1n—1Ln—-1 = bp—1 — Apn—1,nLr
I 0 0 x | < solveannxn = by then

back substitution: takes ~ n? operations. Need a;; # O.

Similar lower triangular (1% equation, then 2™¢ etc):
forward substitution.

So could solve Ax = b by

_ Qy=>b =y=Q"b
A= QR and { Rz =y back subs. asR upper triang

But % the number of operations (and other advantages e.g.

for sparse) to perform LU factorisation: based on Gauss
elimination (successively create zeros below diagonal by

L llAvnintin~ny ~l~A~vidkla s\

Gauss Elimination:

forcolumnsj =1,...,n —1
forrowst=73+1,...,n
calculate multiplier I;; = (a;j/a;;), (aj; Is the pivi
oW ¢ «—— row ¢ — l;; * row j (%)
end 2
end j

(x)fork=34+1,...,n
a;p <~ ai — lijajp
end k
b; <—— b; — 1;;b;

reduces to upper triangular matrix U without changing

solution in ~ %nf‘ operations.

Raclr cithetitiitinn — enliitinn

If store multiplier ;; used to zero a;; as <, j entry of a unit
lower triangular matrix L then

B _ Ly =b forward subs.
A = LU with { Uz =y back subs.

solves Ax = b.

Note: For many b’s need only 1 LU factorization.

Recall a;; # 0 necessary for Gauss Elimination so fails on

e.g.

0 1 L :
1 0] which is non-singular.

Pivoting:
Row interchanges: often expressed as PA = LU, P
permutation.

Partial pivoting: when zeroing subdiagonal of p** column
find max |a;p| = |m|, i =p,p+1,...,n;
m becomes pivot

swap row p with row which gives this max.

Falls if and only if A singular as
app =0,m=0= detA=0

Special forms

e A Symmetric positive definite: A = LLT, L lower
triangular, Cholesky factorisation.

e A Symmetric Indefinite: A = LDL?', L lower
triangular, D block diagonal, 1 x 1 and 2 x 2 blocks:
Bunch - Parlett, Bunch - Kaufmann factorizations.

e A Banded: eliminate only in band, ~ $nb? operations

for LU
(NB pivoting generally destroys bandedness)

e A Sparse: good software e.g. HSL or \ for sparse in
matlab.

lll-conditioning

Proposition: If Az =b (1) and A(x 4+ dx) = b+ db (2)

then
|| || ||b||

Proof: A=1((2) — (1)) = 6z = A~16b

so ||6z|| = ||[A~1b]| < ||ATY|||60]
also ||b]| = ||Az|| < |[|A]ll|z]|
1 | Al
or — < 20
ledl |||
|6x|| _ 1, 110b]]
SO < JJAINATY "t
|| |||

T T T

Also if A Is perturbated to A + 6 A then

[0]]
|z + dz|

(Exercise: Show this)
These results identify k = ||A||||A~1|| (the ‘condition

number’ for solution of linear systems) as a measure of
ll-conditioning.

[0A]
IA]

A1
= < [[A[lAT ==

Usually necessary Iif large & to reformulate problem
because:

Gauss elimination finds such that r = b — Az I1s small
(not exactly x s.t. Ax = b) on a computer.

For many A, » small = e = x — & Is small but not when
IS large as indicated by the above results.

Example: Interpolation: Given N and data f(x;) at distinct
points x;,2 = 0,1, ..., N, find polynomial
p(x) = > 1 _oarx® € II, such that

p(x;) = f(x;).

This can be written as: solve

1 xo x§ -+ xf " ag] " f(x0)]
1 o1 xf) ai f(x1)
1 xy x5 -+ =Y az | = | f(z2)
1 x, :13,,21 :EZ | Qp : f(wn) _

Forx, = k + 1,

expected accuracy

n=4 kK=2-6x10* 12decima
n=8 k=4-2x 10" 6 decimalp
n=12 k=4-2x 107 0decimal p
n=16 k=19 X 10%° no hope of

nlaces
aces

aces
accurate solution

but can reformulate the interpolation problem in many ways
e.g. use a better basis for ITx than {1, z, z2,...,z2V}.

In fact for this problem there are reliable
methods (GVL p183 Vandermonde)

and faster (O(IN?)

lterative solution methods for Az = b
idea: split A = M — N, so easy to solve systems with M,
then iterate:

Guess z@
sove Mz = Nz* =D 4 p for k=1,2,..

basic point: if {=(*)} converges (to x, say) then
Mx = Nx+b, le. Ax =0b

le. it converges to the solution.

Iterative solution methods for Az = b, A € R?*"

idea. Split A = M — NN, so easy to solve systems with M,
then iterate:

Guess 2(0)

solve Mz®) = Nz*—D 1 p for k=1,2,..
basic point: if {=(*)} converges (to x, say) then
Mx=Nx+b, Ile. Az =0»b

le. it converges to the solution.

