
Mathematical physiology

Problem sheet 3.

1. A Noble-type model for excitable heart cells is given in dimensionless form by

ṅ = ε[n∞(V )− n],

ḣ = h∞(V )− h,

V̇ = γ [h− h0(V )] ,

where n and h are gate variables and V is the electric potential. The range of
interest of V is (−1, vNa), and the gate variables n, h ∈ (0, 1); vNa ≈ 0.4.

The parameters are ε � 1 and γ � 1. Describe the qualitative behaviour of
solutions in terms of the three nullcline surfaces in the phase space.

The function h∞(V ) is monotonically decreasing, with h∞(−∞) = 1 and h∞(∞) =
0, and n∞(V ) is monotonically increasing, with n∞(−∞) = 0 and n∞(∞) = 1.
The function h0 is given as

h0(V ) = (1 + λ)Ψ(V )h∞(V ),

where

Ψ =
1− e−(V+1)/δ

1− e−(vNa−V )/δ
,

and δ � 1. Plot the function Ψ(V ) over the range of interest.

Suppose that λ is constant, and that 0 < λ � 1. Show that there is a unique
steady state, find its approximate value, and by analysing the behaviour in the
(V, h) phase plane, show that it is stable but excitable, stating any assumptions
you make about the size of δ. Plot the shape of the action potential, describing
the slow and fast regions in terms of the phase plane trajectories.

Now suppose that h∞ changes rapidly, such that h∞ ≈ 1 for V <∼ − 0.9, and

h∞ ≈ νe−αV for V >∼ −
1

α
ln

1

ν
,

where ν is small and α >∼ O(1). Assuming that δα � 1 and αγλν � 1, show
that the fast recovery phase (repolarisation) of the action potential is drawn out
over a longer period, and draw the shape of the action potential in this case.

How would these results be affected by a dependence of λ on n ?

2. The equation
vt = f(v) +∇2v

admits a travelling wave solution in one dimension of the form

v = V (ξ), ξ = ct− x, c > 0, V (∞) = 1, V (−∞) = 0.
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Write down the ordinary differential equation satisfied by V .

Suppose now that we seek a solution in two dimensions which is slowly varying
in the direction transverse to the direction of propagation. By seeking a solution
in the form v = V [ψ(x, t)], show that

V ′(ψt −∇2ψ) = f(V ) + V ′′|∇ψ|2,

where V ′ =
dV

dψ
.

Suppose ψ < 0 ahead of the wavefront. Let ξ be a (curvilinear) coordinate
orthogonal to the wavefront, taken to be ψ(x, t) = 0, such that ξ increases with
ψ (thus ξ points behind the wave). Show that

∂ψ

∂ξ
= |∇ψ|,

that the normal velocity of the interface in the direction of the unit normal

n = − ∇ψ

|∇ψ|
pointing in front of the wave is

vn =
ψt
|∇ψ|

,

and that the curvature is

∇.n = − 1

|∇ψ|

[
∇2ψ +

∂|∇ψ|
∂n

]
.

Hence show that

Vξξ +
Vξ
|∇ψ|

{
−∂|∇ψ|

∂ξ
+∇2ψ − ψt

}
+ f(V ) = 0,

and deduce that
vn = c−∇.n.

Find a solution of this equation which describes a target wave. [Hint: seek a
solution ψ = ct− f(r).]

3. The curved front equation for the motion of a wavefront ψ(x, t) = 0 is given by

vn = c−∇.n,

where

vn =
ψt
|∇ψ|

, n = − ∇ψ

|∇ψ|
.

Suppose, in two-dimensional polar coordinates (r, θ), that ψ = R(θ, t)−r. Find
expressions for vn and n, and hence show that

Rt =
c (R2 +R2

θ)
1/2

R
− (R2 + 2R2

θ −RRθθ)

R (R2 +R2
θ)

.
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Find a solution R = R̄(t), and describe its behaviour. In this context, describe
what curvature blocking means.

Now write R = R̄+ρ, and linearise for small ρ. Show that the target pattern is
stable, but that one mode is neutrally stable. What does this mean, why does
it occur?

Still writing R = R̄(t) + ρ, but now assuming that R is large, show that, with
a suitable definition of a new time variable τ ,

ρτ = ρθθ + 1
2
cρ2

θ + ρ.

Seek steady solutions and describe the trajectory directions in the (ρ, σ = ρ′)
phase plane. Find a first integral of the system and hence complete the determi-
nation of the phase plane. Show that non-circular target patterns are possible,
if the conserved quantity, E, is negative, but that spiral waves are not.

