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Numerical Linear Algebra

Notation: A ∈ R
m×n: real matrix, m rows and n columns

R
m×1 = R

m are (column) vectors
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Common Problems
• Eigenvalue Problem: given A ∈ R

n×n find λ ∈ R or C

and x ∈ R
n or C

n such that Ax = λx

• Linear System: given A ∈ R
n×n, b ∈ R

n find x ∈ R
n

s.t. Ax = b

• Nonlinear system: almost always reduce to sequence
of linear systems eg. Newtons method for F(U) = 0

Guess U0 and for k = 1, 2, . . .
solve Jδ = −F(Uk) and set Uk+1 = Uk + δ

J = {Ji,j}, Ji,j =
∂Fi

∂xj
(Uk), Jacobian

• Least Squares (Regression): given A ∈ R
m×n, m > n,

b ∈ R
m find x ∈ R

m such that ‖Ax − b‖ is minimum
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In different situations A can be:

• Full (dense) - most entries non-zero

• Banded: ∃b < n with ai,j = 0 if |i − j| > b

I diagonal: b = 0

I tridiagonal: b = 1

• Triangular: upper triangular: ai,j = 0 if i > j,
correspondingly lower

• Hessenberg: upper Hessenberg: ai,j = 0 if i > j + 1,
correspondingly lower

• in Block form: naturally expressed in terms of
sub-matrices (matrix blocks)

• Sparse: many zero entries, often very few non-zeros
per row
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Block Matrices: If (m1, · · · , mp) and (n1, · · · , nq) are
sets of positive integers with

∑

i mi = m,
∑

j nj = n, and
Aij ∈ R

mi×nj , i = 1, · · · , p, j = 1, · · · , q then

A =
[

Aij

]

=









A11 A12 · · · A1q

A21 A22 · · · A2q
...

...
Ap1 Ap2 · · · Apq









∈ R
m×n

is a p × q block matrix.
Names for ordinary matrices apply to block matrices, e.g.

T =

[

A B
O C

]

r
s

r s

is 2 × 2 block upper triangular;
A ∈ R

r×r, C ∈ R
s×s, B ∈ R

r×s. NLA – p.5/17



Matrix and vector multiplication work for block matrices: eg.
if as above

T =

[

A B
O C

]

r
s

r s
,

U =

[

D E
O F

]

r
s

r s
,

x =

[

y
z

]

r
s

then

TU =

[

AD AE + BF
O CF

]

, Tx =

[

Ay + Bz
Cz

]

.

Exercise: Deduce that T −1 exists if and only if A−1 and
C−1 do, and equals

[

A−1 −A−1BC−1

O C−1

]
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Sparse Matrices
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and in any of these structures a square matrix A ∈ R
n×n

may be

• symmetric: AT = A (ai,j = aj,i)

• skew-symmetric: AT = −A

• positive definite: xT Ax > 0 for all non-zero x ∈ R
n

• positive semi-definite: xT Ax ≥ 0 for all non-zero
x ∈ R

n

• indefinite: (xT Ax)(yT Ay) < 0 for some x, y ∈ R
n

• . . .

Different structures call for different numerical techniques

Goal of a numerical method is often to convert a given
problem to a simpler form (where the solution may be
obvious) NLA – p.9/17



Orthogonal Matrices
Q ∈ R

n×n is orthogonal if

(i) QT Q = I ie.QT = Q−1

equivalently

(ii) QQT = I

(iii) columns of Q are an orthonormal basis for R
n

(iv) rows of Q when transposed are an orthonormal basis
for R

n

Exercise: (i)⇔(ii)⇔(iii)⇔(iv)

2 important orthogonal matrices for computation:
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(a) Householder matrices (elementary reflections)

for w ∈ R
n, w 6= 0 defined by

H(w) = I − 2
wwT

wT w
∈ R

n×n

Note
• wT w ∈ R: inner product

wwT ∈ R
n×n: outer product

• H(w) = H(w)T = H(w)−1 Exercise: prove this
• Geometrically H(w)x is the reflection of x in the

hyperplane {y : wT y = 0}
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Norms (ways of measuring size)
for vectors:

x ∈ R
n, ‖x‖2 =

(

n
∑

i=1

x2
i

)
1

2

= (xT x)
1

2

or more generally ‖x‖p =
(
∑n

i=1
|xi|

p
)1/p

Special/useful cases:‖x‖1 =
∑

|xi|, ‖x‖∞ = maxi |xi|

All satisfy the axioms for a norm:
• ‖αx‖ = |α|‖x‖, α ∈ R, x ∈ R

n

• ‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0

• ‖x + y‖ ≤ ‖x‖ + ‖y‖ , triangle inequality

Exercise: check
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Norms for matrices: operator norm:

‖A‖p = sup
x∈Rn ,x 6=0

‖Ax‖p

‖x‖p
= sup

x∈Rn ,‖x‖=1

‖Ax‖p

satisfies matrix norm axioms:

• ‖αA‖ = |α|‖A‖, α ∈ R, A ∈ R
m×n

• ‖A‖ ≥ 0 and ‖A‖ = 0 ⇔ A = 0 (ai,j = 0 for all i, j)

• ‖A + B‖ ≤ ‖A‖ + ‖B‖, triangle inequality for
matrices

Special cases:
‖A‖1 = maxj

∑

i |ai,j| (max absolute column sum)

‖A‖∞ = maxi
∑

j |ai,j| (max absolute row sum)
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Also: Frobenius norm:

‖A‖F =





∑

i

∑

j

a2
i,j





1

2

satisfies norm axioms.

Fact: because of compactness (finite dimensionality)

∃x ∈ R
n with ‖x‖ = 1 and ‖A‖ = ‖Ax‖
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Orthogonal Matrices and Norms:

If Q, Z orthogonal of appropriate dimensions

‖Qx‖2 = ‖x‖2, ∀x

because ‖Qx‖2
2

= xT QT Qx = xT x = ‖x‖2
2

and so also
‖QAZ‖2 = ‖A‖2, ∀A

because

‖QAZx‖2

‖x‖2

=
‖AZx‖2

‖x‖2

=
‖A(Zx)‖2

‖Zx‖2

=
‖Ay‖2

‖y‖2

, y = Zx

and take supremum over x.

Also ‖QAZ‖F = ‖A‖F (see exercises)
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Basic/Important point:
orthogonal matrices do not change ‘size’ (in ‖ · ‖2 and
‖ · ‖F ) so have good numerical properties in finite precision
arithmetic
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The Singular Value Decomposition (SVD)

Theorem: Given A ∈ R
m×n there exist orthogonal matrices

U = [u1, u2, . . . , um] ∈ R
m×m (ui ∈ R

m each i)

V = [v1, v2, . . . , vn] ∈ R
n×n (vi ∈ R

n each i)

such that

UTAV = Σ = diag(σ1, σ2, . . . , σp), p = min{m,n}

with σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 (the singular values).

{ui} are the left singular vectors,
{vi} are the right singular vectors
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Properties of SVD:
if σ1 ≥ σ2 ≥ . . . ≥ σr > 0, σr+1 = . . . = σp = 0 , then

• r= rank(A) = dim{Ay : y ∈ R
n} = dim(range(A))

• vr+1, . . . , vn ∈ R
n are an orthonormal basis for ker(A)

(=Null(A))

• u1, . . . , ur ∈ R
m are an orthonormal basis for

range(A)

• ‖A‖2 = σ1

• ‖A‖2F = σ2
1
+ σ2

2
+ . . . + σ2

r

Proof: Exercise except all basically follow from
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any x ∈ R
n can be written as

∑n
i=1

αivi so

Ax = UΣV Tx = UΣ

(

n
∑

i=1

αiV
Tvi

)

= UΣ

n
∑

i=1























0
...
0
αi

0
...
0























= U

n
∑

i=1























0
...
0

σiαi

0
...
0























=

n
∑

i=1

αiσiui
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Also there are ‘nearness’ results like

‖A −

s
∑

i=1

σiuiv
T
i ‖2 ≤ ‖A − B‖2

for all B of rank s

lead to data compression.

