Common Problems
e Eigenvalue Problem: given A € R™*" find A € Ror C

and z € R™ or C® such that Az = \z

e Linear System: given A € R"*"™,b € R™ find x € R"
st. Az =1b

e Nonlinear system: almost always reduce to sequence
of linear systems eg. Newtons method for F(U) = 0

Guess Ugandfork =1,2,...
solve J6 = —F(Uy) and set Ug11 = Ug + 0

OF;
J={Ji},Jij = 8—;-(Uk)’ Jacobian
J

e Least Squares (Regression): given A € R™*" m > n

— e e — e,

Matrix and vector multiplication work for block matrices: eg
if as above

O C| s, O F | s z
T s T s
then
_ [AD AE + BF [Ay+B:z
TU—[o CF } Tm—{ C= }

Exercise: Deduce that T~ exists if and only if A~ and
C~1 do, and equals

A"l —A-1pc?
o c-1

Numerical Linear Algebra

In different situations A can be:
e Full (dense) - most entries non-zero
e Banded: 3b < nwitha;; =0if [i —j| > b
» diagonal: b =0
» tridiagonal: b =1
e Triangular: upper triangular: a; ; = 0ifi > j,
correspondingly lower

e Hessenberg: upper Hessenberg: a; ; = 0ifi > j + 1,
correspondingly lower

e in Block form: naturally expressed in terms of
sub-matrices (matrix blocks)

e Sparse: many zero entries, often very few non-zeros
per row

Sparse Matrices

201
301

401

i e
60 3ucelSpgs

Numerical Linear Algebra

Notation: A € R™*™: real matrix, m rows and n columns

R™X1 = R™ are (column) vectors

Block Matrices: If (m4, - - -, m,) and (n4,- -, n,) ar
sets of positive integers with 3, m; = m, >, n; = n, and
Aij ERM™XM 4 =1,.--,p, Jj= 1,---,qgthen

A Az oo Agg

Aoy Aoo -+ A
A=lag)=|"" "% ;| e

Apl Ap2 e qu

is a p x q block matrix.
Names for ordinary matrices apply to block matrices, e.g.

A B | r
T—{o C} s
T s

is 2 x 2 block upper triangular;

0 L
q »
w0 o & s |
tnd ¢
Ll et -
100+ 73 i c
L) "
! . e
150F g0 [t - q}:' J
" s N
200 = e]
. ey
- eyt
250 ad
ey
vy LSRR
L - P
300 . .) o
Lot - LI
(e ' .
Wt .| by

0 50 100 150 200 250 300
nz = 4861

and in any of these structures a square matrix A € R**"
may be

e symmetric: AT = A (aij = ajy;)

e skew-symmetric: AT = —A

positive definite: T Az > 0 for all non-zero = € R™

e positive semi-definite: 27 Az > 0 for all non-zero
x € R"

indefinite: (27 Az)(yT Ay) < 0 for some z,y € R"

Different structures call for different numerical techniques

Goal of a numerical method is often to convert a given
problem to a simpler form (where the solution may be

Also: Frobenius norm:

Allr = > ai;
i

satisfies norm axioms.

Fact: because of compactness (finite dimensionality)

Iz € R™ with ||z|| = 1 and ||A|| = || Az||

Orthogonal Matrices
Q € R™"*" is orthogonal if

) Q"@=1 eQ"=Q"
equivalently
(i) QQ" =1

(iii) columns of Q are an orthonormal basis for R™

(iv) rows of @ when transposed are an orthonormal basis
for R™

Exercise: (i) (ii)y< (i) < (iv)

2 important orthogonal matrices for computation:

Norms (ways of measuring size)
for vectors:

1
n 2
1
z €R", x|z = (wa) = (zTz):
=1
or more generally ||z|l, = (X7, |=:i|?)
Special/luseful cases:||z||1 = Y |zi|, ||]lco = max; |z;]
All satisfy the axioms for a norm:
* llaz|| = laf||lz]l, «€R, zeR"
° ||zl >0and ||z|| =0 x =0

* |lz+yll <zl +llyll, triangle inequality
Exercise: check

Orthogonal Matrices and Norms:
If Q, Z orthogonal of appropriate dimensions
lQzll2 = llzll2, Vv

because ||Qz|2 = 2TQTQz = 2Tz = ||z||2

and so also
IQAZ||z = [|All2, VA
because
IQAZz|2 ||[AZz|2 [|A(Zz)|2 ||Ay]2 v = Za
= = = ,y =
|E21PY [E2]P |1 Z||2 lyll2

and take supremum over x.

Also ||QAZ|F = ||Allr (see exercises)

(a) Householder matrices (elementary reflections)

forw € R, w # 0 defined by

’ll)’lDT

H(w)=1-2 € R™x"

wTw

Note

e wTw € R: inner product
wwT € R™": outer product

* H(w) = H(w)" = H(w)™!
* Geometrically H (w)z is the reflection of z in the
hyperplane {y : wTy = 0}

Exercise: prove this

Norms for matrices: operator norm:

| Az ||,
|All, = sup = sup |Az,
zER™,x£0 ”m”p zER™,||z||=1

satisfies matrix norm axioms:

* lleAl = || All, a€eR, AeR™*"

* ||A]| > 0and ||A]| =0 < A =0 (a;; = 0forall i, 5)

* |A+ BJ| < ||A]| + ||B]|, triangle inequality for
matrices

Special cases:
[|All1 = max; Y, |a; ;| (max absolute column sum)

lAlloo = max; 3, |a;;| (max absolute row sum)

Basic/Important point:

orthogonal matrices do not change ‘size’ (in || - ||2 and

|| - [|r) so have good numerical properties in finite precisior
arithmetic

Also there are ‘nearness’ results like

S
A= o] |2 < [|A— B2
=1
for all B of rank s
lead to data compression.

The Golub-Reinsch bidiagonalisation algorithm is used to
compute the SVD: available in matlab (svd), but not
covered here

The Singular Value Decomposition (SVD)
Theorem: Given A € R™*™ there exist orthogonal matrice:
U = [u1,u2,...,um] € R™*™ (u; € R™ each i)

V = [v1,v2,...,05] € R™*™ (v; € R™ each)

such that
UTAV = % = diag(o1,02,...,0p),p = min{m, n}
with o4y > o2 > ... > op > 0 (the singular values).