Jacobl’s method: M = diag(4), (N = A — M)
In practice: componentwise

for iterates k =1, 2,...
for rows (equations)z = 1,...,n

] _ 1 Zn (k—1)
wz a;.; (i a asz _I_)

endo
endo

better ? use most recently updated value of x;

INJ1] 1Sl VARG WS U T .l., H, e o o

forrows:=1,...,n

1—1 n
k 1 k k—1
ool D SLTC AR DV R
7 j=1 j=i+1
endo
endo

This Is Gauss-Seidel iteration: rearranging

Z aing-k) = — Z az-ja:§-k_1) + b;
j=1

j=i+1
whichis (L + D)z® = —Uz*-1 +p

when D = diag(A), L = strict lower triangular of A, U =
strict upper triangular of A

i.e. Solve Mx¥) = Ngk—1) 4+ b, M =L+ Dis

P P I N o I DY N Y R

better still ? take Gauss-Seidel (¥ jterate and average
with o (k—1)

1
ik) w | b; —Zawm(k) Z ama:(k 1) ——|—(1—w)m§k

al.'
j=i+1 (X

A\ _J/

exactly as in ‘Gauss-Seidel

w € R relaxation parameter

w < 1 gives underelaxation cautious & slow

w =1 Gauss-Seidel

w > 1 overelaxation = Successive Overelaxa
Method (SOR)

By rearranging as for Gauss-Seidel: matrix form

(D - wL)az(k) —wb4+ (1 —w\D — WU w(k—l)

Symmetry sometimes useful to preserve, so if A symmetric
(< U = LT):
Symmetric SOR (SSOR)
(D 4+ wL)z®"2) = wb+ [(1 —w)D — wU]z*1
(D 4+ wU)z™ = wb+ [(1 —w)D — wI] z(F—3)

corresponds to M = (D + wL)D (D + wU) which is
symmetric.

Important point: if A sparse then these methods only need
use the non-zero entries of A e.qg.

i—1
S a2l becomes Y gzl
J=1 {3 <i:ai;70}

Convergence of simple iterations:

Mz () Ng—1) + b
and Ax =b= Mx = Nxz+b (A= M-—-N
so M(z —z®) = N(z—z*1)
r—z® = M IN@-—z* D)
= (M'N)*(z — 2()

M 1N is called the iteration matrix

So ||z — ®)|| — 0 at least if

[(MINY]z — 2@ < IMTIN|E e — 2O

N N

T unknown error in initial gue

S 0if |[M7IN| < 1

this is a sufficient condition for convergence.

Notation
p(A) = max {|A| : XA an eigenvalue of A}
the spectral radius

Theorem

If M—1N is diagonalisable, then ||z — z(¥)|| — 0 as
k — oo for any initial guess z(® if and only if
p(M—IN) <1

not diagonalisable, It Is triangularisable

i.e. 3 triangular matrix T with M—1N = QT Q" for some
orthogonal matrix @@ (Schur decomposition).

More useful for our purpose here (only!) is the existence of
a Jordan canonical form:

- 7, O -
MIN=XJXx"17=
O Jp _
where J; € R™>™ and » ,_; _ n; = n with
a1 i
J; =
1
! Ai _

Thus (M~ IN)F = (XJX1)* = XJ*X~1 and, as
k — oo

(M IN)¥ 50 J* 50« J° — 0 all s

That is, we obtain convergence if and only if for every
Jordan block, its powers tend to zero as k — oo.

First consider if A\; = 0, then write J; = J € R?X™ and

0

1 0 0 1
0 1 0 0 1

)

0O 1
0

and generally the diagonal of 1’s moves up toward the top

AN
rinht faor ancrh criccoen/a nowiar Thiie TN N

INUVV UUILIOIUCIT VVIICI I A'l F U. vywC 1I1IavcCe
k N\ F
- (AiI 1 J)

k
= Y (I:) J" AF=" since I,J commute
=0
n;
= Y ()TN
r
r=0
—~0 ask — ocosince AF™" =0
If and only If |A;| < 1 each s.

Thus (M~ I1N)* 5 0ask — oo < |\;| < 1 each i, henc
convergence since ¢ — z(¥) = (M~IN)¥(xz — z(9),

Note the powers of J can grow considerably before
eventual convergence.

Practical Example

2
Qujp — Uj+1,k — Uj—1,k — Ujk+1 — Ujk—1 = B fjk

forj,k =1,...,n With ug k, Unt1.k, Uj0, Ujn+1 GIVEN.

2
Qujp — Uj+1,k — Uj—1,k — Ujk+1 — Ujk—1 = B fjk

forj,k =1,...,n With ug k, Unt1.k, Uj0, Ujn+1 GIVEN.

eg.Jacobi iteration for this problem is: guess (%)

for iterates: =1, 2,...
forg =1,...,n
fork=1,...,n

i—1 i—1 i—1 i—1
uj), = 4 §+1 ot T e g+ hzfj,k}
endo
endo
endo

Propositionforr,s = 1,...,n

1
A" = g(cos rmh + cos smh)

IS an eigenvalue of the Jacobi iteration matrix for A with
eigenvector v™* having entries

’I"’S _ ° . °
v), = sin rjmh sin skmh

Proof direct calculation: see exercises

Remark shows Jacobi iteration converges as
—1 < A\™% < 1 for each r, s but

1
p(Jacobi) = E(COS mwh+cosmh) = cosmh = 1— O (

so verv close to 1 for small h = slow converaence.