The Golub-Reinsch bidiagonalisation algorithm is used to
compute the SVD: available in matlab (svd), but not
covered here
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A final comment:
For a symmetric matrix which is positive (semi-)definite, the
SVD is simply diagonalisation:

U = V and Σ is the diagonal matrix of the (non-negative)
eigenvalues:

A = UΣUT or AU = UΣ

That is, the columns, ui of U are the eigenvectors of A and
Aui = σiui = λiui

For a symmetrix and indefinite matrix, the singular values
are the absolute values of the eigenvalues.
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QR Factorisation
Lemma: Given any two vectors u, v ∈ R

n with
‖u‖2 = ‖v‖2 ∃w ∈ R

n s.t. H(w)u = v .

Proof: take w = r(u − v), any r ∈ R \ {0}, so

wTw = r2(uTu − 2vTu + vTv)
= 2r2(uTu − vTu) as ‖u‖ = ‖v‖
= 2r2(u − v)Tu = 2rwTu

so wTu = (1/2r)wTw. Thus

(

I −
2

wTw
wwT

)

u = u −
2

wTw

wTw

2r
r(u − v) = v

In particular
v = (‖u‖2, 0, . . . , 0) = H (r [u1 − ‖u‖2, u2, . . . , un])u.
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Can be applied to matrices:
if u is 1st column of A: write H(w) = H1, α = α1

H1A =









α1 × . . .×
0
...
0

B









and if H(ŵ)B =









α2 × . . .×
0
...
0

C









then

H2 =

[

1 0
0 H(ŵ)

]

= H ([0, ŵ])

satisfies

H2H1A =













α1 × × . . .×
0 α2 × . . .×
0
...
0

0
...
0

C












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continuing inductively for n steps if m > n gives

Hn . . .H2H1A =









α1 ∗
. . .

0 αn









= R ∈ R
m×n

or for m − 1 steps if m ≤ n gives

Hm−1 . . .H2H1A =





α1 ∗
. . .

0 αm



 = R ∈ R
m×n

Writing
Q = (Hn . . .H2H1)

−1 = HT
1 HT

2 . . .HT
n = H1H2 . . .Hn

as Householder matrices are symmetric gives

Theorem: Given any A ∈ R
m×n, ∃ an orthogonal matrix

Q ∈ R
m×m and an upper triangular matrix R ∈ R

m×n s.t.
A = QR

Proof: Just take Hi = I if ith column is already zero below
diagonal and the above procedure can not break down.
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Remark: If A =





| | |
a1 a2 . . . an

| | |





and A = QR

then Q =





| | |
q1 q2 . . . qn
| | |





and {q1, q2, . . . , qn} is an orthonormal basis for
span{a1, a2, . . . , an} if this set is linearly independent.

⇒ QR factorization essentially same as Gramm-Schmidt.

Exercise: What happens to QR if {a1, . . . , an−1} is linearly
independent with an ∈ span{a1, . . . , an−1} ?
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Example: given data y1, . . . , ym at points x1, . . . , xm

find parameters in a model e.g. linear model y = ax + b
(parameters a, b)
such that
∑

[yi − (axi + b)]2 is min (regression)

same as

min
a, b

‖









x1 1
x2 1
...

xm 1









[

a
b

]

−









y1
y2
...

ym









‖2
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QR Algorithm for eigenvalues (eig in matlab)

Set A = A1

for k = 1, 2, . . .

{

factor Ak = QkRk (QR factorisation)
set Ak+1 = RkQk (matrix multiply)

Lemma: {Ak} are all similar matrices and so have same
eigenvalues
Proof: Ak+1 = RkQk = QT

kQkRkQk = Q−1
k (Ak)Qk

Fact: Ak → upper triangular matrix as k → ∞.

So for large k, diag (Ak) are good approximations to the
eigenvalues.

When complex conjugate eigenvalues arise, 2 × 2 real
diagonal blocks remain in Ak which each have a pair of the
complex conjugate eigenvalues.

NLA – p.8/12



Notes:

1. Speed of convergence depends on the size of gaps
between the eigenvalues: more well separated ⇒
faster convergence.

2. Convergence is accelerated by the use of shifts (see
problem sheet)

3. An orthogonal similarity reduction to Hessenberg form
is always employed as a 1st step before apply the QR
algorithm with shifts.
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Reduction to Hessenberg form
Want a similarity transform Hp . . .H2H1AH1H2 . . .Hp

where Hi are Householder matrices but if

H1A =









× × · · ·×
0 × · · ·×
...

...
...

0 × · · ·×









then H1AH1 is full i.e. postmultiplication destroys zeros
created (otherwise a direct method for eigenvalues!)
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So instead let

H1 =









1 0 · · · 0
0
...
0

K1









1

n − 1

1 n − 1

, A =

[

a1 vT
1

u1 B1

]

then

H1A1H1 =
[

a1 vT
1

K1u1 K1B1

] [

1 0
0 K1

]

=

[

a1 vT
1 K1

K1u1 K1B1K1

]

and choosing K1 to be a Householder matrix satisfying
K1u1 = (α1, 0, . . . , 0)

T we have

A(2) = H1AH1 =





a1 b1 v̂T
2

α1 a2 vT
2

O u2 B2





1
1

n − 2

1 1 n − 2
NLA – p.11/12



inductively (similar to before)

A(n−1) = Hn−2 . . .H2H1AH1H2 . . .Hn−2

is in Hessenberg form

QR factorization can now be achieved by n − 1 Givens
rotation matrices (see problem sheet) and the Hessenberg
form is preserved by the QR algorithm ie. all of the Ak’s are
upper Hessenberg.
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Direct Methods for linear systems Ax = b
basic point: easy to solve triangular systems








. . .
× × ×
0 × ×
0 0 ×









←

etc.
an−1,n−1xn−1 = bn−1 − an−1,nxn ↖
solve an,nxn = bn then ↖

back substitution: takes ∼ n2 operations. Need aii 6= 0.
Similar lower triangular (1st equation, then 2nd etc):

forward substitution.

So could solve Ax = b by

A = QR and
{

Qy = b ⇒ y = QT b
Rx = y back subs. asR upper triangular

But 1
2 the number of operations (and other advantages e.g.

for sparse) to perform LU factorisation: based on Gauss
elimination (successively create zeros below diagonal by
following algorithm) NLA – p.2/13



Gauss Elimination:

for columns j = 1, . . . , n− 1
for rows i = j + 1, . . . , n

calculate multiplier lij = (aij/ajj), (ajj is the pivot)
row i←− row i− lij ∗ row j (?)

end i
end j

(?) for k = j + 1, . . . , n
aik ←− aik − lijajk

end k
bi ←− bi − lijbj

reduces to upper triangular matrix U without changing
solution in ∼ 2

3n3 operations.

Back substitution⇒ solution
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If store multiplier lij used to zero aij as i, j entry of a unit
lower triangular matrix L then

A = LU with
{

Ly = b forward subs.
Ux = y back subs.

solves Ax = b.

Note: For many b’s need only 1 LU factorization.

