
Numerical Linear Algebra. QS 1 (MT 2017)

Optional question: Qn 4

1. Show that H(w)2 = I when H is a Householder matrix.

2. Show that ‖x‖∞ = maxi|xi| satisfies the axioms for a vector norm.

3. Show that if ‖x‖ is a vector norm then supx
‖Ax‖
‖x‖ satisfies the axioms for a matrix norm.

Further show that
‖AB‖ ≤ ‖A‖ ‖B‖.

4. From the definition of the vector 1–norm show that

‖A‖1 = maxj

∑
i

|aij |.

5. By considering the individual columns aj of A and bj of B = QA, show that

‖QA‖F = ‖A‖F

if Q is an orthogonal matrix.

6. By using the definition of the vector 2–norm and the SVD show that

‖A‖2 = σ1

where σ1 is the largest singular value.

7. (a) For A ∈ IRm×n show that the singular values of A are the square roots of the
eigenvalues of ATA if m ≥ n or of AAT is m ≤ n. (You might want to consider what A
and AT do to the singular vectors.)
(b) Check the above using matlab: e.g. set

A =

1 2
3 4
5 6


lam = eig(A′ ∗A) and sing = svd(A).

8. If A ∈ IRn×n is nonsingular, what is the SVD of A−1 in terms of that of A?
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Numerical Linear Algebra. QS 2 (MT 2017)

Optional questions: Qns 5, 8

1. For the linear least squares problem: minx ‖Ax − b‖2, show that the solution obtained
by QR factorisation of A is the same as the vector y obtained by solving the (square)
linear system of equations ATAy = AT b (the “normal equations”).

Can you devise a way of solving the linear least squares problem by employing the SV D?

2. For given positive data {yi} at times {ti} respectively, formulate a linear least squares
problem to determine the best values of the three parameters a, λ, µ in a model of the
form

y = aeλ(t−µ).

Comment on this least squares problem. If the data is {12, 5, 2, 1} at {0, 1, 2, 3} use
matlab to compute the QR factorization ([Q,R]=qr(A)) and thence compute the solution.

3. Show that if “shifts” are incorporated into the QR algorithm so that it becomes{
Factor (Ak − µk I) = Qk Rk

and Ak+1 = RkQk + µk I

for k = 1, 2, · · · with A = A1, then all the matrices Ak, k = 1, 2, · · · are similar and thus
have the same eigenvalues.

4. In matlab, by typing {
[q, r] = qr(a) (see help qr)

a = r ∗ q,

successively, observe convergence of the QR algorithm for the matrix

A =

9 1 1
1 5 0
1 1 2

 , (a = [9, 1, 1; 1, 5, 0; 1, 1, 2]).

Use the matlab command eig to check.

5. By showing that for distinct u, v ∈ IRn with ‖u‖2 = ‖v‖2 there exists w such that
uTH(w) = vT where H is the Householder matrix, constructively prove that for any
A ∈ IRn×n there exists an orthogonal matrix Q and a lower triangular matrix L such
that A = LQ.
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6. If x = (x1, x2, · · · , xn)T show that the choice of rotation angle θ = cos−1
(

xi√
x2i+x

2
k

)
makes yk = 0 where y = J(i, k)x. Hence show that a QR factorisation of a tridiagonal
(or more generally an upper Hessenberg) matrix A ∈ IRn×n can be achieved using Givens
rotations as follows:

J(n− 1, n) · · · J(2, 3) J(1, 2)A = R.

What is Q?

7. Perform Gauss Elimination by hand on the linear system Ax = [11, 6, 4]T where A is the
matrix in Question 4. Check your multipliers and the resulting upper triangular matrix
by doing [L,U ] = lu(A) in matlab.

8. Note that no row swaps would have occured in the above example even if partial pivoting
was employed (as it is in matlab’s lu). Change the (3,1) entry in A to 10 so that pivoting
(row swapping) occurs at least in the first column: do [L,U ] = lu(A) and check that
P A = LU .

9. A ∈ IRn×n is “Strictly Column Diagonally Dominant”, (SCDD) if

|ajj | >
n∑

i=1,i 6=j
|aij |

for each j = 1, 2, · · · , n.