? WA |vvuu||||3 \III Gl i/ 1IN WGARIEIN I I/

U — H('I/) — (M_]-N)Z(ﬂ . Q(O)) — Z ar,s(Ar,S)iQr,S

r,s=1
we see that A™® small = error component in v™* reduces

very quickly to zero, so u — u'® is quickly dominated by
components v™? for which |A\™*| ~ 1.

More interesting for our purpose: relaxed Jacobi: for
0Ax =0b,0 c RT, M =D, N=(1—-60)D—-6(L+U

= M 'N=(1-6)I-6DY(L+U)
has eigenvalues 1 — 0 + 2(cos rmh + cos sth)

S0 e.g. for 8 = % eigenvalues
% + i(cos rmh 4 cos swth) € (0,1)

AND high frequency eigenvectors (r, s large) correspond tc

ldea of a ‘smoother’ leads to Multigrid

I | | |
I T | |
| | | |
I | | |
-+ -Fd=- 1T -1 -
I | | |
I | | |
I 1 | |
I | | |

guess u
on fine grid smooth (i.e. for 3 relaxed Jacobi iteration)

u® — us
u — u® = e° smoother than u — u® = €°

Ae® = Au — Au® = b — Au® = r° (residual)

same as original problem, but e®* smoother =- solve on
coarser grid i.e. use a coarse grid representation A of A
and solve Ae® = 7° Where e®, % are coarse grid

I R R Q e . - - - - " .-I

So need grid transfer operators:
Restriction: fine — coarse

Prolongation: coarse — fine

Prolongation:

79

O O O O =FE=INO |0 =
C O O -HNHITY O ™ —HNO P_
O HINM- O HIFHIND © O &

=N =Nt O O O O

Restriction:

normally R = aP! where a € R is such that
aP!l Pe = RPe = e
e being the vector of all ones

eg. a = ; for the P above.

Basic point:
f = Px x ‘short’

or T = Rx x ‘long’
then little loss of accuracy if and only if « is a ‘smooth
vector’ I.e. a vector of coefficients representing a
non-oscillatory function.
Coarse grid operator: A : 2 possibilities:
(1) 5 point formula on 2h mesh

(i) A= RAP = aPTAP
(Galerkin coarse grid operator)

2-grid algorithm:

Choose ug
for two — grid iterations 2 = 0 until convergence do

(pre—)smooth : u; — u®
calculate residual : r°* = b — Au’

restrict residual : r°® — 7° (¥ = Rr®)
solve Ae® =7° to get coarse grid correction
prolong : e° — €° (e = Pe®)

update : u;41 «— u® 4 €°
(sometimes) post — smooth : w;41 — U;41
enddo

Note:
Ujrq — u° + Pz_lR(b — Au?)

If smoother is based on a splitting A = M — N then the
iteration matrix is M —1IN and we have eg. for 2 smoothing

steps (so u® = u(?)

u = (M IN)u® + M~
u® = (M 'N)u + M~
= (M 'N)2uO® 4+ (I+ M INYM~ 0 (%)

but also the exact solution satisfies
u=(M"1N)u+ M 1b
=u=M'Nu+T+M'NM b (+)
SO (4+) — (%) gives

u—u® = (MIN)?(u — u®).

Note also for the residual using (x) and (4+) we have
b— Au® = A(u — u®) = AMIN)2(u — u?).
So 2-grid iterate is

u® + PA 'R(b— Au?®)
= u® 4+ PATR A (M IN)2(u — u®)

so that the error after a single 2-grid iteration is

u—u? - PA 'R A (MIN)2(u — u(®)

—(A'—PA 'R) A (M N)2(u — u®)

In general the 5" 2-grid iteration (for iterate w; with
u(0) = ug) is

uj = [(M'N)?uj_1+ (T + M 'N)M~'b| +
PA'R(b— A[(M'N)?u;_y + I+ M 'N)M™!

and the error e; = u — u; therefore satisfies
e;=(A"'—PA 'R) A(M'N)%e,;_,

or in general if v pre-smoothing steps and p post-smooting
steps are used

e; = (M IN)*(A' —PA 'R) A (M 'N)’e;_;

e; = (M™IN)*(A™' — PA 'R) A (M'N)"e;_;

Convergence depends on
e Smoothing (as above)

e Approximation: R and P must sufficiently accurately

reproduce smooth vectors and A sufficiently accurately
represent A

In mathematical terms: we use the regular Euclidean norm

| - || and || - || a defined by ||z||4 = =T Az which is a norm
when A Is symmetric and positive definite, and establish

e the Smoothing Property: for all y

A (M'N)*y|| < n(v) |lylla

with n(v) — 0 as v — oo being independent of n
(n =dimension of A)

e the Approximation Property: for all y, there exists C
Independent of n with

_ ——1
I(A™" — PA" "R)ylla < Clly]|.

Immediately we have

Theorem: if the Smoothing and Approximation properties
hold then 2-grid iteration with no post-smoothing converges
at a rate independent of n.