Recall aii 6= 0 necessary for Gauss Elimination so fails on

e.g.
[

0 1
1 0

]

which is non-singular.
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Pivoting:
Row interchanges: often expressed as PA = LU , P
permutation.

Partial pivoting: when zeroing subdiagonal of pth column

find max |aip| = |m|, i = p, p + 1, . . . , n;

m becomes pivot

swap row p with row which gives this max.

Fails if and only if A singular as
app = 0, m = 0⇒ det A = 0
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Special forms

• A Symmetric positive definite: A = LLT , L lower
triangular, Cholesky factorisation.

• A Symmetric Indefinite: A = LDLT , L lower
triangular, D block diagonal, 1× 1 and 2× 2 blocks:
Bunch - Parlett, Bunch - Kaufmann factorizations.

• A Banded: eliminate only in band, ∼ 1
3nb2 operations

for LU
(NB pivoting generally destroys bandedness)

• A Sparse: good software e.g. HSL or \ for sparse in
matlab.
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Ill-conditioning

Proposition: If Ax = b (1) and A(x + δx) = b + δb (2)
then

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δb‖

‖b‖

Proof: A−1((2)− (1))⇒ δx = A−1δb

so ‖δx‖ = ‖A−1δb‖ ≤ ‖A−1‖‖δb‖

also ‖b‖ = ‖Ax‖ ≤ ‖A‖‖x‖

or
1

‖x‖
≤
‖A‖

‖b‖

so
‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δb‖

‖b‖

↑ ↑ ↑

relative change in solution condition number relative perturbation of rhs NLA – p.7/13



Also if A is perturbated to A + δA then

‖δx‖

‖x + δx‖
≤ ‖A‖‖A−1‖

‖δA‖

‖A‖

(Exercise: Show this)
These results identify κ = ‖A‖‖A−1‖ (the ‘condition
number’ for solution of linear systems) as a measure of
ill-conditioning.

Usually necessary if large κ to reformulate problem
because:

Gauss elimination finds x̃ such that r = b−Ax̃ is small
(not exactly x s.t. Ax = b) on a computer.

For many A, r small⇒ e = x− x̃ is small but not when κ
is large as indicated by the above results.
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Example: Interpolation: Given N and data f(xi) at distinct
points xi, i = 0, 1, . . . , N , find polynomial
p(x) =

∑n
k=0 akxk ∈ Πn such that

p(xi) = f(xi).

This can be written as: solve














1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2
...

...
...

...
...

1 xn x2
n · · · xn

n



























a0

a1

a2
...

an













=













f(x0)
f(x1)
f(x2)

...
f(xn)












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For xk = k + 1,
expected accuracy

n = 4 κ = 2 · 6× 104 12 decimal places
n = 8 κ = 4 · 2× 1010 6 decimal places
n = 12 κ = 4 · 2× 1017 0 decimal places
n = 16 κ = 1 · 9× 1025 no hope of accurate solution

but can reformulate the interpolation problem in many ways
e.g. use a better basis for ΠN than {1, x, x2, . . . , xN}.
In fact for this problem there are reliable and faster (O(N2))
methods (GVL p183 Vandermonde)
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Iterative solution methods for Ax = b
idea: split A = M −N , so easy to solve systems with M ,
then iterate:

Guess x(0)

solve Mx(k) = Nx(k−1) + b for k = 1, 2, . . .

basic point: if {x(k)} converges (to x, say) then

Mx = Nx + b, ie. Ax = b

ie. it converges to the solution.

NLA – p.12/13



NLA – p.13/13



NLA – p.1/13



Iterative solution methods for Ax = b, A ∈ R
n×n

idea: split A = M − N , so easy to solve systems with M ,
then iterate:

Guess x(0)

solve Mx(k) = Nx(k−1) + b for k = 1, 2, . . .

basic point: if {x(k)} converges (to x, say) then

Mx = Nx + b, ie. Ax = b

ie. it converges to the solution.
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Jacobi’s method: M = diag(A), (N = A − M)

In practice: componentwise

for iterates k = 1, 2, . . .
for rows (equations) i = 1, . . . , n

x
(k)
i =

1

ai,i


−

n∑

j=1,j 6=i

ai,jx
(k−1)
i + bi




endo
endo

better ? use most recently updated value of xi
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for iterates k = 1, 2, . . .
for rows i = 1, . . . , n

x
(k)
i =

1

ai,i


−

i−1∑

j=1

ai,jx
(k)
j −

n∑

j=i+1

ai,jx
(k−1)
j + bi




endo
endo

This is Gauss-Seidel iteration: rearranging
i∑

j=1

aijx
(k)
j = −

n∑

j=i+1

aijx
(k−1)
j + bi

which is (L + D)x(k) = −Ux(k−1) + b

when D = diag(A), L = strict lower triangular of A, U =
strict upper triangular of A
i.e. Solve Mx(k) = Nx(k−1) + b, M = L + D is
achieved by forwards substitution.
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better still ? take Gauss-Seidel x(k) iterate and average
with x(k−1)

x
(k)
i = ω


bi −

i−1∑

j=1

aijx
(k)
j −

n∑

j=i+1

aijx
(k−1)
j


 1

aii

︸ ︷︷ ︸
exactly as in Gauss-Seidel

+(1−ω)x
(k−1)
i

ω ∈ R relaxation parameter
ω < 1 gives underelaxation cautious & slow
ω = 1 Gauss-Seidel
ω > 1 overelaxation ⇒ Successive Overelaxation

Method (SOR)

By rearranging as for Gauss-Seidel: matrix form

(D + ωL)x(k) = ωb + [(1 − ω)D − ωU ]x(k−1)
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Symmetry sometimes useful to preserve, so if A symmetric
(⇔ U = LT ):
Symmetric SOR (SSOR)

(D + ωL)x(k−1

2
) = ωb + [(1 − ω)D − ωU ]x(k−1)

(D + ωU)x(k) = ωb + [(1 − ω)D − ωL]x(k−1

2
)

corresponds to M = (D + ωL)D−1(D + ωU) which is
symmetric.

Important point: if A sparse then these methods only need
use the non-zero entries of A e.g.

i−1∑

j=1

aijx
(k)
j becomes

∑

{j<i:aij 6=0}

aijx
(k)
j
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Convergence of simple iterations:

Mx(k) = Nx(k−1) + b

and Ax = b ⇒ Mx = Nx + b (A = M−N)

so M(x − x(k)) = N(x − x(k−1))

x − x(k) = M−1N(x − x(k−1))

= (M−1N)k(x − x(0))

M−1N is called the iteration matrix

So ‖x − x(k)‖ → 0 at least if

‖(M−1N)k‖‖x − x(0)‖ ≤ ‖M−1N‖k︸ ︷︷ ︸
↑

‖x − x(0)‖︸ ︷︷ ︸
unknown error in initial guess

→ 0 if ‖M−1N‖ < 1

this is a sufficient condition for convergence.
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Notation
ρ(A) = max {|λ| : λ an eigenvalue of A}
the spectral radius

Theorem
If M−1N is diagonalisable, then ‖x − x(k)‖ → 0 as
k → ∞ for any initial guess x(0) if and only if
ρ(M−1N) < 1
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But diagonalisation is not necessary since even if M−1N is
not diagonalisable, it is triangularisable
i.e. ∃ triangular matrix T with M−1N = QTQT for some
orthogonal matrix Q (Schur decomposition).
More useful for our purpose here (only!) is the existence of
a Jordan canonical form:

M−1N = XJX−1, J =




J1 O
. . .

O Jp




where Ji ∈ R
ni×ni and

∑
i=1,...,p ni = n with

Ji =




λi 1
. . . . . .