If A is SCDD and a partial pivoting strategy is used with Gauss Elimination, why is
there no row swapping at the first stage (i.e. when zeros are introduced into the first
column)? If after this stage the matrix is in the form

a11 a12 · · · a1n

0
...
0

B

 ,

by considering the general column of B(
a2j −

a21
a11

a1j , a3j −
a31
a11

a1j , · · · , anj −
an1
a11

a1j

)T

prove that B is SCDD. Hence by induction row swapping is not required at any stage
for SCDD matrices.

10. If Ax = b and (A+ δ A) (x+ δ x) = b show that

‖δ x‖
‖x+ δ x‖

≤ ‖A‖‖A−1‖‖δ A‖
‖A‖

.
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11. (Optional: use for revision later if you wish)

(Part C exam question from 2009) What is an orthogonal matrix? Suppose that Q ∈
IRm×m and Z ∈ IRn×n are orthogonal matrices and define Q` ∈ IRm×` to be the matrix
comprising the first ` columns of Q, analogously Zh ∈ IRn×h to be the matrix comprising
the first h columns of Z. If A ∈ IRm×n, m ≥ n, is an arbitrary matrix, prove that
‖AZh‖2 ≤ ‖A‖2 for any integer h with 1 ≤ h ≤ n. For what `, 1 ≤ ` ≤ m is it necessarily
true that ‖QT` A‖2 = ‖A‖2?
What is a Givens rotation matrix, J(i, k, θ), i 6= k? Show that J(i, k, θ) is orthogonal and
that if y = J(i, k, θ)x then a particular choice of θ which you should identify will ensure
that yk = 0 where yj is the jth entry of the vector y. What value of θ would ensure that
yi = 0?

Using these results, what sequence of Givens rotation matrices will perform a QR factori-
sation of a tridiagonal matrix A ∈ IRn×n? What sequence of Givens rotation matrices
will perform a QR factorisation of a general full matrix A ∈ IRn×n?
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Numerical Linear Algebra. QS 3 (MT 2017)

Optional questions: Qns 1, 4

1. If Ax = b and (A+ δ A) (x+ δ x) = b show that

‖δ x‖
‖x+ δ x‖

≤ ‖A‖‖A−1‖‖δ A‖
‖A‖

.

2. If Q is orthogonal prove that the condition number for linear systems satisfies κ(Q) = 1
at least when the ‖ · ‖2 is used. What is the relationship between solving a linear
least squares problem via QR factorization and via Cholesky factorization of the normal
equations ATAx = AT b?

3. Consider A = {ai,j : i, j = 1, . . . , n}, ai,j = 1/(i+ j − 1). (See help hilb in matlab).

Use matlab to compute the condition number for n = 4, 8, 12 (help cond). For n =
12 compute b=A*ones(n,1) and then try to recover the solution x = (1, 1, . . . , 1)T by
Gaussian Elimination which in matlab is the result of x=A\b.

4. Explicitly show that if A ∈ IRn×n is lower triangular then Gauss–Seidel iteration is
forward substitution. This might imply that if A is nearly lower triangle (has few, small
entries above the diagonal) then G–S might converge well (fast!). What should you do if
you want to apply G–S iteration to a nearly upper triangular matrix?

5. For any A ∈ IRn×n show that ρ(A) ≤ ‖A‖ in any operator norm.
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6. If λ is an eigenvalue of A ∈ IRn×n then (A− λ I)x = 0 (*) for some x 6= 0.
Suppose k is such that |xk| = maxi |xi|, then the kth equation of (*) is

(akk − λ)xk = −
n∑

j=1,j 6=k

akj xj .

Deduce that

|akk − λ| ≤
n∑

j=1,j 6=k

|akj | :

you have proved the Gershgorin Circle Theorem: that every eigenvalue of a matrix lies
in at least one of the discs {z ∈ C : |akk − z| ≤

∑n
j=1,j 6=k |akj |}.

For the matrix

A =

9 1 1
1 5 0
1 1 3


use this theorem to show that the spectral radius of the Jacobi iteration matrix is less
or equal to 2

3 .

7. Using matlab on the matrix A ∈ R10×10 which has aii = 1
2 ,

aij =

{
0 if i > j,

1 if i < j

(try tril(ones(10, 10))− 1
2 ∗ eye(10, 10)).

Calculate ‖Ak‖∞ for k = 1, · · · , 50 (norm(Ak), inf). What is ρ(A) and how does
it relate to what you observe? (see help for about loops in matlab).