Proof:

(A= — PA"'R) A (M~'N)"e; 1]|a

CllA (M~ 'N)"e;_4|| (Approx. Property)
Cn(v) llej—1lla (Smoothing Property
N—_——

lejlla

IA A

—0 dS v—oo
so 3 a number of smoothing steps v independent of n with
lejlla < vllej—1lla

with v < 1. O

Approximation Property: rough sketch (depends on finite
difference error)

A~b <« mesh solution on mesh h < uy,

PA "Rb <« mesh solution on mesh 2h <« Uop,

_ —1
S0 [[(A™! — PA "R)b||a ~ |un — uan| ~ ||b]] any b.

Smoothing Property:. we prove only for relaxed Jacobi :

0
M IN=1-60I-6D"Y(L+U)=I-6D"1'A=T1T——.

4
as D = 41 for 5 point formula.

Theorem: if the eigenvalues of M—1N lie in [—a, 1] with
0 < o < 1 being independent of n, then the smoothing
property holds.

(Recall: = = eigenvalues of M~V € (0,1).)

FIUUL ICL 1 <2199 <o T UIT UILUIVIUITTAl TIYCTIHIVELLUI
basisof I — (8/4)Aand y =) ¢;z;,

(I —(0/4)A)z; = N\jz;. Then Az; = (4/0)(1 — \;)z; SO
(4/6) Y cidy (1 — Xi)zi,
and [[AMTIN)"y[? = (16/6%)) eIAP(1 - N)’

AM~IN)"y

as Zz-TZj = 5z’,j- Now \; € [—0‘, 1] =)\?V(l —)\i) 1S
maximal either at the stationary point A\; = 2v/(2v + 1) or
when \; = —o so that

2v 11 2v
max A;“(1—X;) <max{— —,0°"(1+0)
2V e

)\736[—0',1]
cince 2 S| 1 1 o1
| — _
2v + 1 2v+1 2v (1+1/2v)?2¥+t1 = 2u ¢

and (1 = 1/20)2v+1 _ e(= 2.718...) as v — oo.

Thus

|A(M~IN) y||?
(4 1 4) 1
S Imax < 55,5021/(1_'_0') >ZCZZE(1_A2)
(4 1 4)
= max { 55,502'/(1 +0o) ||y||124

g _J/

n(r)—0 aS v—oo

Notes:

e Can be extended to Multigrid by replacing the coarse
grid solve Ae®* = 7° recursively by a 2-grid iteration:
just apply Gauss Elimination when very small
dimensional coarse space. n-independent convergenct
IS preserved.

e Other smoothers,prolongation and restriction operators
and more general problems can be analysed in a
similar way.

e \Work per iteration depends linearly on problem size
(n?). Number of iterations for convergence independen
of n =- optimal solver (ile. O(IN) work to solve an
N x N linear system.

(cf. O(INN?) for Gauss Elimination).

Polynomial lterative Methods

Simple iteration

) = (M IN)z®* "V 4+b, b=M"1b
and r = (M 'N)x+b
=z —z® = (M IN)(x—zFD)
=z —z® = (M IN)F@x—-20) =8z - 2®)

ifS=M"1N.ie.

z —) =pp(S)(z —2?) = S*¥(x —2V) , pr(z) ==

Now If

n
r—x0 = E ov;, Sv; = \jv;
1=1

x —y®) = Z o;pi(S)v; = Z o Pr (i) v;
i—1 i—1

Idea: — y(¥) should be small if pg();) is small

If S Is symmetric we can say more
(since S orthogonaly diagonalisable)

=S = UAUY, vut =1
T diag Matrix of eigenvalues

= §2 = UAUTUAUT = UA?*U7T,...,S* = UA*UT

= p(S) = UpA)UT any polynomial p
= lp(S)llz = IUp(MU" ||z = [Ip(A)]|2
" p(A1) O
- ™
. ,
N, P(An) |

So for polynomial iteration z — y*) = pi(S)(x — x°)
lz—y® Iz <llpr(S)ll2llz—2 |2 = max [pr(X)] la—a
(4

So desire p, € II Is small at eigenvalues with pi (1) = 1.

Notes:

e If \; = 1 for some ¢
= Sv; = v; & Mv;, = Nv; & Av; = 0le. A singulat

e If only k distinct eigenvalues of S: choose p; to have
these as roots.

For such a pg, ||z — y®||2 = 0 i.e. termination after
k steps!

Candidates for {pr} ? : Chebys

nev polynomials

Suppose X\;(S) € [a,b] , 1 &

a, b then

lz —y®P]2 < max |pe(N)lllz — 2|2

(/

< max
t € la,

and the polynomials which

minimise
D (S Hka p(1)=1

AOIERERY P
b]

max |p(¢)]
t € |a,b]

are shifted and scaled Chebyshev polynomials

Chebyshev polynomials are defined on [—1, 1] by Ty(t) =
andform =1,2,... by

(1

5m=1 COS M0 (0<6<
where t = cos @ —-1<t<L1
Tim(t) = { == coshm@
wheret = coshf t>1
\ (_1)me(_t) t S —1

To =1, 17 =1{,

1 1 1
T = — cos 20 = —(2(:0529—1) :tz——,
2 2 2

In general since

cos(m+1)0 = cosm6 cosB — sinmb sinb
cos(m — 1)@ = cosmb cos 8 + sinm0 sin b
we have

cos(m + 1) 0 + cos(m — 1) @ = 2 cos mb cos 6

e, 2T 1(t) + 2m 2T _1(t) =2 - 2™ 1T, (Pt

or

Tm_|_1(t) — tTm(t) — i m—l(t) s TN = 2,3, oo (*)

SO

1. 1 3
T3(t) = t(t? — 5) -t = 3 — Sty et

If \;(S) € [a,b],1 & [a,b], need to shift using linear map

a,b] — [-1,1] : t= 2r=a=b
& &
r t

N Tk(r) _ Tk(Zrb—_a,a— b)/Tk(Z ;f ; b)

satisfies T} (1) = 1 and minimises

max |p(r)]
r € [a,b]

over all polynomials of degree < k.