{u;} are the left singular vectors,
{v;} are the right singular vectors

Properties of SVD:
ifo1>02>...>20,>0,0041=...=0p=0,then
e r=rank(A) = dim{Ay : y € R"} = dim(range(A))
® vpy1,...,0, € R™ are an orthonormal basis for ker(A
(=Null(A))
® uy,...,u, € R™ are an orthonormal basis for
range(A)

° ||All2 = o1

“ A3 = 0?4 oF + ... 402

Proof: Exercise except all basically follow from

A final comment:

For a symmetric matrix which is positive (semi-)definite, the
SVD is simply diagonalisation:

U = V and X is the diagonal matrix of the (non-negative)
eigenvalues:

A=UsUT or AU =Ux
That is, the columns, u; of U are the eigenvectors of A anc
Aui = o;u; = /\iui
For a symmetrix and indefinite matrix, the singular values
are the absolute values of the eigenvalues.

any z € R™ can be written as }_;- ; a;v; SO

n

Az = UsVIz =UxS (Z aiVTvi>
=1

0 0

n () n 0

= UX Z o =U Z o0y
=1 0 i=1 0
0 0

Curunuiry mmaucuvely 1or e steps 1 m > n yives

g *
H,...HH{A = = R € RMmXn
0 Qp
or for m — 1 steps if m < n gives
a1 *
H, 1...HH{A = = R € Rmxn
0 Qo

Writing
Q= (H,...HH,)"'=HIH...HT = H\H,...H,
as Householder matrices are symmetric gives

Theorem: Given any A € R™*™, 3 an orthogonal matrix
Q € R™*™ and an upper triangular matrix R € R™*" s.t.
A=QR
Proof: Just take H; = I if i*" column is already zero below
diannnal and the ahave nracediire can nnt hreak down
Example: given data y1, ..., ym at points z1,...,xm,
find parameters in a model e.g. linear model y = ax + b
(parameters a, b)
such that

S lyi — (ax; + b)]? is min (regression)

same as
z; 1 (21

min ! r2 1 al | Y2 i

a,b b : 2
Ty 1 Ym

QR Factorisation

Lemma: Given any two vectors u, v € R™ with
[lul]l2 = ||v]|2 Jw € R™ s.t. H(w)u =v .

Proof: take w = r(u — v), any r € R\ {0}, so

wlw = r2(uTu — 2vTu + vTv)
= 2r’(u"u — v"u) as [Jul| = ||v||
= 2r%(u — v)Tu = 2rwTu
80 wTu = (1/2r)wTw. Thus
2 T 2 wlw
(I—mww)u:u—m o rflu—v)=v O
In particular
v = (||lul|2,0,...,0) = H (v [u1 — ||ul|2,u2,...,un]) u.
| |
Remark: If A= | a1 as ... an
| I
and A = QR
I |
then Q = q1 g2 ... (gn
| |
and {q1, g2, --.,qn} is an orthonormal basis for
span{ai,az,...,ay} if this set is linearly independent.

= QR factorization essentially same as Gramm-Schmidt.

Exercise: What happens to QR if {a1,...,an—1} is linearl

independent with a,, € span{ai,...,an—1}?

QR Algorithm for eigenvalues (eig in matlab)
Set A = Ay

fork=1,2,... { factor Ar = QxR (QR factorisa

set Agy1 = ReQr (matrix multip

Lemma: { A} are all similar matrices and so have same
eigenvalues

Proof: Axt1 = RiQr = QEQrRiQr = Q' (Ar) Qx O
Fact: A;, — upper triangular matrix as k — oo.

So for large k, diag (Ag) are good approximations to the
eigenvalues.

When complex conjugate eigenvalues arise, 2 x 2 real
diagonal blocks remain in A which each have a pair of the
complex conjugate eigenvalues.

Can be applied to matrices:
if u is 1%t column of A: write H(w) = Hy,a = o

H A = and if H(w)B =
then
1 0 N
satisfies
al | X | X. X
0 |ag | X...X
HyH A = 0|0
: C
0 0
Notes:

1. Speed of convergence depends on the size of gaps
between the eigenvalues: more well separated =
faster convergence.

2. Convergence is accelerated by the use of shifts (see
problem sheet)

3. An orthogonal similarity reduction to Hessenberg form

is always employed as a 1°¢ step before apply the QR
algorithm with shifts.

Reduction to Hessenberg form

Want a similarity transform H,, ... HoHAHH> ... Hy,
where H; are Householder matrices but if

then Hy AH; is full i.e. postmultiplication destroys zeros
created (otherwise a direct method for eigenvalues!)

If store multiplier I;; used to zero a;; as i, j entry of a unit
lower triangular matrix L then

. . Ly =0b forward subs.
A=LU with { Uz =y back subs.

solves Az = b.
Note: For many b’s need only 1 LU factorization.
Recall a;; # 0 necessary for Gauss Elimination so fails on

e.g. { (1] (1) } which is non-singular.

ai v{ 1 0 i a v{Kl
K1u1 KlBl 0 Kl - K1u1 K1B1K1

and choosing K to be a Householder matrix satisfying

Kiu; = (a1,0,...,0)T we have
aj b1 ﬁg 1
A® = HiAH, = | ay ay of 1
(0 u2 B2 n—2
1 1n—2

Direct Methods for linear systems Ax = b
basic point: easy to solve triangular systems

0 X X an—-1,n—1Lpn—-1 = bp—1 — QAp—1,nTn
0 0 x | <« solveannzn = by then

back substitution: takes ~ n? operations. Need a;; # 0.
Similar lower triangular (15t equation, then 274 etc):
forward substitution.

So could solve Az = b by

_ Qy=>b =y=Q"
A=QR and { Rz =y back subs. asR upper triang

But % the number of operations (and other advantages e.g.
for sparse) to perform LU factorisation: based on Gauss
elimination (successively create zeros below diagonal by

Pivoting:
Row interchanges: often expressed as PA = LU, P
permutation.

Partial pivoting: when zeroing subdiagonal of pt* column
find max |a;p| = |m|, i =p,p+1,...,n;

m becomes pivot

swap row p with row which gives this max.

Fails if and only if A singular as
app =0,m=0= detA=0

inductively (similar to before)
A=Y — [o HyH,AH Hs...Hp_o
is in Hessenberg form
QR factorization can now be achieved by n — 1 Givens
rotation matrices (see problem sheet) and the Hessenberg

form is preserved by the QR algorithm ie. all of the Ay’s art
upper Hessenberg.

Gauss Elimination:

forcolumnsj =1,...,n—1
forrowsi=3+1,...,n
calculate multiplier I;; = (a;j/aj;), (aj; is the piv
rOW i «— row ¢ — l;; % row j (*)
end i
end j

(x)fork=j5+1,...,n
air —— i — lijagy
end k
bi «— b; — Lijb;

reduces to upper triangular matrix U without changing
solution in ~ %n3 operations.