8. Prove that for the linear system Ax = b, the symmetric SOR method

(D + ω L) x(k+
1
2
) = ω b+ ((1− ω)D − ω U) x(k), (1)

(D + ω U) x(k+1) = ω b+ ((1− ω)D − ω L) x(k+
1
2
) (2)

where A = D + L + U , (D is a diagonal matrix, L is a strictly lower triangular matrix,
U is a strictly upper triangular matrix), corresponds to the splitting A = M −N where
M is the symmetric matrix

1

ω (2− ω)
(D + ω L) D−1 (D + ω U) .

9. If A is Strictly Row Diagonally Dominant (SRDD) prove that Jacobi iteration converges
for any right hand side b and any stating guess x(0).
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10. As in question 9 above, but prove that Gauss-Seidel converges under the same conditions.
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Numerical Linear Algebra. QS 4 (MT 2017)

Optional questions: Qns 5, 8

1. (a) For the 5–point finite difference approximation of the Laplacian on [0, 1]× [0, 1] with
Dirichlet Boundary Conditions on a regular mesh of size h with (n+ 1)h = 1, verify that
for each r, s ∈ {1, · · · , n}, the vector U r s with components ursjk = sin r j π h sin s k π h
is an eigenvector of the Jacobi iteration matrix with corresponding eigenvalue
λrs = 1

2 (cos r π h+ cos s π h).

(b) Show that µ, v are an eigenvalue and eigenvector of the Gauss–Siedel iteration matrix
for A = D + L + U , (D is a diagonal matrix, L is a strictly lower triangular matrix,
U is a strictly upper triangular matrix), if and only if (µD + µL + U) v = 0. For the

5–point problem above show that vrs with components vrsjk = µ
j+k
2 sin r j π h sin s k π h

is an eigenvector of the G–S iteration matrix. What is the corresponding eigenvalue?
Which of Jacobi or G–S iteration will converge more rapidly for this problem? Is G–S
suitable for use as a smoother in multigrid?

2. Consider using multigrid to solve the 1–dimensional boundary value problem,

−u′′ = f, x ∈ [0, 1], u(0) = 0 = u(1)

approximately by the finite difference

−uj−1 + 2uj − uj+1 = h2 f, j = 1, 2, . . . , n

on a regular grid jh, j = 0, 1, . . . , n+ 1 with (n+ 1)h = 1 and n odd.

If ue = (u2, u4, · · · , un−1)T is a vector of the coarse grid unknowns, show that
prolongation to fine grid values (u1, u2, · · · , un)T by linear interpolation between
adjacent points can be represented by P ue where

P =



1
2
1
1
2

1
2
1
1
2

1
2
1 .

.
.

1
2

1
2
1
1
2



∈ IRn×n−1
2

What restriction does R = 1
2 P

T represent?
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3. Consider a two-grid iteration for Au = f with no post-smoothing. Here P is the prolonga-
tion, R the restriction and the smoothing iteration is based on the splitting A = M −N .

Denote by u
(i)
s the result of k pre-smoothing steps on the ith multigrid iterate u(i). Show

that the next two-grid iterate is

u(i+1) = u(i)
s + PA

−1
R(f −Au(i)

s ).

By further showing that

f −Au(i)
s = A(I −M−1A)k(u− u(i)),

demonstrate that

u− u(i+1) = (A−1 − PA−1R)A(I −M−1A)k(u− u(i)).

4. Similarly to problem 3, show that if m post-smoothing iterations are also employed then

u− u(i+1) = (I −M−1A)m(A−1 − PA−1R)A(I −M−1A)k(u− u(i)).

5. Show that in two-grid iteration the residual r(i) = Ae(i) satisfies

r(i+1) = (I −AM−1)mA(A−1 − PA−1R)(I −AM−1)kr(i).

6. By writing the two-grid iteration matrix

(I −M−1A)m(A−1 − αPA−1P T )A(I −M−1A)k

for a symmetric matrix A, with restriction equal to αP T for some real positive α, in the
form I −M−1MGA, show that MMG is symmetric when k = m and M is symmetric. You
should assume that A is symmetric. It follows that two-grid iteration corresponds to a
symmetric splitting A = MMG −N under these conditions.