Using pi, = T} is called the
Chebyshev semi-iterative method.

Remarks:

1. need estimates a ~ Amin(S) and b R Amax(S) In
order to construct T}’s on a reasonable interval

2. can use the 3-term recurrance (x) to make the

algorithm more efficient than using the coefficients Bék)
of the polynomials Ty (z) explicitly (see exercise)

3. Convergence: we have

le —y®2 < max [Ti(r)l[|z — 2]
r € [a,b]

if \; € la,b] , 1 € [a,D]

max |Tx(r)| = |Tk(a)| = |Tk(b)]

Ty (1)]

| Ty (352=0))

as max error always attained at end points.

Krylov Subspace Methods

A e R"™"™ r cR"”
If A sparse or specially structured, so easy to compute
Ar, A(Ar),...
l.e. r, Ar, A%r, ...
are easy to compute, then Krylov subspaces
Ki(A,r) = span {r, Ar,..., A* 1y}
are convenient nested vector subspaces (exercise: check).

Note y € Kp(A,7) & y=qr—1(A)ro
where qp_1 € II;_1 (real polynomials of degree < k — 1.)

i bUIVIIIg AAL — U, \A IIIVUILIUIC}, QUEbb (L‘(), 70 — O — A(L‘(),
then look for

xp € xog + Kr(A,r9) 7 =b— Az, k=1,2,...
rr € xo+ Kr(A, 7o)
< xr = xo+ qr—1(A)ro

& xr—xp, = T —x9— qr—1(A)rg

& Al —) Az — xo) —Aqr—1(A)ro

b—Ax To

Tk

.e. e = P(A)ro ,pr € I ,pr(0) =1

P A_]"r‘l,. — n:JA\A_lrn e e+ — il Alen 061 — P —

Krylov Subspace Methods

Most common Krylov subspace methods are characterised

by
re = pr(A)ro ,pr € i ,pp(0) =1

AND some optimality condition

e.d. ||rk||2 should be minimal over x;, € o + Kr(A, 10).

Ki(A,ro) = span {rg, Arg, ..., A¥ 1ry}

First step Is however to compute a good basis for ICx (A, 7
since A*rq tends to point in a single direction:

If ro = Zaizi,Azi = \;z; and If |)\1| > |)\j|,j #*1 then

Ak’l“()

|
(]
8
I
>
R\
|
(]
Q
>
<\
K\

—0 AdS k—oco

Note also ||A*rg|| — 0 or co depending on whether
|}\1| < 1or |}\1| > 1

Arnoldi’'s method:

guess zg ,79 = b — Axg ,v1 = 7ro/||70]|2

forl =1,2,...
w = Av;
fory =1,...,1
hjl = vJT'w
w=w — hjl'vj
end
hiy11 = ||lw]|2

vi+1 = w/hj41y
end

IS a way of generating an orthonormal basis
{’Ul, V2g oo, ’Uk} for Kk(A, ’l“())

In matrix form we can write Arnoldi as

| |
AV, = VL. Hy + hk—|—1,k 0 0 -+ viy41 — Vk—l—lﬂk
B]
where _ _
Vi=| vi v2 -+ v |, hasorthogonal columns,
" h11 hi2 hir |
ha1 hag hak
Hk — 0 h32 e c Rka
0 0 hgr—1 hre |

IS unper Hessenberaq

hi11 hi2 Pk
ha1 hao hap
and H;,, = (_) 32 . c Rk+L
0 0 hrr—1 hik
0 0 0 hppix
_ Hj, (k4+1) xk
|0 -« 0 O hgt1k e R

Note: Vi, € R™** has orthogonal columns

= VIV, =TI € R¥*¥F s0

B
AV = ViHy+hgy1 6| 0 0 -0 v
|

|
+1

= VIiAV, =

Now
xp € o+ Kg(A,10) © T, = To + Viy

for some y € R* since {v; ... v} is an orthonormal basis
for Ki(A,). Also

T = xo + Viey & rT—x)p, = T — 29— V85U

A(a: — ZL’k) A(a: — 130) — AVyy
.e. T, = To— Aka

SO ||7k||2 is minimal < y € R¥ is such that ||rg — AViy||2 i

minimal.

|7% |2 is minimal < y € R¥ is such that ||rg — AViyl|2 iS
minimal.