Rark ciihetitiitinn — enliitinn
Special forms

e A Symmetric positive definite: A = LLT, L lower
triangular, Cholesky factorisation.

e A Symmetric Indefinite: A = LDLT, L lower
triangular, D block diagonal, 1 x 1 and 2 x 2 blocks:
Bunch - Parlett, Bunch - Kaufmann factorizations.

e A Banded: eliminate only in band, ~ %nb2 operations

for LU
(NB pivoting generally destroys bandedness)

e A Sparse: good software e.g. HSL or \ for sparse in
matlab.

lll-conditioning

Proposition: If Az =b (1) and A(x + éz) = b+ b (2)
then

|6 _1,(/190l
< [lAjA=
llzll loll

Proof: A=1((2) — (1)) = 6z = A~16b

so [|dz|| = AT db|| < [|ATH]|00]|
also ||b]| = [[Az|| < [[A[lllz]
1 Al
r— < L1
[l lloll
l| 6| _1, 160l
SO < llAjA 1IIT
(Ed] llol|
T T T
Forxz, =k +1,
expected accuracy
n=4 k=2-6x10% 12decimal places
n=8 k=4-2x 10" 6 decimal places
n=12 Kk =4-2 x 107 0decimal places
n=16 x=1-9 X 10%® no hope of accurate solution

but can reformulate the interpolation problem in many ways
e.g. use a better basis for Ty than {1, z,z2,...,2N}.

In fact for this problem there are reliable and faster (O(N?2)
methods (GVL p183 Vandermonde)

Also if A is perturbated to A + § A then

x /A
0 ay oA
llz + || Al
(Exercise: Show this)
These results identify « = || A||||A~!]|| (the ‘condition
number’ for solution of linear systems) as a measure of
ill-conditioning.

Usually necessary if large « to reformulate problem
because:

Gauss elimination finds Z such that r = b — Az is small
(not exactly x s.t. Az = b) on a computer.

For many A, » small = e = = — % is small but not when
is large as indicated by the above results.

Example: Interpolation: Given N and data f(x;) at distinct
points z;,7 = 0,1,..., N, find polynomial
p(x) = ZZ:O apx® € II, such that

p(x:) = fxs).

This can be written as: solve

1 =z :c§ xg ag f(zo)
1z of xy a f(z1)
1 zp x5 Ty az | = | f(=z2)
L on 2?2 oo an | | a £ (@n)

Iterative solution methods for Az = »
idea: split A = M — N, so easy to solve systems with M,
then iterate:

Guess z©@
solve Mz®) = Nz* -1 4 p for k=1,2,..

basic point: if {x(*)} converges (to x, say) then
Mx=Nz+b, ie. Ax=0b>

ie. it converges to the solution.

lterative solution methods for Az = b, A € Rx"

idea: split A = M — N, so easy to solve systems with M,
then iterate:

Guess z©@
solve Mz®) = Nz*-1 4 b for k=1,2,..

basic point: if {«(*)} converges (to x, say) then
Mx=Nz+b, ie. Az =0»

ie. it converges to the solution.

Jacobi’s method: ar = diag(4), (N =4 — M)
In practice: componentwise
for iterates k = 1, 2, ...

for rows (equations) i =1,...,n
k 1 < k
wi) =—|- Z ai,jwl(- - + b;
i\ =t
endo
endo

better ? use most recently updated value of x;

Symmetry sometimes useful to preserve, so if A symmetric
(<:> U = LT):
Symmetric SOR (SSOR)
(D + wL)w(k_%) = wb+ [(1 —w)D — wU] z*~Y
(D4 wU)z® = wb+[(1—w)D —wL]z®32)

corresponds to M = (D + wL)D~Y(D + wU) which is
symmetric.

Important point: if A sparse then these methods only need
use the non-zero entries of A e.g.

1—1
Z aij:c;k) becomes Z aijm§k)
J=1 {i<i:ai;#0}

IV ILUT AU IV —— g g e e e

forrowsi=1,...,n

1 i—1 n \
k k k—1
o) = — | =Y a2l — Y aigal TV + b
@ii \ 4 j=it1)
endo
endo
This is Gauss-Seidel iteration: rearranging
K3 n
k k—
Doyl == 3wy v
j=1 j=i+1

which is (L + D)z® = —Uz®*-1 1 p

when D = diag(A), L = strict lower triangular of A, U =
strict upper triangular of A
i.e. Solve Mz®) = Nz(*=1) 1 p,

R T N R S

Convergence of simple iterations:

M=L+Dis

Mz® = Nz®*-D 4y
and Az =b= Mz = Nz-+b
so M(z —z®) = N(z—a*)
z—z® = M~ IN(z — m(k—l))
= (M 'N)*x — z©)

(A=M-N)

M~1N is called the iteration matrix

So ||z — ") || — 0 at least if

IALINYF e — 2@ < IMTINJE Sz — 2@
N—— N———
T unknown error in initial gue

—0if[M™IN| <1

this is a sufficient condition for convergence.
not diagonalisable, it is triangularisable
i.e. 3 triangular matrix T with M 1N = QT QT for some
orthogonal matrix @ (Schur decomposition).
More useful for our purpose here (only!) is the existence of
a Jordan canonical form:

Ji o
MIN=XJXx"1J= .

(0] Jp

where J; € R™*™ and }_,_; ., mn;=nwith

better still ? take Gauss-Seidel z(*) iterate and average
with (k=1

i—1 n
® o (b =S asz® — 5 aa® D | L 4 (1—w)z®
x; w (i j;a”m] Z a;jT;) o +(1-w)x;

j=i+1

exactly as in Gauss-Seidel

w € R relaxation parameter

w < 1 gives underelaxation
w =1 Gauss-Seidel

w > 1 overelaxation

cautious & slow

= Successive Overelaxa
Method (SOR)

By rearranging as for Gauss-Seidel: matrix form

(D + wlz® = wb + (1 — w)D — wUl £*1

Notation
p(A) = max {|\| : X an eigenvalue of A}
the spectral radius

Theorem

If M—1N is diagonalisable, then ||z — z®)|| — 0 as
k — oo for any initial guess x(® if and only if
p(M7IN) <1

Thus (M~IN)* = (XJX~1)* = XJ*X~! and, as
k — oo

MINY 50 I 50 JF >0 all .

That is, we obtain convergence if and only if for every
Jordan block, its powers tend to zero as k — oco.