7. Similarly to problem 6, show that provided k = m, then employing MT in the post-
smoother and M in the pre-smoother results in a symmetric two-grid splitting matrix
MMG when M is non-symmetric. This is of relevance when for example Gauss-Seidel
smoothing is used since MT then corresponds to reversing the ordering of the variables.
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8. In this question the restriction is R = αP T where P is the prolongation and the Galerkin
coarse grid operator A = αP TAP is used. Writing

Gpre = (A−1 − αPA−1P T )A(I −M−1A)k

for the two-grid iteration matrix when only pre-smoothing is used and

Gpost = (I −M−1A)m(A−1 − αPA−1P T )A

for the two-grid iteration matrix when only post-smoothing is used, show that

GpostGpre = (I −M−1A)m(A−1 − αPA−1P T )A(I −M−1A)k

is the standard two-grid iteration matrix with m post-smoothing and k pre-smoothing
iterations. It follows that if ‖Gpre‖ < 1 and ‖Gpost‖ < 1 then the standard two-grid
iteration is convergent in the same norm.

9. Show that for the 5-point matrix, relaxed Jacobi smoothing with θ = 4/5 ensures that
all of the eigenvalues with r > n/2 or s > n/2 (which correspond to eigenvectors with
high frequency variation in at least one of the coordinate directions) lie in (−3/5, 3/5].
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Numerical Linear Algebra QS 5 (MT 2017)

Optional questions: Qns 2, 7

1. If A ∈ Rn×n is such that diag(A) = I, what polynomial pk satisfies

x− x(k) = pk(A)(x− x(0))

where x is the exact solution of Ax = b and {x(j), j = 0, 1, . . .} are the iterate vectors
produced by Jacobi iteration?

If x(0) = 0 is chosen, for what polynomial is x(k) = qk(A)b?

2. (Section C exam questions 2001) If A = M−N with A, M , N ∈ Rn×n, A, M nonsingular
and M−1N diagonalisable, prove that the iteration

Mx(k) = Nx(k−1) + b, k = 1, 2, . . .

will generate a sequence {x(k)} which converges to the solution x of Ax = b for any
starting guess x(0) if and only if the eigenvalues λ of M−1N satisfy |λ| < 1. Further,
if M−1N is symmetric so that there is a basis {vi, i = 1, . . . , n} for Rn of orthonormal
eigenvectors of M−1N , show that

vTi (x− x(k)) = λki v
T
i (x− x(0))

where λi is the eigenvalue corresponding to the eigenvector vi.

For the remainder of this question you should assume that |λ| < 1 is a necessary and suf-
ficient condition for convergence regardless of whether M−1N is or is not diagonalisable.

The Successive Overelaxation Method (SOR) is: x(0) arbitrary,

for k = 1, 2, . . .

for i = 1, . . . , n

x
(k)
i = (1− ω)x

(k−1)
i + ω

bi − i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

/aii

end

end

where A = {aij , i, j = 1, . . . , n}, b = {bi, i = 1, . . . , n} and ω ∈ R. In terms of the diagonal
matrix D, the strictly lower triangular matrix L and the strictly upper triangular matrix
U such that A = D + L+ U , write the SOR iteration in matrix form.

Suppose that D = I. By considering the determinant of the SOR iteration matrix or
otherwise show that if ω /∈ (0, 2) then SOR iteration can not be convergent. If further,
L2 = 0, show that the SOR iteration is convergent if and only if the eigenvalues of
(I − ωL)A lie in B(1/ω, 1/ω) where B(a, b) is the open disc with centre a and radius b.
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3. Suppose that A = M −N ∈ IRm×m and it is desired to solve the linear system Ax = b.
State a theorem which gives necessary and sufficient conditions for convergence of the
vector sequence {x(i)} generated by the iteration: for initial guess x(0) compute

Mx(i+1) = Nx(i) + b, i = 0, 1, . . . .

For Jacobi iteration what is M? Prove that if A = {ai,j} and

|ai,i| >
∑
j 6=i
|ai,j |, i = 1, 2, . . . ,m (?)

then Jacobi iteration converges. If m = n2 and A = D + L + U where D =
diag(D1, D2, . . . , Dn) and Di ∈ IRn×n, i = 1, 2, . . . , n are the diagonal blocks of A, L
is the lower triangular part of A−D and U is the upper triangular part of A−D, prove
that the iteration based on the splitting M = D will converge provided that the condition
(?) holds. If for each i = 1, 2, . . . , n, Di is the tridiagonal matrix

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4


and

A =


D1 −I
−I D2 −I

. . .
. . .