But o = [|ro]lv1 = |[|rol|Vker = [|ro|Vi+1ea,
e] =[1,0,...,0]

and by above AV}, = V.1 Hy, SO
I7k|l2 is min < || Vi1 (|lroller — Hry)||,, is min
but V,iLle_H = 1€ R(k+1)x (k+1) as {’Ul, c oo ’Uk_|_1}

are orthonormal

SO required vector y Is that which minimises the linear leas
squares problem

H||"“0||€1 — ﬁkyHZ

Required vector y Is that which minimises the linear least
squares problem

[lIroller — Hyyll

= need QR factorisation of the rectangular Hessenberg

matrix H, € Rkt1xk
which can be achieved by one additional Givens rotation fo

each k since Hj, is built up by appending the last column
for each k.

(see Exercises)

This is the basis of the GMRES algorithm
(Generalised Minimal Residual Method)

Lo s T'g — b — Aa?(), V1 = T()/||T()||
Fork =1,2,...

do step k of the Arnoldi algorithm

(= have vyi,v2...v54q and H,,)
S~~~ ~
new last column new

solve the Hessenberg linear least squares problem
y = argmin ||||lro|lexr — Hryl|,,

T = To + Viy

end

As before the Hessenberg least squares problem is solved
by QR factorisation of Hj, using k + 1 Givens rotations, bu

since Hy, is the same as Hj_; except for one additional
row and column this can be implemented as only 1 Givens
rotation for each k. (see exercises)

Notes:

1. ||r||2 1s the linear least squares error in the
Hessenberg least squares problem.

2. xp only needs to be calculated if ||| satisfies the
stopping criterion ||rg|| < TOL.

3. work at k" GMRES iteration is O(k?) for the least
sguares solution + 1 matrix vector product + vector
operations. So for a sparse matrix with O(1) entries pe
row work ~ O(k?n) = cheap method if only relatively
few iterations (k) are needed.

Notes (continued);

4. GMRES gets expensive in storage of vy ... v, and the
orthogonalisation computation if k gets too large, so
sometimes Is restarted: do a fixed number I of GMRES
iterations then reset rg < r; and repeat. This Is
GMRES (1) (which is not guaranteed to work!).
Unrestarted GMRES is often called FULL GMRES.

5. 1f A € R™"*™ then if GMRES does not stop before n
steps, {vi,...,v,} IS an orthonormal basis for R"
= x), = x because ||rg||2 IS minimimal for
xr € g + Kn(A, r9) Ie. for ¢, € R™.

6. Also If continues for n steps AV,, = V,,H,, ie.
A=V,H, VT V, H,¢cR"™. So A has been

reduced by orthogonal similarity transform to
Hessenberg form.

Convergence of GMRES

ri. = pr(A)ro With ||7|| minimal

= GMRES implicitly finds p;, € II , px(0) = 1 such that
|k (A)7o||2 is minimal.

If A Is diagonalisable

A=XAX"" = pp(A) = Xpp(A) X!

A=XAX""= pp(A) = Xpp(A) X!
Implies
lrellz = llpk(A)rollz = (| Xpr(A)X ~rol
< min 1 X Nl2[1 X 2 [lp(A)ll2 [l7oll
p € llg,p(0) =1
or similar to before

Irill2 _ |
<X X 2 min max [p(A;

I7oll2 p €Ilg,p(0) =1 A
/]\

eigenvalues of A

Comments:

1. || X||2]|X || = (X)) is a number independent of k:
it IS large = (%) Is not very useful convergence
estimate. If it is of moderate size (not known In
practice!) then fast convergence if dp € Il , p(0) = 1
such that p(A;) small for all eigenvalues A; of A.

2. Other GMRES convergence bounds exist, but so far
non Is descriptive over a range of problems.

3. the expense of GMRES for k large has led to
development of algorithms for non-symmetric matrices
with fixed work per iteration, but these necessarily mus
loose any optimality property in general.

However: If A = AT then GMRES has fixed work per step
To see this we have

but A = AT so LHS is symmetric = H, is symmetric and
Hessenberg =- tridiagonal

l.e. Arnoldi’s algorithm would calculate lots of zeros in this
case!

In fact the symmetric Lanczos algorithm is used:

If A = AT is positive definite, there is an even more
efficient Krylov subspace method than MINRES, namely
the method of Conjugate Gradients (for Az = b) which
computes x; € xg + Kr(A, r9) such that ||x — xg||a IS
minimal where y' Ay = ||y||%.

Note || - || 4 defines a norm when A is symmetric and
positive definite, indeed < z,y>4 = <Az, y> = yl Az
defines a scalar product (inner product) for which
<y,y>a = |ly||3 in this case.

Lemma Conjugate Gradient Algorithm

choose g, 1o = b — Axg = pgandfork =0,1,2,...

897
Lk4+1
Tk+1

Bk
Pk+1

Pg"’k/ PZAPk
T + 0Pk
b — Ail?k_|_1

—pj, Argt1/Dt, Apy,
Tk+1 + BkDk

computes iterates {x }, corresponding residuals {rx} and
search directions {px} so that as long as x; # x we have

span{rg,r1s...sTK_1}

:'r,rfrj:O,j<k (1)

0,j<k, (pyApr #0) (2
span{po, P1s- -+ Pk—1}

- -

It is now an easy induction using xp = Tp_1 + Qp_1Pr—1 1
show that xg € o + Kr(A, 7o) (exercise)
and also

Theorem

e —xzk)la < |l —ylla , Yy E xo+ Kr(A,rg)

Proof

letc=x —xgand cx = ¢, — xg € Kir(A, 1r0)
then Ac =rgpand x — x = ¢ — ¢y

hence rp, = A(x — o) = A(c — c).