First consider if A; = 0, then write J; = J € R**? and

01 001
0 1 00 1

<)
Il

[
Il

and generally the diagonal of 1’'s moves up toward the top

~
rinht far aarh eciirracivia nnwiar Thiie T — n

INUW CUlIsIUEel WIIgHT A; & U. WE [lave

N\ k
gEo= ()

k
= (’;) J" AP since I,J commute
r=0
ez
k\ o \k—
=) < ., > JTNTT
r=0
— 0 ask — ocosince \F" -0
if and only if |[A;] < 1 each s.
Thus (M~IN)* — 0as k — oo < || < 1 each 4, henct
convergence since — z*) = (M1N)¥(z — ().

Note the powers of J can grow considerably before
eventual convergence.

Practical Example

2
Qujg — i1k — Uj—1k — Uik+1 — Ujk—1 = B ik

forj,k =1,...,n With ug g, Uny1,k, Uj0, Ujnt1 iven.

UL TUUGII Y\ LU DI sa T

n
u— 2(2) — (M_lN)i(y _ 2(0)) — Z aT’S(AT,S)iyr,s
r,s=1
we see that A™* small = error component in v™* reduces
very quickly to zero, so u — u(® is quickly dominated by
components v™* for which |A™*| ~ 1.

More interesting for our purpose: relaxed Jacobi: for
0Ax =60b,0 cRt, M =D, N=(1-6)D—-0(L+U

= M IN=01-60)I-6D"YL+U)
has eigenvalues 1 — 0 + g(cos rmh + cos swh)

so e.g. for & = 1, eigenvalues
% + %(cos rmwh + cos swh) € (0,1)

AND high frequency eigenvectors (r, s large) correspond tc

2
dujp — Wjp1k — Uj—1k — Ujk+1 — Wjik—1 = h"fj

for sk=1,...,n with UQ,ky Un+1,ks Uj,05 Wjn+1 given.

eg.Jacobi iteration for this problem is: guess «(®)

for iterates i = 1, 2,...
forj=1,...,n
fork=1,...,n

NON. 1r (-1 (i—-1) (i—-1)

(i-1) 2p.
28 il 0 NEW el HW) WU T o O e L

endo
endo
endo

Proposition forr,s = 1,...,n

1
AT = §(cos rmwh + cos swh)
is an eigenvalue of the Jacobi iteration matrix for A with

eigenvector v™* having entries

v;’s = sinrjmwh sin skmwh

Proof direct calculation: see exercises

Remark shows Jacobi iteration converges as
—1 < A\"*® < 1 for each r, s but

2h2

1
p(Jacobi) = i(cos mwh+coswh) = cosmh = 1— +O(

2

so verv close to 1 for small h = slow converaence.
Idea of a ‘smoother’ leads to Multigrid

L 1 I
1 [[
1 | |

- T 17
I I I
[[[

-+ -Fd-
| | |
T T T

- L L.
| [[

guess u?

on fine grid smooth (i.e. for 3 relaxed Jacobi iteration)
uO — us

u — u® = e® smoother than u — u® = e°

Ae® = Au — Au® = b — Au® = r° (residual)
same as original problem, but e® smoother = solve on
coarser grid i.e. use a coarse grid representation A of A

and solve Ae® = 7 where &°,7° are coarse grid

emmdllollo oo _f @ Q@ emmm mman ol

So need grid transfer operators:
Restriction: fine — coarse

Prolongation: coarse — fine

Basic point:
if « = Pz T ‘short’

or £ = Rz x ‘long’
then little loss of accuracy if and only if x is a ‘smooth
vector’ i.e. a vector of coefficients representing a
non-oscillatory function.
Coarse grid operator: A : 2 possibilities:
(i) 5 point formula on 2h mesh

(i) A= RAP = aPTAP
(Galerkin coarse grid operator)

Note also for the residual using (x) and (4) we have

b— Au® = A(u — u®) = A(M~IN)?(u — u©®).

So 2-grid iterate is

u® + PAT'R(b— Au®)
= u® 4+ PA'R A (MIN)2(u — u®)

so that the error after a single 2-grid iteration is

u—u® - PA 'R A (M IN)?(u—u®)

= (A1 —PA'R) A (M N)2(u — u®)

Prolongation:

g

4 5 6

o)

1
T2
3

x
1 T4

T3
7

T
s 6

7
Ty
9

O O O O RIFENFONF =
N ONRR-E © O O O

- O O ONFRAFE O HNHO
hU ONHH O RHENIFRFO O O

2-grid algorithm:

Choose ug
for two — grid iterations ¢ = 0 until convergence do
(pre—)smooth : u; — u®
calculate residual : r° = b — Au®
restrict residual : r® — 7° (7° = Rr®)
solve A€ =7 to get coarse grid correction
prolong : € — e° (e® = Pe®)
update : u;j41 +— u® + €°
(sometimes) post — smooth : w11 — Uiy
enddo

Note:
Uipq — u’ + PZ_IR(b — Au?)

In general the 5" 2-grid iteration (for iterate u; with
w(® = ug) is

uj = [(M'N)?uj_1+ T+ M 'N)M~'b] +
PA'R(b— A[(M'N)?u; 1+ (I + M~'N)M~!
and the error e; = u — u; therefore satisfies
ej=(A"'—PA 'R) A(M"'N)%,_,

or in general if v pre-smoothing steps and p post-smooting
steps are used

ej = (M 'N)*(A™' — PA 'R) A (M~'N)"e;_,

Restriction:

normally R = aPT where o € R is such that
aPTPe = RPe =e

e being the vector of all ones

eg. a = 3 for the P above.

If smoother is based on a splitting A = M — N then the
iteration matrix is M 1N and we have eg. for 2 smoothing
steps (so0 u® = u?)

u® = (M'N)u® + M~
u?® = (M N)u® + M~
(M™'N)?2u©® 4+ (I + M'N)M~'b ()

but also the exact solution satisfies
u=(M"1N)u+ M b
u=M''N2u+{T+MNM 1 (+)
so (+) — (x) gives

uw—u® = (M IN)?(u—u®).

ej = (M IN)*(A™' — PA 'R) A (M~'N)"e;_,

Convergence depends on
e Smoothing (as above)

e Approximation: R and P must sufficiently accurately
reproduce smooth vectors and A sufficiently accurately
represent A

Approximation Property: rough sketch (depends on finite
difference error)

A~'b + mesh solution on mesh h < up,
PA 'Rb < mesh solution on mesh 2h « Uap

— ——1
S0 |[(A™1 — PA" "R)b||a ~ |up — uan| ~ ||b|]| any b.
Smoothing Property: we prove only for relaxed Jacobi :

7]
M™IN=(1-6I-0D"Y(L4+U)=I—-0D"'A = I+
as D = 41 for 5 point formula.