. . .

−I Dn−1 −I
−I Dn


where I ∈ IRn×n is the identity matrix, find the eigenvalues of the iteration matrix based
on the splitting M = D and show that the spectral radius of the iteration matrix is

1− π2/(n+ 1)2 +O(n−4)

for large n.

4. Show that the (iteration) matrix

T =

0 1
3

1
3

1
3 0 1

3
1
3

1
3 0


has eigenvalues 2

3 , −1
3 and −1

3 and that
(
T − 2

3 I
) (
T + 1

3 I
)

= 0. Convince yourself (by
using matlab, maple or otherwise) that no power of T is the zero matrix, but T k → 0
as k →∞. Define, however, a polynomial iterative method which will terminate after 2
iterations.
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5. Verify that for arguements |t| ≥ 1 the definition

Tk(t) =
1

2k−1
cosh k

(
cosh−1 t

)
defines the same (Chebyshev) polynomial as

Tk(x) =
1

2k−1
cos k

(
cos−1 t

)
for |t| ≤ 1. Verify that (at least) for t > cosh(ln2), Tk(t)→∞ as k →∞.

6. If the eigenvalues λ of an iteration matrix S satisfy |λ| ≤ ρ < 1 and y(k), k = 2, 3, · · · are
the iterates obtained by using Chebyshev polynomials

T̂k(x) =
Tk

(
x
ρ

)
Tk

(
1
ρ

) (i.e. shifted onto [−ρ, ρ] and scaled so that T̂k(1) = 1)

in a polynomial iteration based on S, show that

Tk+1(
1

ρ
) e(k+1) =

1

ρ
Tk(

1

ρ
)S e(k) − 1

4
Tk−1(

1

ρ
) e(k−1)

(at least for k ≥ 3) where e(k) = y(k)−x and x is the exact solution satisfying x = S x+g.
(You may want first to obtain a 3–term recurrence for the T̂k). From this show that

y(k+1) = wk+1

(
S y(k) + g − y(k−1)

)
+ y(k−1)

where

wk+1 =
1

ρ

Tk

(
1
ρ

)
Tk+1

(
1
ρ

) = 1 +
1

4

Tk−1

(
1
ρ

)
Tk+1

(
1
ρ

) .
This shows that it is unnecessary to compute the iterates x(k) of the simple iteration in-
volving S since the wk can be computed easily using the 3 term recurrence for Chebyshev
polynomials.

7. Let A ∈ IRn2×n2
be the matrix which arises from 5–point finite difference replacement of

the Laplacian with Dirichlet boundary conditions on a regular grid on the unit square.
(Assume that A is scaled so that it has 4’s on the diagonal). It is desired to solve
(σ I +A)x = b where 0 < σ ∈ IR using polynomial iteration based on the simple Jacobi
iteration (σ I+D)x(k+1) = −(L+U)x(k)+b. By using Geshgorins Theorem (or otherwise)
show that the eigenvalues of the iteration matrix satisfy |λ| ≤ 4

4+σ . Hence estimate

convergence of Chebyshev polynomial iteration (as in previous question) if σ = 1
2 .

3 NLA, MT 2017



Numerical Linear Algebra QS 6 (MT 2017)

Optional questions: Qns 1, 6

1. Show that the Chebyshev Polynomials Tn(x) = 1
2n−1 cosn

(
cos−1 x

)
satisfy∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx = 0

when n 6= m.

This shows that the Chebyshev polynomials are the orthogonal polynomials with respect
to the inner product

< p, q >=

∫ 1

−1

p(x) q(x)√
1− x2

dx

ie. Tn ∈ Πn, n = 0, 1, . . . and < Tn, Tm > is equal to zero except when n = m (when it is
clearly positive.)

2. If A ∈ IRn×n is nonsingular, show that GMRES breaks down at the `th iteration (ie.
h`+1,` = 0) if and only if x` = x (ie. if and only if the solution of the linear system has
been found).

3. Let QkRk be a QR factorization of Ĥk where Qk = J1, J2, . . . , Jk with Jj being a single

(j + 1) × (j + 1) Givens rotation matrix for each j. If Ĥk+1 is computed from Ĥk by
appending the one further column computed by the next step of the Arnoldi algorithm,
show that only one further Givens rotation Jk+1 gives the QR factorization of Ĥk+1.