. . . 1
λi




This is a Jordan block NLA – p.10/13



Thus (M−1N)k = (XJX−1)k = XJkX−1 and, as
k → ∞

(M−1N)k → 0 ⇔ Jk → 0 ⇔ Jk
i → 0 all i.

That is, we obtain convergence if and only if for every
Jordan block, its powers tend to zero as k → ∞.

First consider if λi = 0, then write Ji = Ĵ ∈ R
n̂×n̂ and

Ĵ =




0 1
0 1

. . . . . .
. . . . . .

0 1
0




, Ĵ2 =




0 0 1
0 0 1

. . . . . .
0 0 1

0 0
0




and generally the diagonal of 1’s moves up toward the top
right for each succesive power. Thus Ĵ n̂ = 0 NLA – p.11/13



Now consider when λi 6= 0: we have

Jk
i =

(
λiI + Ĵ

)k

=

k∑

r=0

(
k

r

)
Ĵr λ

k−r
i since I, Ĵ commute

=

ni∑

r=0

(
k

r

)
Ĵr λk−r

i

→ 0 as k → ∞ since λ
k−r
i → 0

if and only if |λi| < 1 each i.

Thus (M−1N)k → 0 as k → ∞ ⇔ |λi| < 1 each i, hence
convergence since x − x(k) = (M−1N)k(x − x(0)).

Note the powers of J can grow considerably before
eventual convergence.
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Practical Example

4uj,k − uj+1,k − uj−1,k − uj,k+1 − uj,k−1 = h2fj,k

for j, k = 1, . . . , n with u0,k, un+1,k, uj,0, uj,n+1 given.
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4uj,k − uj+1,k − uj−1,k − uj,k+1 − uj,k−1 = h2fj,k

for j, k = 1, . . . , n with u0,k, un+1,k, uj,0, uj,n+1 given.

eg.Jacobi iteration for this problem is: guess u(0)

for iterates i = 1, 2, . . .

for j = 1, . . . , n

for k = 1, . . . , n

u
(i)
j,k =

1

4

[

u
(i−1)
j+1,k + u

(i−1)
j−1,k + u

(i−1)
j,k+1 + u

(i−1)
j,k−1 + h2fj,k

]

endo
endo

endo

NLA – p.3/5



Proposition for r, s = 1, . . . , n

λr,s =
1

2
(cos rπh + cos sπh)

is an eigenvalue of the Jacobi iteration matrix for A with
eigenvector vr,s having entries

v
r,s
jk = sin rjπh sin skπh

Proof direct calculation: see exercises

Remark shows Jacobi iteration converges as
−1 < λr,s < 1 for each r, s but

ρ(Jacobi) =
1

2
(cos πh+cos πh) = cos πh = 1−

π2h2

2
+O(h4)

so very close to 1 for small h ⇒ slow convergence.
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But recalling (in this notation)

u − u(i) = (M−1N)i(u − u(0)) =

n
∑

r,s=1

αr,s(λ
r,s)ivr,s

we see that λr,s small ⇒ error component in vr,s reduces
very quickly to zero, so u − u(i) is quickly dominated by
components vr,s for which |λr,s| ' 1.

More interesting for our purpose: relaxed Jacobi: for
θAx = θb, θ ∈ R

+, M = D, N = (1 − θ)D − θ(L + U)

⇒ M−1N = (1 − θ)I − θD−1(L + U)

has eigenvalues 1 − θ + θ
2
(cos rπh + cos sπh)

so e.g. for θ = 1
2 , eigenvalues

1
2 + 1

4(cos rπh + cos sπh) ∈ (0, 1)

AND high frequency eigenvectors (r, s large) correspond to
small eigenvalues (λr,s � 1) ⇒ a ‘smoother’
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Idea of a ‘smoother’ leads to Multigrid

guess u0

on fine grid smooth (i.e. for 3 relaxed Jacobi iteration)
u0 → us

u− us = es smoother than u− u0 = e0

Aes = Au−Aus = b−Aus = rs (residual)

same as original problem, but es smoother⇒ solve on
coarser grid i.e. use a coarse grid representation A of A

and solve Aes = rs where es, rs are coarse grid
restrictions of es, rs respectively.
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So need grid transfer operators:

Restriction: fine→ coarse

Prolongation: coarse→ fine
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Prolongation:

�@

�@

�@

�@

a

a

a

a

a

a

a

a

a

1

4

7

2

5

8

3

6

9































1 0 0 0
1
2

1
2

0 0
0 1 0 0
1
2

0 1
2

0
1
4

1
4

1
4

1
4

0 1
2

0 1
2

0 0 1 0

0 0 1
2

1
2

0 0 0 1







































x1

x3

x7

x9









=





























x1

x2

x3

x4

x5

x6

x7

x8

x9





























↑ P
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Restriction:

normally R = αP T where α ∈ R is such that

αP T P e = RPe = e

e being the vector of all ones

eg. α = 4
9

for the P above.
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Basic point:

if x = Px x ‘short’
or x = Rx x ‘long’

then little loss of accuracy if and only if x is a ‘smooth
vector’ i.e. a vector of coefficients representing a
non-oscillatory function.

Coarse grid operator: A : 2 possibilities:

(i) 5 point formula on 2h mesh

(ii) A = RAP = αP T AP

(Galerkin coarse grid operator)
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2-grid algorithm:

Choose u0

for two− grid iterations i = 0 until convergence do

(pre−)smooth : ui → us

calculate residual : rs = b−Aus

restrict residual : rs → rs (rs = Rrs)
solve A es = rs to get coarse grid correction

prolong : es → es (es = Pes)
update : ui+1 ← us + es

(sometimes) post− smooth : ui+1 → ui+1

enddo

Note:
ui+1 ← us + PA

−1
R(b−Aus)
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If smoother is based on a splitting A = M −N then the
iteration matrix is M−1N and we have eg. for 2 smoothing
steps (so us = u(2))

u(1) = (M−1N)u(0) + M−1b

u(2) = (M−1N)u(1) + M−1b

= (M−1N)2u(0) + (I + M−1N)M−1b (?)

but also the exact solution satisfies

u = (M−1N)u + M−1b

⇒ u = (M−1N)2u + (I + M−1N)M−1b (+)

so (+)− (?) gives

u− u(2) = (M−1N)2(u− u(0)).
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Note also for the residual using (?) and (+) we have

b−Au(2) = A(u− u(2)) = A(M−1N)2(u− u(0)).

So 2-grid iterate is

u(2) + PA
−1

R(b−Au(2))

= u(2) + PA
−1

R A (M−1N)2(u− u(0))

so that the error after a single 2-grid iteration is

u− u(2) − PA
−1

R A (M−1N)2(u− u(0))

= (A−1 − PA
−1

R) A (M−1N)2(u− u(0))
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In general the jth 2-grid iteration ( for iterate uj with
u(0) = u0) is

uj =
[

(M−1N)2uj−1 + (I + M−1N)M−1b
]

+

PA
−1

R
(

b−A
[

(M−1N)2uj−1 + (I + M−1N)M−1b
])

and the error ej = u− uj therefore satisfies

ej = (A−1 − PA
−1

R) A (M−1N)2ej−1

or in general if ν pre-smoothing steps and µ post-smooting
steps are used

ej = (M−1N)µ(A−1 − PA
−1

R) A (M−1N)νej−1
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ej = (M−1N)µ(A−1 − PA
−1

R) A (M−1N)νej−1

Convergence depends on

• Smoothing (as above)

• Approximation: R and P must sufficiently accurately
reproduce smooth vectors and A sufficiently accurately
represent A
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In mathematical terms: we use the regular Euclidean norm
‖ · ‖ and ‖ · ‖A defined by ‖x‖2A = xTAx which is a norm
when A is symmetric and positive definite, and establish

• the Smoothing Property: for all y

‖A (M−1N)νy‖ ≤ η(ν) ‖y‖A

with η(ν) → 0 as ν → ∞ being independent of n
(n =dimension of A)

• the Approximation Property: for all y, there exists C
independent of n with

‖(A−1 − PA
−1

R)y‖A ≤ C‖y‖.