Theorem: if the eigenvalues of M !N lie in [—a, 1] with
0 < o < 1 being independent of n, then the smoothing
property holds.

(Recall: 0 = ; = eigenvalues of M 1N € (0,1).)
Notes:

e Can be extended to Multigrid by replacing the coarse
grid solve Ae® = 7* recursively by a 2-grid iteration:
just apply Gauss Elimination when very small
dimensional coarse space. n-independent convergenct
is preserved.

e Other smoothers,prolongation and restriction operators
and more general problems can be analysed in a
similar way.

e Work per iteration depends linearly on problem size
(n2). Number of iterations for convergence independen
of n = optimal solver (ie. O(IN) work to solve an
N x N linear system.

(cf. O(IN3) for Gauss Elimination).

In mathematical terms: we use the regular Euclidean norm
|- || and || - || 4 defined by ||z||% = =T Az which is a norm
when A is symmetric and positive definite, and establish

e the Smoothing Property: for all y
A (MTIN) "yl < n(v) llylla
with nn(v) — 0 as v — oo being independent of n

(n =dimension of A)

e the Approximation Property: for all y, there exists C
independent of n with

_ ——1
(A~ — PA" R)ylla < Cllyll-

Immediately we have

FIOUL IEL {21, -+ + y Zn } WE UIE UILIVIUITTIAI EIYETIVEULUI
basis of I — (8/4)Aand y = 5 ¢;2;,
(I —(0/4)A)z; = X\;jz;. Then Az; = (4/0)(1 — X\;)z; SO

AMTINYy = (4/0) > cidf (1 —)z,
and JA(MTIN)Yy|? = (16/6%) > cIAZ(1 — \)?
as ZiTZj = 5,"]'. Now Ai = [—0’, 1] =)\?"(1 -)\1) is

maximal either at the stationary point \; = 2v/(2v + 1) or
when \; = —o so that

11
max _A?(1 — ;) < max {— o1+ 0')}
Ai€[—0,1] 2V e

since Y vt _ ! < !
20+1) 2041 20 (14+1/20)2v+1 — 20

and (1 4+ 1/20)2711 \ e(= 2.718...) as v — oco.

1
€

Theorem: if the Smoothing and Approximation properties
hold then 2-grid iteration with no post-smoothing converges
at a rate independent of n.

Proof:

_ ——1 _ v
(A~ —PA'R) A(M™'N)"ej_illa
CllA (M™'N)"ej||
Cn(v)
——"

—0 aS v—oo

llell
(Approx. Property)

<
< (Smoothing Property’

llej—1lla
so 3 a number of smoothing steps v independent of n with
llejlla < vllej-1lla

withy < 1.0

Thus
|A(M~IN)y||?

4 1 4 4
< max{e—eg,aazu(l—i—a)}Zcfa(l—)\i)

ed2v’ 0

n(v)—0 aAS v—oo

4 1 4
max{—— 42 +a)} lyll%

Polynomial lterative Methods

Simple iteration

z® = (M'N)z®*V4+b, b=M"Tp
and z = (M'N)z+b
=z — z® (M~ N)(z — z®-1)
sz—z® = (M 'N)F@-—2@) = 5%z —z®)

if S=M"1N.ie.

z—z® =p(S)(x —2V) =S¥ (@ —2) , pr(z) ==

If S is symmetric we can say more
(since S orthogonaly diagonalisable)

=8 = vAUT, vUuT =1
T diag Matrix of eigenvalues

= §?2 = UAUTUAUT = UA?UT,...,S* = UA*UT

= p(S) = Up(A)UT any polynomial p

= [p(S)ll2 = [Up(A)UT |2 = |Ip(A)|l2
p(A1) o
_ H p(A2)
- 2
(0] p()‘n)
= max |p(\)]

Chebyshev polynomials are defined on [—1, 1] by Ty (¢) =
andform =1,2,... by

2Tl_lcosrrLB 0L
wheret =cos —-1<t<1
Tm(t) = %cosh mo
wheret = coshf t>1
(=1)"Tm(-1) t< -1
To=1, T =t,
1 1 1
Ty = —cos 20 = —(2cos?0 —1) =2 — =,
2 2 2

So for polynomial iteration z — y*) = p(S)(x — =°)

lz—y®llz <llpk(S)llzllz—2@ |2 = max |pe(X)] lz—2
(2

So desire p;, € I is small at eigenvalues with py (1) = 1.

Notes:

e if \; = 1 forsome ¢
= Sv; = v; & Mv; = Nv; & Av; = 0ie. A singular

e If only k distinct eigenvalues of S: choose py, to have
these as roots.

For such apg, ||z —y®)]|2 =0 i.e. termination after
k steps!

In general since

cos(m+1)6 = cosm0 cos — sinm0sin 6
cos(m —1)0 = cosm®8 cos6 + sinm0sin 6
we have

cos(m + 1) 0 4 cos(m — 1) 0 = 2 cos m# cos 0

ie. 2MT, 1 (t) + 2™ 2T, _1(t) = 2- 2™ 1T, (¢)t
or

Tm+1(t):tTm(t)—3 m—l(t) 5 m:2,3,... (*)

)
1 1 3

T3t =ttt —2) -t =3 —=t, efc.
3() (2) 4 4)

Now if
n
R S
=1
n n
z—y® = Z a;pr(S)v; = Zaipk()‘i)vi
=1 i=1

Idea: « — y*) should be small if py(A;) is small

Candidates for {px} ? : Chebyshev polynomials

Suppose A;(S) € [a,b] , 1 ¢ [a,b] then

|z —y®]2 < max |pe(Xi)lllz — MO

(]

< max |pe(@®)llz — 2@z

t € [a,b]
and the polynomials which

minimise max Ip(t)]
p €k, p(1)=1 t € a,b]

are shifted and scaled Chebyshev polynomials

If X;(S) € [a,b],1 ¢ [a, b], need to shift using linear map

[a,b] — [-1,1] : t=2-ab
€ €
T t

> Bun) =100 I 2T A0

satisfies T}, (1) = 1 and minimises

max |p(r)|
r € [a,b]

over all polynomials of degree < k.

Using p = T} is called the
Chebyshev semi-iterative method.