Now look for solutions ρ(η), η = ωτ − θ, ω � 1. Repeat the phase plane
analysis, and by considering the evolution of E with θ, show that spiral waves
are possible to some extent.

4. Describe the sequence of events which occurs in the human circulatory system
during a single heart beat. Your description should include a schematic illus-
tration of the circulatory system, how filling and emptying of the atria and
ventricles is effected by valve opening and closing, and how this affects the
pressure and volume of the left ventricle.

What is meant by stroke volume and heart rate? How does the cardiac output
depend on these?

A simple model of the circulation consists of a (left) ventricle (with mitral and
aortic valves), arteries, veins and capillaries. Show that a simple compartment
model for this system which describes the volumes of the arteries, veins and
ventricle can be written in the form

V̇a = Q+ −Qc,

V̇v = Qc −Q−,
V̇LV = Q− −Q+,

and describe the meaning of the variables. What assumption is made about the
capillary volume in writing these equations? How should the variables Qk be
determined in terms of arterial, venous, and ventricular pressures?

5. The single ventricle model of the heartbeat is given by

ṗa = −(pa − pv)
RcCa

+
[pLV − pa]+
RaCa

,

ṗv =
(pa − pv)
RcCv

− [pv − pLV]+
RvCv

,

V̇LV =
[pv − pLV]+

Rv

− [pLV − pa]+
Ra

, VLV = V0 + CLVpLV.
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The ventricular compliance oscillates periodically between low values Cs and
high values Cd of durations ∆tF ≈ 0.3 s and ∆tR ≈ 0.5 s, respectively, with
rapid transitions (∼ 0.05 s) between these values. The parameter values imply
the following: RcCa ∼ 1.8 s, RaCa ∼ 0.09 s, RcCv ∼ 60 s, RvCv ∼ 0.8 s,
RaCs ∼ 0.02 s, RvCd ∼ 0.25 s.

The heartbeat consists of four phases: contraction, ejection, relaxation, re-
filling. Explain how these are controlled (in the left heart) by the mitral and
aortic valves.

Suppose that at the beginning of the contraction phase, pLV = p0
LV, pv = p0

v,
pa = p0

a, and CLV = Cd. Explain why contraction is isovolumetric, and why pa
and pv remain constant.

In the ejection phase, explain why pLV ≈ pa, and why

d

dt
(CLVpLV + Capa) ≈ −

pa
Rc

,

and deduce that pa first jumps rapidly to

p∗ =
Cdp

0
LV + Cap

0
a

Ca + Cs
,

and is thereafter given by

pa = p∗e−λ1t, λ1 =
1

Rc(Ca + Cs)
.

Show that

pv ≈ p0
v +

p∗

λ1RcCv

[
1− e−λ1t

]
.

Deduce that at the end of the ejection phase,

pa = p1
a = ∆1p

∗, ∆1 = e−λ1∆tF ,

pv = p1
v = p0

v +
(Ca + Cs)(1−∆1)p∗

Cv
.

Show that pa and pv are constant in the relaxation phase, and that pLV decreases
to

p1
LV =

Csp
1
a

Cd
.

In the refilling phase, show that

pa = p1
ae
−λ2t, λ2 =

1

RcCa
,

that
Capa + Cvpv + CdpLV = (Ca + Cs)p

1
a + Cvp

1
v,
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and that
pv − pLV = µp1

a

[
e−λ2t − e−λ3t

]
+ (p1

v − p1
LV)e−λ3t,

where

µ =
1

RcCv

{
1

Rv

(
1

Cv
+

1

Cd

)
− 1

RcCa

} , λ3 =
1

Rv

(
1

Cv
+

1

Cd

)
.

Deduce that the values of pa, pv and pLV at the beginning of the next contraction
phase are given by

p2
a = ∆2p

1
a, ∆2 = e−λ2∆tR ,

p2
v =

Cd∆ + (Ca + Cs)p
1
a + Cvp

1
v − Cap2

a

Cv + Cd
,

p2
LV = p2

v −∆,

where
∆ = µp1

a(∆2 −∆3) + ∆3(p1
v − p1

LV), ∆3 = e−λ3∆tR ,

Define ψ = (p0
a, p

0
v, p

0
LV)T and show that the map from ψ0 to ψ2 is linear and

homogeneous. Why, nevertheless, must there be a unique solution?
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