Immediately we have
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Theorem: if the Smoothing and Approximation properties
hold then 2-grid iteration with no post-smoothing converges
at a rate independent of n.
Proof:

‖ej‖A = ‖(A−1 − PA
−1

R) A (M−1N)νej−1‖A

≤ C‖A (M−1N)νej−1‖ (Approx. Property)

≤ Cη(ν)
︸ ︷︷ ︸

→0 as ν→∞

‖ej−1‖A (Smoothing Property)

so ∃ a number of smoothing steps ν independent of n with

‖ej‖A ≤ γ‖ej−1‖A

with γ < 1.
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Approximation Property: rough sketch (depends on finite
difference error)

A−1b ↔ mesh solution on mesh h ↔ uh

PA
−1

Rb ↔ mesh solution on mesh 2h ↔ u2h

so ‖(A−1 − PA
−1

R)b‖A ∼ |uh − u2h| ∼ ‖b‖ any b.

Smoothing Property: we prove only for relaxed Jacobi :

M−1N = (1−θ)I−θD−1(L+U) = I−θD−1A = I−
θ

4
A

as D = 4I for 5 point formula.

Theorem: if the eigenvalues of M−1N lie in [−σ, 1] with
0 ≤ σ < 1 being independent of n, then the smoothing
property holds.

(Recall: θ = 1
2
⇒ eigenvalues of M−1N ∈ (0, 1).)
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Proof: let {z1, . . . , zn} be the orthonormal eigenvector
basis of I − (θ/4)A and y =

∑
cizi,

(I − (θ/4)A)zi = λizi. Then Azi = (4/θ)(1 − λi)zi so

A(M−1N)νy = (4/θ)
∑

ciλ
ν
i (1 − λi)zi,

and ‖A(M−1N)νy‖2 = (16/θ2)
∑

c2iλ
2ν
i (1 − λi)

2

as zT
i zj = δi,j. Now λi ∈ [−σ, 1] ⇒ λ2ν

i (1 − λi) is
maximal either at the stationary point λi = 2ν/(2ν + 1) or
when λi = −σ so that

max
λi∈[−σ,1]

λ2ν
i (1 − λi) ≤ max

{
1

2ν

1

e
, σ2ν(1 + σ)

}

since
(

2ν

2ν + 1

)2ν 1

2ν + 1
=

1

2ν

1

(1 + 1/2ν)2ν+1
≤

1

2ν

1

e

and (1 + 1/2ν)2ν+1 ց e(= 2.718 . . .) as ν → ∞.
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Thus

‖A(M−1N)νy‖2

≤ max

{
4

eθ

1

2ν
,
4

θ
σ2ν(1 + σ)

}
∑

c2i
4

θ
(1 − λi)

= max

{
4

eθ

1

2ν
,
4

θ
σ2ν(1 + σ)

}

︸ ︷︷ ︸

η(ν)→0 as ν→∞

‖y‖2A
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Notes:

• Can be extended to Multigrid by replacing the coarse
grid solve Aes = rs recursively by a 2-grid iteration:
just apply Gauss Elimination when very small
dimensional coarse space. n-independent convergence
is preserved.

• Other smoothers,prolongation and restriction operators
and more general problems can be analysed in a
similar way.

• Work per iteration depends linearly on problem size
(n2). Number of iterations for convergence independent
of n ⇒ optimal solver (ie. O(N) work to solve an
N × N linear system.
(cf. O(N3) for Gauss Elimination).
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Polynomial Iterative Methods
Simple iteration

x(k) = (M−1N)x(k−1) + b̂ , b̂ = M−1b

and x = (M−1N)x + b̂

⇒ x − x(k) = (M−1N)(x − x(k−1))

⇒ x − x(k) = (M−1N)k(x − x(0)) = Sk(x − x(0))

if S = M−1N . ie.

x − x(k) = pk(S)(x − x(0)) = Sk(x − x(0)) , pk(z) = zk
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Now if

x − x(0) =

n
∑

i=1

αivi, Svi = λivi

x − y(k) =
n

∑

i=1

αipk(S)vi =
n

∑

i=1

αipk(λi)vi

Idea: x − y(k) should be small if pk(λi) is small
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If S is symmetric we can say more
(since S orthogonaly diagonalisable)

⇒ S = UΛUT , UUT = I

↑ diag Matrix of eigenvalues

⇒ S2 = UΛUT UΛUT = UΛ2UT , . . . , Sk = UΛkUT

⇒ p(S) = Up(Λ)UT any polynomial p

⇒ ‖p(S)‖2 = ‖Up(Λ)UT ‖2 = ‖p(Λ)‖2

=

∥

∥

∥

∥









p(λ1) O
p(λ2)

. . .
O p(λn)









∥

∥

∥

∥

2

= max
i

|p(λi)|
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So for polynomial iteration x − y(k) = pk(S)(x − x0)

‖x−y(k)‖2 ≤‖pk(S)‖2‖x−x(0)‖2 = max
i

|pk(λi)| ‖x−x(0)‖2

So desire pk ∈ Πk is small at eigenvalues with pk(1) = 1.

Notes:

• if λi = 1 for some i
⇒ Svi = vi ⇔ Mvi = Nvi ⇔ Avi = 0 ie. A singular.

• If only k distinct eigenvalues of S: choose pk to have
these as roots.

For such a pk, ‖x − y(k)‖2 = 0 i.e. termination after
k steps!

NLA – p.6/13



Candidates for {pk} ? : Chebyshev polynomials

Suppose λi(S) ∈ [a, b] , 1 /∈ [a, b] then

‖x − y(k)‖2 ≤ max
i

|pk(λi)|‖x − x(0)‖2

≤ max
t ∈ [a, b]

|pk(t)|‖x − x(0)‖2

and the polynomials which

minimise max |p(t)|
p ∈ Πk, p(1)=1 t ∈ [a, b]

are shifted and scaled Chebyshev polynomials
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Chebyshev polynomials are defined on [−1, 1] by T0(t) = 1
and for m = 1, 2, . . . by

Tm(t) =







































1
2m−1 cos mθ (0 ≤ θ ≤ π)

where t = cos θ −1 ≤ t ≤ 1

1
2m−1 cosh mθ

where t = cosh θ t ≥ 1

(−1)mTm(−t) t ≤ −1

T0 = 1, T1 = t,

T2 =
1

2
cos 2θ =

1

2
(2 cos2 θ − 1) = t2 −

1

2
, . . .
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In general since

cos(m + 1) θ = cos mθ cos θ − sin mθ sin θ

cos(m − 1) θ = cos mθ cos θ + sin mθ sin θ

we have

cos(m + 1) θ + cos(m − 1) θ = 2 cos mθ cos θ

i.e. 2mTm+1(t) + 2m−2Tm−1(t) = 2 · 2m−1Tm(t)t

or

Tm+1(t) = t Tm(t) −
1

4
Tm−1(t) , m = 2, 3, . . . (?)

so

T3(t) = t(t2 −
1

2
) −

1

4
t = t3 −

3

4
t , etc.
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If λi(S) ∈ [a, b], 1 /∈ [a, b], need to shift using linear map

[a, b]
∈
r

7→ [−1, 1]
∈
t

: t = 2r−a−b
b−a

⇒ T̂k(r) = Tk(
2r − a − b

b − a
)
/

Tk(
2 − a − b

b − a
)

satisfies T̂k(1) = 1 and minimises

max
r ∈ [a, b]

|p(r)|

over all polynomials of degree ≤ k.