Now by the above r; is orthogonal to every vector in
ICr(A,rg) l.e. Vv € Ki(A, ro)

0= (rg,v) = (A(c —c),v) = {(c — cg,V) A
and such (Galerkin) orthogonality = ||c — y|| 4 IS minimise
fory € Kr(A,rg) when y = cg

= || — z|| 4 is minimised for z € xy + Kir(A, r9) by
z = x SINCe ¢c = ¢ — g and xx, = xg + Ck.

Convergence of Conjugate Gradients

we have ri = pgx(A)re or equivalently

(x — zk) = pr(A)(x — xo), pr € 11k, pr(0) =1 and

|lx — xx||a = ||rk|| a2 MInimal over xx € xg + Kr(A, 7o)
for each k.

Let Av; = X\;v;, j=1,...,n, vlv;=94;; and
j 3Uj j J

xr — xg = Z;”Zl o jv; then

n n
z—zp =Y ajpr(A)v; =Y ajpr(Aj)v;
j=1 j=1

n
SO (X — Tp,* — Tp)A = Z a?pk()\j)z(vj,vj)A
7=1
T

since v v; = §;; = v Av; = Nby; = 0if i # 3

hen — <] Aj —
ence ||z —xplla < min max|p(Xj)| [[z — xolla

Convergence bound for Conjugate Gradients:

Tr — T
| k|l 4 < min max |p()\j)|
|z — xol|a pEll,,p(0)=1

If X\; € [a,b],a > 0 forall 5 then

|z — =kl .
< min max_ |p(t)]
|z — xol|la — peML,p(0)=1 te(ab]

and the minimum here is achieved by the shifted and scale
Chebyshev polynomial

p(t) =T (220 Jm (50

similarly to before (but note different normalisation).

Now for

2t — b —a
tE[a,,] 9 b—a 6[_191]
SO
kl—l]- b—|—(]
max |p(t)] = p(b) = 2 ,cosh 0 =
t € [a,b] zk—_lcoshkﬁ b—a

Note:e? + =0 = 2 (322 & () — 2 (#£2) () +1 =

So

pEf_ﬁi?@Zl tren[g_’)g] ()| =
9 _<\/5—\/E> n <\/5_|_\/a>k'
\Vb+Va Vb—va)
g k
Vbt V@ VE+1

when b = Amax(A), @ = Apyn(A) and k = Jmex()
k the || - ||2 condition humber again.

|z — =x]|a
|z — ol

IN

For fast convergence:

|z — =x]|a
|z — ol

VA
Do
/

For fast convergence:
e few distinct eigenvalues

e cluster eigenvalues

e reduce k

|z — =x]|a
|z — ol

VA
Do
/

For fast convergence:

e few distinct eigenvalues
e cluster eigenvalues

e reduce k

|z — =x]|a
|z — ol

VA
Do
/

For fast convergence:

e few distinct eigenvalues
e cluster eigenvalues

e reduce k

J
VE=1\" Amax(A)
\/E +1 ’ N Amln(A) ‘

|z — =x]|a
|z — ol

VA
Do
/

For fast convergence:

e few distinct eigenvalues

e cluster eigenvalues

e reduce k

0.6

0.2

. N

epiiin, | max [P(Aj)]
VE=1\" Amax(A)
\/E + 1 , o Amin(A) ‘

X — T
| k|l A min max|p(\)
| — xol| 4 pEM),,p(0)=1 j

min max t
p€ll,p(0)=1 te&|a,b] p(t)]

o (VE—L k
VE+1

Hence Conjugate Gradients guaranteed to converge fast if

IA

IN

IN

(1) A has few distant eigenvalues (or few clusters)
(I) kissmall,e.g. Ifk =9

r — 3—1 k 2
I k||A§2() _ 2
|z — xo||a 34+1

error halving at each iteration.

BUT A, b given not chosen! So how can fast convergence
be achieved for Ax = b when none of (i), (ii) are true?

Preconditioning: choose symmetric positive definite
matrix P and for the mathematical analysis only (not for the

algorithm - see exercises) let P = HH' for example be a
Cholesky factorisation. Solve

(HT'AH ™) (H'z) =H 'b (%)

symmetric

by Conjugate Gradients.

It computes iterates {x; } for (x) and hence for Ax = b

such that
k
||33_33k||A<2 vk —1
|z —xolla = \VE+1

where

Amax(H TAH-T)
Amin(H-1AH-T)
Amax (P~ A)
Amin(P~1A)

because of the similarity transformation
H THAHFHH! = P 1A.

This CG method with preconditioner P is called the

Drar~anditinalnad C.Aanmtinaata CradiAamt mathhA Al

The preconditioned Conjugate Gradient method requires
the solution for z; given r;, of

sz = Tk

at each iteration = the (contradictory) requirements:
o k(P 1A) << k(A) = fastconvergence
e Pz, = r, easy to solve

(1) P = A = convergence in 1 iteration, but solution of
linear system with A at that iteration!