Remarks:

1. need estimates a ~ Amin(S) and b R Amax(S) in
order to construct T}’s on a reasonable interval
2. can use the 3-term recurrance (x) to make the

algorithm more efficient than using the coefficients ﬁék)
of the polynomials T} (=) explicitly (see exercise)

3. Convergence: we have

|z —y® |2 < max |Tj(r)|||z — =@
r € [a,b]

if \; € [a,b], 1 ¢ [a,b]

Krylov Subspace Methods
AcR"™™ rcR"
If A sparse or specially structured, so easy to compute
Ar, A(Ar),...
ie. r, Ar, A%r, ...
are easy to compute, then Krylov subspaces
Kr(A,r) = span {r, Ar,..., Akl
are convenient nested vector subspaces (exercise: check).

Note Yy € Ki(A,7r) & y = gqp—1(A)r0
where g _1 € TI;_; (real polynomials of degree < k — 1.)

First step is however to compute a good basis for K, (A, o
since A¥rq tends to point in a single direction:

If rg = Zaizi,Azi = X;z; and if [A\q] > |)\j|,j # 1then

n n
AFpy = E a,'Akzi:E ai)\fzi
=1 =1

)\’f a1z + Z a; <i> Zi
i=2 A1
—0 aS k—oo

Note also || A¥rg|| — 0 or co depending on whether
[A1] < lor|x|>1

max |Ti(r)| = |Tk(a)| = |Tk(d)]
r € [a,b]
| Tk(1)]
Tk (35252)]

as max error always attained at end points.

1 SUIVIIIQ AL = 0, \A Imivern LIUIG), gut:s::’ Lo, o — 0 — AXQ,
then look for

zr € xo + Ki(A,r9) ,7=b— Az, k=1,2,...
xp € xo+ Kr(A, 7o)
N xi, = o+ qr—1(A)ro
= r—xr = x—xo— qr—1(A)70

& A(x—x) = A(x— o) —Agr—1(A)ro

b— Az To

Tk

i.e. TR = pk(A)'f'O , P € Il ,pk(O) =1

S A = AVA rn i pr =l Aen.pr. = > — a

Arnoldi’s method.-

guess xg , 79 = b— Axg ,V1 = 'I’()/H'I’()“z

forl =1,2,...
w = Ay
forj=1,...,1
hj :vjrw
w=w — hjlvj
end
hiy1p = |lw2

vip1 = w/hypq
end

is a way of generating an orthonormal basis
{v1,v2,..., 0%} for IC, (A, r9)

Krylov Subspace Methods

Most common Krylov subspace methods are characterised
by

rp = pr(A)ro Pk € Iy ,pr(0) =1
AND some optimality condition

e.g. ||rk||2 should be minimal over i, € x¢ + K (A, r0)-

Ki(A, 1) = span {rg, Arg,..., A¥ " 1rg}

In matrix form we can write Arnoldi as

|| | N
AV =ViHp +hpy1| 0 0 Vg1 | = Vi1 Hi
[|
where o |
Ve=1|v1 v2 -+ v |, hasorthogonal columns,
[|
hll h12 hlk
ho1 ha2 +++ +++ hog
Hp = 0 hs2 € RFXE
0 - 0 hgg-1 h

is upbber Hessenbera

|lr |2 is minimal <> y € R¥ is such that ||rg — AViy||2 is
minimal.

But ro = ||rollv1 = (7ol Vier = [|7ol| Vit+1e1,
el =[1,0,...,0]

and by above AV, = Vi1 Hj, so

lI7kll2 is min < || Vig1(llroller — I?Iky)H2 is min

but Vkr‘q_leJrl =1I¢€ R(k+1)x(k+1) as {'Ul, e ,vk+1}

are orthonormal

so required vector y is that which minimises the linear leas

squares problem
liroller — Hiyyll,

As before the Hessenberg least squares problem is solved
by QR factorisation of Hj, using k + 1 Givens rotations, bu
since Hj, is the same as Hj,_, except for one additional
row and column this can be implemented as only 1 Givens
rotation for each k. (see exercises)

Notes:

1. ||rk||2 is the linear least squares error in the
Hessenberg least squares problem.

2. zj, only needs to be calculated if ||| satisfies the
stopping criterion ||rg|| < TOL.

3. work at k" GMRES iteration is O(k?) for the least
squares solution + 1 matrix vector product + vector
operations. So for a sparse matrix with O(1) entries pe
row work ~ O(k?n) = cheap method if only relatively
few iterations (k) are needed.

[hi11 hiz --- hir]
T o
and Hy, = (_) hsz : € R*+L
0 --- 0 hpr—1 hg
L o --- 0 0 hpy1k]
_ Hi, (k+1)xk
= L0 - 0 0 hppg €R

Note: Vi, € R™** has orthogonal columns
= VIV, =T1eR*s0

|| |
AV, = Vka+hk+17k o0 - Vg1 | = V;CTAV]Q =
| |

Required vector y is that which minimises the linear least
squares problem

[lroller — Hiyll,

= need QR factorisation of the rectangular Hessenberg
matrix Hj, € RF+1xk

which can be achieved by one additional Givens rotation fo
each k since Hj, is built up by appending the last column
for each k.

(see Exercises)

Notes (continued);

4. GMRES gets expensive in storage of v ... v and the
orthogonalisation computation if k£ gets too large, so
sometimes is restarted: do a fixed number I of GMRES
iterations then reset ¢ +— r; and repeat. This is
GMRES (1) (which is not guaranteed to work!).
Unrestarted GMRES is often called FULL GMRES.

5. If A € R™*"™ then if GMRES does not stop before n
steps, {v1,...,v,} is an orthonormal basis for R™
= x, = x because ||rg||2 is minimimal for
z € To + Kn(A4, 7o) ie. for x; € R™.

6. Also if continues for n steps AV,, = V,,H,, ie.
A=V,H, VT, K6 V,, H, € R"" So A has been
reduced by orthogonal similarity transform to
Hessenberg form.

Now
T, € xo + Ki(A,10) & xp = o + Vioy

for some y € R* since {v; ...v,} is an orthonormal basis
for ICk (A, ro). Also

r =x0 + Voy & T—x) = T— 20— Viy

A(x —xr) = Az —x9) — AViy
i.e. re = 1o — AWy

80 ||7k||2 is minimal < y € R¥ is such that ||rg — AViy|2 i

minimal.

This is the basis of the GMRES algorithm
(Generalised Minimal Residual Method)

o 4, To = b — AZB(), V1 = ’I‘()/“’l"()”
Fork=1,2,...
do step k of the Arnoldi algorithm

= have vy,vs...v541 and H,,
() + N .,)
new last column new

solve the Hessenberg linear least squares problem
y = argmin ||||lrollex — Hryl|,
Tr = xo + Viy

end

Convergence of GMRES

T = pr(A)re with ||| minimal

= GMRES implicitly finds ps, € I} , pr(0) = 1 such that
l|lpr(A)rol|2 is minimal.