4. Continuing from the question above: If s = sin θ in the Givens rotation in Jk+1, show
that

‖rk‖2 = |s|‖rk−1‖2.

Hence for the sequence of succesive residuals rk, k = 0, 1, 2, . . . computed by the GMRES
method, {‖rk‖2, k = 0, 1, 2, . . .} must reduce monotonically. Are there any circumstances
in which the convergence is not strictly monotonic?

1 NLA, MT 2017



5. Show how GMRES will converge on the linear system Ax = b with x0 = 0 when

A =


0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 , b =


1
0
0
0
0

 .

Hand calculation (it is simple in this example to work out what the residual vectors must
be!) is best here if you want to learn something!

6. If

A =



I B2

I B3

I
. . .

I Bk−1

I Bk

I


for arbitrary submatrices Bi of appropriate dimension, show that (I −A)k = 0.

What is the maximum number of steps that unrestarted GMRES would take to solve a
linear system with matrix A?

7. Use matlab ([x,flag,relres,iter,resvec]=gmres(A,b,[],1.e-6,size(A,1))) with
suitably chosen matrices A and b as below to investigate the behaviour of GMRES.

Note in the form above matlab will use unrestarted GMRES, flag=0 will indicate suc-
cessful convergence (the relative residual norm - relres - less than 10−6 in less than
dimension(A) =size(A,1) iterations), iter is the number of restarts (should be 1 with
no restarting) and iterations taken and resvec is the vector of residual norms at each
iteration (hence semilogy(resvec) will plot the convergence curve). See help gmres if
you want to read more or change any of the defaults.

(i) A=randn(n); b=ones(n,1); for n=7,47,... as you choose (and have patience for!
(note ctrl C will interrupt a computation). These are dense matrices!

(ii) A=sprandn(100,100,0.1); b=ones(100,1);. This is a sparse 100×100 matrix with
approximately 10 non-zero entries per row (ie. 0.1 of the 10,000 entries non-zero).

(iii) A=sprandn(100,100,0.1) +2*eye(100,100); b=ones(100,1);

(iv) A=sprandn(100,100,0.1) +4*eye(100,100); b=ones(100,1);

(v) a diagonalisable matrix that has few distinct eigenvalues
eg. X=randn(9,9); A=X*diag([1,1,-4,3,3,-4,-4,-4,3])/X

(note /X is an more efficient way of computing *inv(X) and that it is possible that an
X generated with random entries is singular, but is rarely so!)

(vi) any matrix
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8. (entirely voluntary)

(I know this to be true (indeed for many matrices), but do not have as elementary a
proof of it as I would like: hence I offer a pint of beer/gin&tonic/orange juice to the first
person to show me a proof)

Prove that the Gauss-Seidel iteration matrix for the 5-point matrix is not diagonalisable.
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Numerical Linear Algebra QS 7 (MT 2017)

Optional questions: Qns 5, 8

1. Derive and write down the MINRES algorithm and show that the work per iteration is
O(n) for a sparse real symmetric matrix with O(1) entries per row.

2. Consider the recurrence

γj+1vj+1 = Avj − δjvj − γjvj−1, 1 ≤ j ≤ k − 1,

where v1 is an arbitrary vector with ‖v1‖2 = 1, v0 = 0, δj = vT
j Avj , and γj is chosen

so that ‖vj‖2 = 1. Prove that for a real symmetric matrix A this procedure generates
an orthonormal basis for the Krylov subspace Kk(A,v1). (Hint: use induction and note
that for a symmetric matrix A

〈Avj ,vj−1〉 = 〈vj , Avj−1〉 = vT
j Avj−1,

and also that Avj−1 = γjvj + w, with w ∈ span{v1, . . . ,vj−1}.)

3. For a chosen x0, if r0 = b−Ax0 and p0 = r0 and for k = 0, 1, . . .

αk = 〈pk, rk〉/〈pk, Apk〉
(1) xk+1 = xk + αkpk

(2) rk+1 = b−Axk+1

βk = −〈pk, Ark+1〉/〈pk, Apk〉
(3) pk+1 = rk+1 + βkpk

show that (2) and (1) imply

rk+1 = rk − αkApk.