Using pk = T̂k is called the
Chebyshev semi-iterative method.
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Remarks:

1. need estimates a
<
∼ λmin(S) and b

>
∼ λmax(S) in

order to construct T̂k’s on a reasonable interval

2. can use the 3-term recurrance (?) to make the

algorithm more efficient than using the coefficients β
(k)
e

of the polynomials Tk(z) explicitly (see exercise)

3. Convergence: we have

‖x − y(k)‖2 ≤ max
r ∈ [a, b]

|T̂k(r)|‖x − x(0)‖

if λi ∈ [a, b] , 1 /∈ [a, b]
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max
r ∈ [a, b]

|T̂k(r)| = |T̂k(a)| = |T̂k(b)|

=
|Tk(1)|

|Tk(
2−a−b

b−a
)|

as max error always attained at end points.

NLA – p.12/13



NLA – p.13/13



Krylov Subspace Methods
A ∈ R

n×n, r ∈ R
n

If A sparse or specially structured, so easy to compute

Ar,A(Ar), . . .

i.e. r, Ar,A2r, . . .

are easy to compute, then Krylov subspaces

Kk(A, r) = span {r, Ar, . . . , Ak−1r}

are convenient nested vector subspaces (exercise: check).

Note y ∈ Kk(A, r)⇔ y = qk−1(A)r0

where qk−1 ∈ Πk−1 (real polynomials of degree ≤ k − 1.)
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If solving Ax = b, (A invertible), guess x0, r0 = b−Ax0,
then look for

xk ∈ x0 +Kk(A, r0) , rk = b−Axk, k = 1, 2, . . .

xk ∈ x0 +Kk(A, r0)

⇔ xk = x0 + qk−1(A)r0

⇔ x− xk = x− x0 − qk−1(A)r0

⇔ A(x− xk)
︸ ︷︷ ︸

b−Axk

= A(x− x0)
︸ ︷︷ ︸

r0

−Aqk−1(A)r0

‖
rk

i.e. rk = pk(A)r0 , pk ∈ Πk , pk(0) = 1

⇔ A−1rk = pk(A)A−1r0 i.e. ek = pk(A)e0, ek = x− xk
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Krylov Subspace Methods
Most common Krylov subspace methods are characterised
by

rk = pk(A)r0 , pk ∈ Πk , pk(0) = 1

AND some optimality condition

e.g. ‖rk‖2 should be minimal over xk ∈ x0 +Kk(A, r0).

Kk(A, r0) = span {r0, Ar0, . . . , A
k−1r0}
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First step is however to compute a good basis for Kk(A, r0)

since Akr0 tends to point in a single direction:

If r0 =
∑

αizi, Azi = λizi and if |λ1| > |λj|, j 6= 1 then

Akr0 =

n∑

i=1

αiA
kzi =

n∑

i=1

αiλ
k
i zi

= λk
1







α1z1 +

n∑

i=2

αi

(
λi

λ1

)k

︸ ︷︷ ︸

→0 as k→∞

zi








Note also ‖Akr0‖ → 0 or∞ depending on whether
|λ1| < 1 or |λ1| > 1
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Arnoldi’s method:

guess x0 , r0 = b−Ax0 , v1 = r0/‖r0‖2

for l = 1, 2, . . .
w = Avl

for j = 1, . . . , l

hjl = vT
j w

w = w − hjlvj
end
hl+1,l = ‖w‖2
vl+1 = w/hl+1,l

end

is a way of generating an orthonormal basis
{v1, v2, . . . , vk} for Kk(A, r0)
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In matrix form we can write Arnoldi as

AVk = VkHk + hk+1,k





| | |
0 0 · · · vk+1

| | |



 = Vk+1Ĥk

where

Vk =





| | |
v1 v2 · · · vk
| | |



 , has orthogonal columns,

Hk =










h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
. . . ...

... . . . . . . . . . ...
0 · · · 0 hk,k−1 hkk










∈ R
k×k

is upper Hessenberg
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and Ĥk =












h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
. . . ...

... . . . . . . . . . ...
0 · · · 0 hk,k−1 hkk

0 · · · 0 0 hk+1,k












∈ R
(k+1)×k

=

[
Hk

0 · · · 0 0 hk+1,k

]

∈ R
(k+1)×k

Note: Vk ∈ R
n×k has orthogonal columns

⇒ V T
k Vk = I ∈ R

k×k so

AVk = VkHk+hk+1,k





| | |
0 0 · · · vk+1

| | |



⇒ V T
k AVk = Hk

(Exercise: check) NLA – p.8/19



Now
xk ∈ x0 +Kk(A, r0)⇔ xk = x0 + Vky

for some y ∈ R
k since {v1 . . . vk} is an orthonormal basis

for Kk(A, r0). Also

xk = x0 + Vky ⇔ x− xk = x− x0 − Vky

A(x− xk) = A(x− x0)−AVky

i.e. rk = r0 −AVky

so ‖rk‖2 is minimal⇔ y ∈ R
k is such that ‖r0−AVky‖2 is

minimal.
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‖rk‖2 is minimal⇔ y ∈ R
k is such that ‖r0 −AVky‖2 is

minimal.

But r0 = ‖r0‖v1 = ‖r0‖Vke1 = ‖r0‖Vk+1e1,
eT1 = [1, 0, . . . , 0]

and by above AVk = Vk+1Ĥk so

‖rk‖2 is min ⇔
∥
∥Vk+1(‖r0‖e1 − Ĥky)

∥
∥
2

is min

but V T
k+1Vk+1 = I ∈ R

(k+1)×(k+1) as {v1, . . . , vk+1}

are orthonormal

so required vector y is that which minimises the linear least
squares problem

∥
∥‖r0‖e1 − Ĥky

∥
∥
2
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Required vector y is that which minimises the linear least
squares problem

∥
∥‖r0‖e1 − Ĥky

∥
∥
2

⇒ need QR factorisation of the rectangular Hessenberg
matrix Ĥk ∈ R

k+1×k

which can be achieved by one additional Givens rotation for
each k since Ĥk is built up by appending the last column
for each k.

(see Exercises)
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This is the basis of the GMRES algorithm
(Generalised Minimal Residual Method)

x0 , r0 = b−Ax0, v1 = r0/‖r0‖

For k = 1, 2, . . .

do step k of the Arnoldi algorithm

(⇒ have v1, v2 . . . vk+1
︸ ︷︷ ︸

new

and Ĥk
︸︷︷︸

last column new

)

solve the Hessenberg linear least squares problem

y = arg min
∥
∥‖r0‖e1 − Ĥky

∥
∥
2

xk = x0 + Vky

end
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As before the Hessenberg least squares problem is solved
by QR factorisation of Ĥk using k + 1 Givens rotations, but
since Ĥk is the same as Ĥk−1 except for one additional
row and column this can be implemented as only 1 Givens
rotation for each k. (see exercises)
Notes:

1. ‖rk‖2 is the linear least squares error in the
Hessenberg least squares problem.

2. xk only needs to be calculated if ‖rk‖ satisfies the
stopping criterion ‖rk‖ ≤ TOL.