If A is diagonalisable

A=XAX"'= pp(A) = Xp(A) X!

A=XAX"'= pi(A) = Xpp(A) X!
implies

Irkllz2 = llpe(A)rollz = | Xpr(A) X rol|

< min IX N2l X 2 llp(A)ll2 lIroll

p € i, p(0) =1
or similar to before

& ll2

rolla = X N2l X)2 min max [p(X;
Tollz pEllp(0)=1 A

eigenvalues of A

Lemma Conjugate Gradient Algorithm
choose xg, 7o = b — Axg = pgandfork =0,1,2,...

ar = pjre/PiApk
Tk+1 = Tk + arPr
Tey1 = b— Azpq

Br = —p} Arei1/pi Apy
Pk+1 = Thk+1 + BkPk

computes iterates {xy}, corresponding residuals {r} and
search directions {px} so that as long as xz;, # = we have
rgpj = 7{7']' =0,j<k (1)
PrAp; = 0 ,j <k , (pyAp; #0) (2
span{ro,r1,...,7k—1} = span{po,p1,-...,Pr—1}

Comments:

1. || X]|2]|X ~1|l2 = w(X) is a number independent of &: i
itis large = (%) is not very useful convergence
estimate. If it is of moderate size (not known in
practice!) then fast convergence if 3p € I, , p(0) =1
such that p(X;) small for all eigenvalues A; of A.

2. Other GMRES convergence bounds exist, but so far
non is descriptive over a range of problems.

3. the expense of GMRES for k large has led to
development of algorithms for non-symmetric matrices
with fixed work per iteration, but these necessarily mus
loose any optimality property in general.

However: If A = AT then GMRES has fixed work per step:
To see this we have

VI AV, = Hy,

but A = AT so LHS is symmetric = H, is symmetric and
Hessenberg = tridiagonal

i.e. Arnoldi’s algorithm would calculate lots of zeros in this
casel!

In fact the symmetric Lanczos algorithm is used:

It A = AT is positive definite, there is an even more
efficient Krylov subspace method than MINRES, namely
the method of Conjugate Gradients (for Az = b) which
computes x € xo + Kr(A, 7o) such that ||z — x|l 4 is
minimal where yT Ay = ||y||3.

Note || - || 4 defines a norm when A is symmetric and
positive definite, indeed < z,y>4 = < Az,y> = yT Az
defines a scalar product (inner product) for which
<y,y>a = |ly||4 in this case.

It is now an easy induction using x = 1 + akx_1PK_1 1
show that x, € ¢ + K (A, 7o) (exercise)
and also

Theorem

lz — zklla < llz —ylla 5, y € xo+ Kr(A,70)

Proof

letec=x —xzpand ¢ =z, — o € Kr(A,70)
then Ac=rpandx —xzp, = c — ¢,

hence rp, = A(x — zg) = A(c — cg).

Now by the above 7, is orthogonal to every vector in
K.:k(A, 7‘0) i,e.Vov € Kk(A, ’I’())

0= (rg,v) = (A(c — ck),v) = (c — ck, V) A

and such (Galerkin) orthogonality = ||c¢ — y|| 4 is minimise
fory € Kk (A, o) When y = ¢

= ||z — z|| 4 is minimised for z € x¢ + K (A, ro) by
z = x Since ¢ = x — xg and x, = g + ci.

So

min max t)| =
pEIl;,pe=1 te(a,b] |p()|

Vb +va Vb —+a
Vb — v/a k_ VE—1 k
= 2<\/E+¢a> _2<\/E+1>

when b = Amax(A4), a = Ayin(4) and & = g=={4)
r the || - ||2 condition number again.

Convergence of Conjugate Gradients

we have r,, = pr(A)rg or equivalently

(x — zx) = pr(A)(x — o), pr. € Ik, pr(0) = 1 and

||z — zk||a = ||7k]| a—2 Minimal over xy, € xo + Ki (A, r0)
for each k.

Let Av; = Ajvu;, j=1,...,n, vjrvi = d;; and

T —xo =) 5 ajv; then
n

n
r — T = Z ajpk(A)vj = Z Otjpk(Aj)’Uj
j=1 j=1

n
SO (T — T, T — Tpha = Z a?pk()\j)z(vj,vj)A
=1
. T _ T _ _ . . .
since v v; = 0;5 = v Av; = X605 =0 ifi £ 3

— < i ; —
hence [lz — axlla < _min max|p(A)| [lz — zolla

Convergence bound for Conjugate Gradients:

|z — @kl a

min max [p(\;
7 wolla = periiil, [p(A5)]

If A\; € [a,b],a > 0 for all j then

lz — z|la .
— < in max_|p(t)|
||z — xo||a — peMi,p(0)=l te[a,b]

and the minimum here is achieved by the shifted and scale:
Chebyshev polynomial

=

similarly to before (but note different normalisation).

|z — zklla .
cGg: ————— min max |p(X\;
lo—aolla = periiiy=r M5 POV
k
< 9 vE—1 _ Amax(A)
= VeE+1) ' " Amin(A4)

For fast convergence:

Now for
2t —b—a
tE[a,b] 7ﬁ€[—1,1]
SO
| b+a
max |p(t)| = p(b) = —2——— ,cosh@ =
t € la,b sr—1 cosh k6 —a

Note:e? + e % = 2 (21‘—2) = (69)2 -2 (a—"'b> (eB) +1=

o__[(Yb-va —Vb-va
o= (Frve) o« ()

lz — ®klla

CG: min max |p(A\;
[lz — o]l a pEML,p(0)=1 j Ip(])l
k
< 9 VvVE—1 _ Amax(A)
- \/E +1 ’ Amln(A)

For fast convergence:
o few distinct eigenvalues

e cluster eigenvalues

e reduce

lz — zxlla

CG: min max [p(\;
Iz —aolla = peroptym 5 PO
k
vVE—1 Amax(A)
< 20X =), k="
\/E'i‘ 1)\min(A)
For fast convergence:
e few distinct eigenvalues \
e cluster eigenvalues
e reduce k "
D /\
o2 2ulla < min maxp(y)]
[l — zol| 4 p€lk,p(0)=1 j
< i t
S pertrmio iy PO
k
9 VvE—1
- VvVE+1

Hence Conjugate Gradients guaranteed to converge fast if
(i) A has few distant eigenvalues (or few clusters)
(ii) kissmall,e.g.ifk =9

[l — x|l 4 <2<3—1>k_ 2
|z —xolla = \3+1) 2k

error halvina at each iteration.