(2) P = I = unpreconditioned CG

(2)leads to simple ideas like P = diag(A) or
P = tridiag(A) or even P =part of A with bandwidth b
= O(nb?) work for Pz = r solve by banded elimination.

(1 \Nlaadce tAn ~rAncidaratinn nf annrovimMate nar incomMmnlaoatoa

Incomplete Cholesky(0) factorization:

fore =1,2,...m
m min{k - Qi K # 0}
forg=m,...,2 —1
if a; ; # 0
lij (az',j — > li,klj,k) /1.5
endif
enddo

—1
li; = (ai,i — > lz’,kli,k)
enddo

1
2

Incomplete Cholesky(0) factorization computes entries of a
lower triangular matrix L such that LLT = A + R where

sparsity pattern of L =sparsity pattern of lower triangle of A
R is the remainder.

Effect of preconditioning in this case: replace Ax = b by
L AL T (Lx) = L7 b

andnote L~1AL~T =71 — L-'RL~7T soif R small can
expect eigenvalues of L1 AL~T to be clustered around 1.
Note: solve Pz = r is solve LLTz = r is easily achieve

by forwards and back substitution.

Preconditioning can also be applied with GMRES and
MINRES: for GMRES no symmetry to preserve so just
solve eq. P~1Ax = P~ 1'b.

In the algorithm just replace A=xvector multiplies by

z = Av, Solve Ps =z = s=PlAz

xg, 7o =b— Axg =poandfork =0,1,2,...

(897
Ll+1
TL+1

B
Pk+1

Py Tk/ D}, APk

Tk + OkPk

b— Axiiq(= rr — axApg)
—PZA"%H/PZAP/«(: TZ+1Tk+1/TZrk)
Tk+1 + BrDk

Preconditioned Conjugate Gradient Algorithm choose xg,

ro = b — Axg, solve Pzg = rg, po = 20, k =0,1,...

ar = 2 Tk/Py APk
Tp+1 = Tk T OkPk
Th+1 = Tk — QR Apg
Solve sz_|_1 = Tlki1

T T
Br = Zk_|_17“k—|—1/zk Tk

Convergence:

IN

Tr — x
o — . i a0
|z — xo|| A pEllE,p(0)=1 J

min max t
pEll,,p(0)=1 t€(a,b] p(t)]

(V)

IN

IA

So fast convergence if

(1) A has few distant eigenvalues (or few clusters)
(i) kissmall,e.g. ifk =9

k
Tr — X 3—1 2
lo—aila _, (3-1)
|z — xol|a 34+1

error halving at each iteration.

Amax(P~1A)
)\min (P_lA)

Example: 5-point Finite Difference approx of Laplacian

—Viu=f inQ, wu=gonoN

Finite Differences: 1

A~h™2 —1—4— —1

—1
eg. on unit square A is block tridiagonal:

B —I B 4 —1
—I B -1 ,
h_2 " ")
—I B -1 ' '
i o —I B | L —1

AEan X n2

5-point finite difference approx of Laplacian
Using discrete Fourier analysis eigenvalues known:

A=h"?[4—2cos(rmrh) — 2cos(swh)], r,8=1,...,1
= k=25 h72, Amin = 272, Amax ~ 8h 2

8X8 ¥k k k k ok ok Kk Kk kK kKK X Kk ¥ k¥ X kKX kX k Xk kK ¥k 0k

0 100 200 300 400 500

5-point finite difference approx of Laplacian
Using discrete Fourier analysis eigenvalues known:

A=h"?[4—2cos(rmrh) — 2cos(swh)], r,8=1,...,1
= k=25 h72, Amin = 272, Amax ~ 8h 2

8X8 ¥k k k k ok ok Kk Kk kK kKK X Kk ¥ k¥ X kKX kX k Xk kK ¥k 0k

0 100 200 300 400 500

8x8 &

16x16

32x32 N

64x64 NEENENNERNEEEIENDNN I D R D D RN D DN

0 10000 20000 30000

Multigrid/Multilevel preconditioning

appropriate methods (smoothing and grid transfers)
converge in a number of iterations independent of h
= optimal solvers for Laplacian problems

Number of PCG iterations, Preconditioner is 1 V-cycles
(contraction factor: n)

e /)@ < 107

1 relaxed Jacobi iteration for pre- and post-smoothing.
grid PCG iterations (MG contraction) n
8 X 8 4 (0.10) 49
16 X 16 4 (0.11) 225
32 x 32 4 (0.12) 961
64 X 64 4 (0.14) 3969
128 x 128 5(0.16) 16129

Multigrid:

Convergence bound: |[u — u® || 4 < g|lu — u*D|| 4
n typically 0.1

= multigrid is a great preconditioner for Laplacian because
lu —u®| 4 < pllu—u®* Y|4

=1 -1 < Amin(P71A), Amax(P7'A) <1+

when P~1 is the action of a single multigrid cycle.

Hence k < (1 4+ n)/(1 — n) which is typically
1.1/0.9 =~ 1.22

Many other uses of these methods in diverse application
areas