3. work at kth GMRES iteration is O(k2) for the least
squares solution + 1 matrix vector product + vector
operations. So for a sparse matrix with O(1) entries per
row work ≃ O(k2n)⇒ cheap method if only relatively
few iterations (k) are needed.
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Notes (continued);

4. GMRES gets expensive in storage of v1 . . . vk and the
orthogonalisation computation if k gets too large, so
sometimes is restarted: do a fixed number l of GMRES
iterations then reset r0 ← rl and repeat. This is
GMRES (l) (which is not guaranteed to work!).
Unrestarted GMRES is often called FULL GMRES.

5. If A ∈ R
n×n then if GMRES does not stop before n

steps, {v1, . . . , vn} is an orthonormal basis for Rn

⇒ xk = x because ‖rk‖2 is minimimal for
xk ∈ x0 +Kn(A, r0) ie. for xk ∈ R

n.

6. Also if continues for n steps AVn = VnHn, ie.
A = VnHnV

T
n , Vn,Hn ∈ R

n×n. So A has been
reduced by orthogonal similarity transform to
Hessenberg form.
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Convergence of GMRES

rk = pk(A)r0 with ‖rk‖ minimal

⇒ GMRES implicitly finds pk ∈ Πk , pk(0) = 1 such that
‖pk(A)r0‖2 is minimal.

If A is diagonalisable

A = XΛX−1 ⇒ pk(A) = Xpk(Λ)X−1
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A = XΛX−1 ⇒ pk(A) = Xpk(Λ)X−1

implies

‖rk‖2 = ‖pk(A)r0‖2 = ‖Xpk(Λ)X−1r0‖

≤ min
p ∈ Πk, p(0) = 1

‖X‖2‖X
−1‖2 ‖p(Λ)‖2 ‖r0‖2

or similar to before

‖rk‖2

‖r0‖2
≤ ‖X‖2‖X

−1‖2 min
p ∈ Πk, p(0) = 1

max
λj

↑
eigenvalues of A

|p(λj)|

—-(⋆) NLA – p.16/19



Comments:

1. ‖X‖2‖X−1‖2 = κ(X) is a number independent of k: if
it is large⇒ (⋆) is not very useful convergence
estimate. If it is of moderate size (not known in
practice!) then fast convergence if ∃p ∈ Πk , p(0) = 1
such that p(λj) small for all eigenvalues λj of A.

2. Other GMRES convergence bounds exist, but so far
non is descriptive over a range of problems.

3. the expense of GMRES for k large has led to
development of algorithms for non-symmetric matrices
with fixed work per iteration, but these necessarily must
loose any optimality property in general.
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However: If A = AT then GMRES has fixed work per step:
To see this we have

V T
k AVk = Hk

but A = AT so LHS is symmetric⇒ Hk is symmetric and
Hessenberg⇒ tridiagonal

i.e. Arnoldi’s algorithm would calculate lots of zeros in this
case!

In fact the symmetric Lanczos algorithm is used:
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If A = AT is positive definite, there is an even more
efficient Krylov subspace method than MINRES, namely
the method of Conjugate Gradients (for Ax = b) which
computes xk ∈ x0 + Kk(A, r0) such that ‖x − xk‖A is
minimal where yTAy = ‖y‖2A.

Note ‖ · ‖A defines a norm when A is symmetric and
positive definite, indeed <z, y>A = <Az, y> = yTAz
defines a scalar product (inner product) for which
<y, y>A = ‖y‖2A in this case.
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Lemma Conjugate Gradient Algorithm
choose x0 , r0 = b − Ax0 = p0 and for k = 0, 1, 2, . . .

αk = pT
k rk/p

T
kApk

xk+1 = xk + αkpk

rk+1 = b − Axk+1

βk = −pT
kArk+1/p

T
kApk

pk+1 = rk+1 + βkpk

computes iterates {xk}, corresponding residuals {rk} and
search directions {pk} so that as long as xk 6= x we have

rTk pj = rTk rj = 0 , j < k (1)

pT
kApj = 0 , j < k , (pT

kApk 6= 0) (2)

span{r0, r1, . . . , rk−1} = span{p0, p1, . . . , pk−1}

= Kk(A, r0) (3)
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It is now an easy induction using xk = xk−1 + αk−1pk−1 to
show that xk ∈ x0 + Kk(A, r0) (exercise)
and also
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Theorem

‖x − xk‖A ≤ ‖x − y‖A , y ∈ x0 + Kk(A, r0)

Proof
let c = x − x0 and ck = xk − x0 ∈ Kk(A, r0)
then Ac = r0 and x − xk = c − ck
hence rk = A(x − xk) = A(c − ck).

Now by the above rk is orthogonal to every vector in
Kk(A, r0) i.e. ∀ v ∈ Kk(A, r0)

0 = 〈rk, v〉 = 〈A(c − ck), v〉 = 〈c − ck, v〉A

and such (Galerkin) orthogonality ⇒ ‖c− y‖A is minimised
for y ∈ Kk(A, r0) when y = ck

⇒ ‖x − z‖A is minimised for z ∈ x0 + Kk(A, r0) by
z = xk since c = x − x0 and xk = x0 + ck.
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Convergence of Conjugate Gradients
we have rk = pk(A)r0 or equivalently
(x − xk) = pk(A)(x − x0), pk ∈ Πk, pk(0) = 1 and
‖x − xk‖A = ‖rk‖A−1 minimal over xk ∈ x0 + Kk(A, r0)
for each k.
Let Avj = λjvj, j = 1, . . . , n, vT

j vi = δij and

x − x0 =
∑n

j=1 αjvj then

x − xk =

n∑

j=1

αjpk(A)vj =

n∑

j=1

αjpk(λj)vj

so 〈x − xk, x − xk〉A =

n∑

j=1

α2
jpk(λj)

2〈vj, vj〉A

since vT
j vi = δij ⇒ vT

j Avi = λiδij = 0 if i 6= j

hence ‖x − xk‖A ≤ min
p∈Πk,p(0)=1

max
j

|p(λj)| ‖x − x0‖A
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Convergence bound for Conjugate Gradients:

‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

If λj ∈ [a, b], a > 0 for all j then

‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
t∈[a,b]

|p(t)|

and the minimum here is achieved by the shifted and scaled
Chebyshev polynomial

p(t) = Tk

(
2t− b− a

b− a

)/

Tk

(−b− a

b− a

)

similarly to before (but note different normalisation).
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Now for

t ∈ [a, b] ,
2t− b− a

b− a
∈ [−1, 1]

so

max
t ∈ [a, b]

|p(t)| = p(b) =
1

2k−11
1

2k−1 cosh kθ
, cosh θ =

b + a

b− a
.

Note:eθ + e−θ = 2
(

b+a
b−a

)

⇔
(
eθ
)2− 2

(
a+b
b−a

) (
eθ
)
+ 1 = 0

⇔ eθ = −
(√

b−√a
√

b +
√

a

)

or

(

−
√

b−√a
√

b−√a

)

,
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So

min
p∈Πk ,p0=1

max
t∈[a,b]

|p(t)| =

2





(√
b−√a
√

b +
√

a

)k

+

(√
b +
√

a
√

b−√a

)k




−1

≤ 2

(√
b−√a
√

b +
√

a

)k

= 2

(√
κ− 1
√

κ + 1

)k

when b = λmax(A), a = λmin(A) and κ = λmax(A)
λmin(A)

κ the ‖ · ‖2 condition number again.

NLA – p.4/13



CG :
‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

≤ 2

(√
κ− 1
√

κ + 1

)k

, κ =
λmax(A)

λmin(A)
.

For fast convergence:

4.54.54.5
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CG :
‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

≤ 2

(√
κ− 1
√

κ + 1

)k

, κ =
λmax(A)

λmin(A)
.