The preconditioned Conjugate Gradient method requires
the solution for z;, given rj, of

sz =Tk

at each iteration = the (contradictory) requirements:
e k(P71A) << Kk(A)
e Pz, = r, easy to solve

= fast convergence

(1) P = A = convergence in 1 iteration, but solution of
linear system with A at that iteration!

(2) P = I = unpreconditioned CG

(2)leads to simple ideas like P = diag(A) or
P = tridiag(A) or even P =part of A with bandwidth b
= O(nb?) work for Pz = r solve by banded elimination.

(1\laade tn rAncidaratinn nf annrnvimata nr incAnmnlata

lz — zklla .
cG: ———— min max |p(\;
|z —zolla ~ pelipO=1 j IP(A)]
,(VE-1 * Amax(A)
, K= ——.
- VvVE+1 Amin(A)

For fast convergence:

e few distinct eigenvalues \
e cluster eigenvalues

e reduce k

BUT A, b given not chosen! So how can fast convergence
be achieved for Az = b when none of (i), (ii) are true?

Preconditioning: choose symmetric positive definite
matrix P and for the mathematical analysis only (not for the
algorithm - see exercises) let P = HHT for example be a
Cholesky factorisation. Solve

(H'AH TY(HTz) =H ' (%)
~—

symmetric

by Conjugate Gradients.

Incomplete Cholesky(0) factorization:

fori=1,2,...n
m = min{k : a; # 0}
forg=m,...,t1 —1
if a;; #0
i—1
lig — (@i — hsh lialin) /lig
endif
enddo
1
1 1
li; = (ai,i — > h=m li,kli,k)
enddo

|z — =xlla

CG : min max |p(\;
o —olla = peraty—y 5P
k
< o VE—1 _ Amax(A)
= VE+1) "’ Amin(A)

For fast convergence:

e few distinct eigenvalues

"

e cluster eigenvalues

08

e reduce k 0s

It computes iterates {x} for (x) and hence for Az = b
such that

lo —aulla _, <¢E— 1)’“
le —aolla = " \VE+1

where

Amax(H TAH™T)

Amin(H-1AH-T)

Amax(P~A)

Amin(P~1A)

because of the similarity transformation
H TH'AH T)HT = P71 A.

This CG method with preconditioner P is called the

DrAananAditinnad NAanitinata MNradiant mathAA

Incomplete Cholesky(0) factorization computes entries of a
lower triangular matrix L such that LLT = A 4+ R where

sparsity pattern of L =sparsity pattern of lower triangle of A
R is the remainder.

Effect of preconditioning in this case: replace Az = b by
L7'ALT(Lx) =L

andnote L~'AL~T =T — L-*RL~7T soif R small can
expect eigenvalues of L= AL~ to be clustered around 1.
Note: solve Pz = r is solve LLTz = r is easily achieve

by forwards and back substitution.

Preconditioning can also be applied with GMRES and
MINRES: for GMRES no symmetry to preserve so just
solveeg. P~1Ax = P~ 1b.

In the algorithm just replace Axvector multiplies by
s=P 1Az

z = Av, solve Ps=z =

o , rO:b—AwO:poandfork:0,1,2,...

ar = pir/piApk
Tk+1 = Tk + OkPk
Tet1 = b— Azxpi1(= 7 — apApr)

B = —ppAriy1/prApk(= Ti Tht1/ThTR)
Pk+1 Tk+1 + BrDk

Preconditioned Conjugate Gradient Algorithm choose =z,
ro = b — Axg, SO|VePZ(] =179, po = 20,k =0,1,...

T T
or = z,Tk/Py APk
Tpr1 = X+ QP
Tht1 = Tk — OpApg
Solve Pzpy1 = 7p41
T T
Br = Zgi1Tk+1/2;Tk

Example: 5-point Finite Difference approx of Laplacian

—Vu=f inQ, wu=gonadN
Finite Differences:

A~h2 —1—4——1

eg. on unit square A is block tridiagonal:

B I 4 —1
I B -I)
h72 R . .
-1 B -—I o 1
0 -I B -1 4
BERnXn

AcRn?xn?

Convergence:

llz — zklla .

—_— min max |p(A;

|z — xolla pEM,p(0)=1 j [P
< min max t
T pElL,p(0)l tE[ab] P (®)]
< o(VE-1 k
- VvVeE+1

5-point finite difference approx of Laplacian
Using discrete Fourier analysis eigenvalues known:

A =h"2[4—2cos(rrh) — 2cos(swh)], ms=1,...,1

4 - _
= kK=>h 2, Amin = 272, Amax =~ 8h 2

8x8 k¥ ok k Kk ok kK kokk kMK Kk ok kokK ok kK ok kk Kk ok ¥k kK

t t t
0 100 200 300 400 500

So fast convergence if

(i) A has few distant eigenvalues (or few clusters)
(ii) xissmall,e.g.ifxk =9

IIw—mkllA<2<3—1>’“_2
|z —xolla = \3+1 2k

error halving at each iteration.

_ Amax(P'A)
o Amin(P_lA)

5-point finite difference approx of Laplacian
Using discrete Fourier analysis eigenvalues known:

X =h"2[4—2cos(rwh) — 2 cos(smh)],

4 —
= K/:—zhz,

= Amin =~ 272, Amax =~ 8h ™2

r,s=1,..

oy

8x8 k k ok k ok k Rk kokk koMek ok ok kR ok Rk ko Bk ok Kk ok k kK

0 100 200 300 400

8x8 &

16x16 S—

32x32 A

64x64

0 10000 20000 30000

500

Multigrid/Multilevel preconditioning

appropriate methods (smoothing and grid transfers)
converge in a number of iterations independent of h
= optimal solvers for Laplacian problems

Number of PCG iterations, Preconditioner is 1 V-cycles
(contraction factor: n)

e ® /e @) < 1074

1 relaxed Jacobi iteration for pre- and post-smoothing.

grid | PCG iterations (MG contraction) | n

8 X 8 4 (0.10) 49
16 x 16 4 (0.11) 225
32 x 32 4 (0.12) 961
64 x 64 4 (0.14) 3969
128 x 128 5(0.16) 16129

Multigrid:

Convergence bound: ||u — u®||4 < nllu — uk=]|| 4
7 typically 0.1

= multigrid is a great preconditioner for Laplacian because
Il = a4 < mfa — D14

=1 -1 < Amin(PrA), Apax(P7'A) < 1417

when P~1 is the action of a single multigrid cycle.

Hence k < (1 4+ n)/(1 — n) which is typically
1.1/0.9 =~ 1.22

Many other uses of these methods in diverse application
areas