Prove that the definition of αk implies 〈rk+1,pj〉 = 0 for j = k and that the definition
of βk implies 〈pk+1, Apj〉 = 0 for j = k. Prove also that 〈rk+1, rj〉 = 0 for j = k.
Now by employing induction in k for k = 1, 2, . . ., prove these three assertions for j =
1, 2, . . . , k − 1. (The inductive assumption will be that

〈rk,pj〉 = 0, 〈rk, rj〉 = 0, 〈pk, Apj〉 = 0, j = 0, 1, . . . , k − 1

and you may wish to tackle the assertions in this order.)
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4. By expanding ‖x − (xk + αpk)‖2A and using simple calculus, show that the value α =
pT
krk/p

T
kApk is minimising. Use the result of the question above to further show that

pT
krk = rTkrk and that and alternative formula for βk is

βk =
rTk+1rk+1

rTkrk
.

These equivalent formulae give the form of the Conjugate Gradient Algorithm usually
used for computation:

For a chosen x0, if r0 = b−Ax0 and p0 = r0 and for k = 0, 1, . . .

αk = 〈rk, rk〉/〈pk, Apk〉
(1) xk+1 = xk + αkpk

(2) rk+1 = rk − αkApk

βk = 〈rk+1, rk+1〉/〈rk, rk〉
(3) pk+1 = rk+1 + βkpk

5. Based on the form of the Conjugate Gradient algorithm given in the question above, write
an efficient implementation (in pseudocode or matlab notation) which requires only one
matrix×vector product at each iteration and minimises the number of vector operations.

6. Use matlab ([x,flag,relres,iter,resvec]=pcg(A,b,1.e-6,size(A,1))) with suit-
ably chosen matrices A and b as below to investigate the behaviour of Conjugate Gradi-
ents.

Note in the form above matlab will use unpreconditioned Conjugate Gradients, flag=0
will indicate successful convergence (the relative residual norm - relres - less than 10−6

in less than dimension(A) =size(A,1) iterations), iter is the number of iterations taken
and resvec is the vector of residual norms at each iteration (hence semilogy(resvec)

will plot the convergence curve). See help pcg if you want to read more or change any
of the defaults.

(i) A=randn(n); A=A*A’; b=ones(n,1); for n=7,47,... as you choose (and have pa-
tience for! (note ctrl C will interrupt a computation). These are dense matrices!

(ii) A=sprandsym(100,0.1,invkappa,1); b=ones(100,1);. This is a sparse 100× 100
symmetric and positive definite matrix with approximately 10 non-zero entries per
row (ie. 0.1 of the 10,000 entries non-zero) and with ‖ · ‖2-norm condition number
1/invkappa. Try pcg with well-conditioned matrices (small κ or invkappa just less than
1) and badly conditioned matrices (large κ or invkappa nearly zero).

(iii) a symmetric and positive definite matrix that has few distinct eigenvalues
eg. X=randn(9,9); X=orth(X); A=X*diag([1,1,4,3,3,4,4,4,3])*X’

(note that it is possible that an X generated with random entries is singular, but is rarely
so!)

(iv) any of the above with a preconditioner of your choice.
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The remaining questions are really on the work of week 8: please leave them to attempt after
the last lectures on this course,

7. Derive the preconditioned Congugate Gradient Algorithm with preconditioner P :

For a chosen x0, if r0 = b−Ax0 and z0 solves Pz0 = r0 with p0 = z0 and for k = 0, 1, . . .

αk = 〈zk, rk〉/〈pk, Apk〉
(1) xk+1 = xk + αkpk

(2) rk+1 = rk − αkApk

(3) Solve Pzk+1 = rk+1

βk = 〈zk+1, rk+1〉/〈zk, rk〉
(4) pk+1 = zk+1 + βkpk

by considering the unpreconditioned Conjugate Gradient Algorithm as in Question 4
above applied to

H−1AH−Tv = H−1b, v = HTx

where P = HHT .

(Hint you may wish to write Â = H−1AH−T , x̂ = HTx, b̂ = H−1b and write down the
Conjugate Gradient algorithm for Âx̂ = b̂ to generate {x̂k}, {p̂k = HTpk} etc.)

8. Consider a symmetric coefficient matrix A, show that if the splitting matrix M is also
symmetric, then the iteration matrix S = I −M−1A is symmetric with respect to the A
inner product; that is

〈Sx,y〉A = 〈x, Sy〉A.

This means that S (and indeed Sk, where k is the number of iteration steps) may be
used as a preconditioner with Conjugate Gradients.
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