For fast convergence:

• few distinct eigenvalues

• cluster eigenvalues

• reduce κ

4.54.54.5
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CG :
‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

≤ 2

(√
κ− 1
√

κ + 1

)k

, κ =
λmax(A)

λmin(A)
.

For fast convergence:

• few distinct eigenvalues

• cluster eigenvalues

• reduce κ

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1

1.5

4.54.5
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CG :
‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

≤ 2

(√
κ− 1
√

κ + 1

)k

, κ =
λmax(A)

λmin(A)
.

For fast convergence:

• few distinct eigenvalues

• cluster eigenvalues

• reduce κ

4.5

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1

1.5

4.5
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CG :
‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

≤ 2

(√
κ− 1
√

κ + 1

)k

, κ =
λmax(A)

λmin(A)
.

For fast convergence:

• few distinct eigenvalues

• cluster eigenvalues

• reduce κ

4.54.5

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

−0.2

0

0.2

0.4

0.6

0.8

1
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‖x− xk‖A
‖x− x0‖A

≤ min
p∈Πk ,p(0)=1

max
j
|p(λj)|

≤ min
p∈Πk ,p(0)=1

max
t∈[a,b]

|p(t)|

≤ 2

(√
κ− 1
√

κ + 1

)k

Hence Conjugate Gradients guaranteed to converge fast if

(i) A has few distant eigenvalues (or few clusters)

(ii) κ is small, e.g. if κ = 9

‖x− xk‖A
‖x− x0‖A

≤ 2

(
3− 1

3 + 1

)k

=
2

2k

error halving at each iteration.
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BUT A, b given not chosen! So how can fast convergence
be achieved for Ax = b when none of (i), (ii) are true?

Preconditioning: choose symmetric positive definite
matrix P and for the mathematical analysis only (not for the
algorithm - see exercises) let P = HHT for example be a
Cholesky factorisation. Solve

(H−1AH−T )
︸ ︷︷ ︸

symmetric

(HT x) = H−1b (?)

by Conjugate Gradients.
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It computes iterates {xk} for (?) and hence for Ax = b
such that

‖x− xk‖A
‖x− x0‖A

≤ 2

(√
κ− 1
√

κ + 1

)k

where

κ =
λmax(H

−1AH−T )

λmin(H−1AH−T )

=
λmax(P

−1A)

λmin(P−1A)

because of the similarity transformation

H−T (H−1AH−T )HT = P−1A.

This CG method with preconditioner P is called the
Preconditioned Conjugate Gradient method. NLA – p.8/13



The preconditioned Conjugate Gradient method requires
the solution for zk given rk of

Pzk = rk

at each iteration⇒ the (contradictory) requirements:

• κ(P−1A) << κ(A) ⇒ fast convergence

• Pzk = rk easy to solve

(1) P = A⇒ convergence in 1 iteration, but solution of
linear system with A at that iteration!

(2) P = I ⇒ unpreconditioned CG

(2)leads to simple ideas like P = diag(A) or
P = tridiag(A) or even P =part of A with bandwidth b

⇒ O(nb2) work for Pz = r solve by banded elimination.
(1)leads to consideration of approximate or incomplete
triangular factorizations of A NLA – p.9/13



Incomplete Cholesky(0) factorization:

for i = 1, 2, . . . n
m = min{k : ai,k 6= 0}
for j = m, . . . , i− 1

if ai,j 6= 0

li,j ←
(

ai,j −
∑j−1

k=m li,klj,k

)

/lj,j

endif

enddo

li,i =
(

ai,i −
∑i−1

k=m li,kli,k

)1

2

enddo
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Incomplete Cholesky(0) factorization computes entries of a
lower triangular matrix L such that LLT = A + R where

sparsity pattern of L=sparsity pattern of lower triangle ofA

R is the remainder.

Effect of preconditioning in this case: replace Ax = b by

L−1AL−T (Lx) = L−1b

and note L−1AL−T = I − L−1RL−T so if R small can
expect eigenvalues of L−1AL−T to be clustered around 1.

Note: solve Pz = r is solve LLT z = r is easily achieved

by forwards and back substitution.
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Preconditioning can also be applied with GMRES and
MINRES: for GMRES no symmetry to preserve so just
solve eg. P−1Ax = P−1b.

In the algorithm just replace A∗vector multiplies by

z = Av, solve Ps = z ⇒ s = P−1Az
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Conjugate Gradient Algorithm choose
x0 , r0 = b − Ax0 = p0 and for k = 0, 1, 2, . . .

αk = pT
k rk/p

T
kApk

xk+1 = xk + αkpk

rk+1 = b − Axk+1(= rk − αkApk)

βk = −pT
kArk+1/p

T
kApk(= rTk+1rk+1/r

T
k rk)

pk+1 = rk+1 + βkpk

Preconditioned Conjugate Gradient Algorithm choose x0,
r0 = b − Ax0, solve Pz0 = r0, p0 = z0, k = 0, 1, . . .

αk = zT
k rk/p

T
kApk

xk+1 = xk + αkpk

rk+1 = rk − αkApk

Solve Pzk+1 = rk+1

βk = zT
k+1rk+1/z

T
k rk

pk+1 = zk+1 + βkpk NLA – p.2/10



Convergence:

‖x − xk‖A
‖x − x0‖A

≤ min
p∈Πk,p(0)=1

max
j

|p(λj)|

≤ min
p∈Πk,p(0)=1

max
t∈[a,b]

|p(t)|

≤ 2

(√
κ − 1

√
κ + 1

)k
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So fast convergence if

(i) A has few distant eigenvalues (or few clusters)

(ii) κ is small, e.g. if κ = 9

‖x − xk‖A
‖x − x0‖A

≤ 2

(
3 − 1

3 + 1

)k

=
2

2k

error halving at each iteration.

κ =
λmax(P

−1A)

λmin(P−1A)
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Example: 5-point Finite Difference approx of Laplacian

−∇2u = f in Ω, u = g on ∂Ω

Finite Differences: −1

A ∼ h−2 −1 4 −1

−1

eg. on unit square A is block tridiagonal:
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5-point finite difference approx of Laplacian
Using discrete Fourier analysis eigenvalues known:

λ = h−2 [4 − 2 cos(rπh) − 2 cos(sπh)] , r, s = 1, . . . , n

⇒ κ = 4
π2 h−2, λmin ≈ 2π2, λmax ≈ 8h−2
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Multigrid/Multilevel preconditioning

appropriate methods (smoothing and grid transfers)
converge in a number of iterations independent of h
⇒ optimal solvers for Laplacian problems

Number of PCG iterations, Preconditioner is 1 V-cycles
(contraction factor: η)

‖r(k)‖/‖r(0)‖ ≤ 10−4

1 relaxed Jacobi iteration for pre- and post-smoothing.

grid PCG iterations (MG contraction) n
8 × 8 4 (0.10) 49

16 × 16 4 (0.11) 225
32 × 32 4 (0.12) 961
64 × 64 4 (0.14) 3969

128 × 128 5 (0.16) 16129
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Multigrid:

Convergence bound: ‖u − u(k)‖A ≤ η‖u − u(k−1)‖A
η typically 0.1

⇒ multigrid is a great preconditioner for Laplacian because

‖u − u(k)‖A ≤ η‖u − u(k−1)‖A

⇒ 1 − η ≤ λmin(P
−1A), λmax(P

−1A) ≤ 1 + η

when P−1 is the action of a single multigrid cycle.

Hence κ ≤ (1 + η)/(1 − η) which is typically
1.1/0.9 ≈ 1.22
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Many other uses of these methods in diverse application
areas
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