
Mathematical physiology

Problem sheet 4.

1. The Ottesen model for the baroreflex is written in the form

Ḣ = δH(H0 −H) + λHTs − µHTp,

Caṗa = −(pa − pv)
Rc

+H∆V,

Cvṗv =
pa − pv
Rc

− pv
Rv

,

where the sympathetic and parasympathetic tonic functions are given by

Ts = g[pa(t− τ)], Tp = 1− g(pa),

and g is the Hill function

g(p) =
1(

1 +
pn

pn0

) .
Non-dimensionalise by scaling the variables as

H = H0g, pa = p0p, t ∼ τ, pv =
Rvp0

Rc

q,

and deduce the dimensionless form of the model as

εḣ = 1− h+ λg(p1)− µ(1− g),

ṗ = κ[−(p− δq) + σh],

q̇ = ω[p− (1 + δ)q],

where

g(p) =
1

1 + pn
,

and give the definitions of the dimensionless parameters.

Using the values δH = 1.7 s−1, τ = 10 s, λH = 0.84 s−2, µH = 1.17 s−2,
H0 = 1.7 s−1, Rv = 0.06 mmHg s ml−1, Rc = 1.2 mmHg s ml−1, p0 = 77 mmHg,
Ca = 1.5 ml mmHg−1, Cv = 50 ml mmHg−1, ∆V = 70 ml, find estimates for
the dimensionless parameters. Hence show that the equation for the venous
pressure approximately uncouples from those for h and p.

Show that in the steady state,

p ≈ φ(p) = A+
B

1 + pn
,
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and give the approximate numerical values of A and B. Show that this has a
unique positive solution, and find an approximate value for this by iterating one
of the maps p→ φ(p), p→ φ−1(p), assuming n = 7. Which one works? Why?

Suppose instead that the steady state ought to be (dimensionally) 100 mmHg.
Find the value of n which is consistent with this.

2. Picard’s theorem states that a holomorphic function f(z) having an isolated
essential singularity at z = z0 takes on every possible complex value in any
neighbourhood of z0, with at most one exception. Use this to show that the
equation for σ,

σ = −β − γe−σ,

where β and γ are positive constants, has an infinite number of complex roots
in a neighbourhood of ∞.

Show that if σ →∞, then also Reσ → −∞.

Show that the complex roots vary continuously with γ (for example show that
∂σ/∂γ exists for complex σ).

Show that Reσ < 0 for all roots if γ is sufficiently small.

Deduce that instability occurs for γ > γc, where

γc =
Ω

sin Ω
,

and Ω is the smallest (positive) root of

tan Ω = −Ω

β
.

Use Maple or some other graphical software to plot γc as a function of β.

3. In respiratory physiology, what is meant by the minute ventilation? Describe
the way in which respiration is controlled by the blood gas concentrations at
the central and peripheral chemoreceptors.

The Mackey-Glass model is a one compartment model of respiratory control,
and can be represented by the equations

Kṗ = M − pV̇ ,

V̇ = V̇ (pτ );

explain what the various terms represent, and their physiological interpretation.

Suppose that
V̇ = G[p− p0]+,
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and that M = 200 mm Hg l(BTPS) min−1, p0 = 35 mm Hg, K = 40 l(BTPS),
G = 2 l(BTPS) min−1 mm Hg−1, τ = 0.2 min. Show how to non-dimensionalise
the equations to obtain the dimensionless form

ṗ = α[1− (1 + µp)v],

v = [p1]+,

and give the definitions of α and µ. Check that they are dimensionless, and
find their values.

4. A simplified version of the Grodins model describes CO2 partial pressures in
arteries, veins, brain and tissues by the equations

KLṖaCO2 = −V̇ PaCO2 + 863KCO2Q[PvCO2 − PaCO2 ],

KCO2KBṖBCO2 = MRBCO2 +KCO2QB[PaCO2(t− τaB)− PBCO2 ]

KCO2KTṖTCO2 = MRTCO2 + (Q−QB)KCO2 [PaCO2(t− τaT )− PTCO2 ],

with the venous pressure being determined by

QPvCO2 = QBPBCO2(t− τvB) + (Q−QB)PTCO2(t− τvT).

Explain the meaning of the equations and their constituent terms.

Use values KL = 3 l, V̇ ∼ V ∗ = 5 l min−1, 863KCO2Q = 26 l min−1, KB = 1 l,
Q = 6 l min−1, QB = 0.75 l min−1, KT = 39 l, to evaluate response time scales
for arterial, brain and tissue CO2 partial pressures.

Deduce that for oscillations on a time scale of a minute, one can assume that
the arterial pressure is in quasi-equilibrium, and that the tissue (and thus also
venous) partial pressures are approximately constant.

Hence derive an approximate expression for PaCO2 in terms of the ventilation
V̇ .

5. Red blood cell precursors are produced from pluripotential stem cells in the bone
marrow at a rate F . They mature for a period of τ days before being released
into the blood, where they circulate for a further A days. If the apoptotic rates
in bone marrow and blood are δ and γ, respectively, show that the developing
cell density p and circulating RBC density e satisfy the equations

∂p

∂t
+
∂p

∂m
= −δp,

∂e

∂t
+
∂e

∂a
= −γe,

for 0 < m < τ and 0 < a < A, where

p(t, 0) = F [E(t)], e(t, 0) = p(t, τ),
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and we assume F depends on the total circulating blood cell population,

E =

∫ A

0

e da.

Solve the equations using the method of characteristics, and hence show that
for t > τ + A, E satisfies

Ė = F [Eτ ]e
−δτ − F [EA+τ ]e

−δτ−γA − γE, t > τ + A.

Compare this model to that which assumes no age limit to the circulating RBC.
Under what circumstances does the model reduce to the no age limit model?

Suppose that F = F0f , where f is O(1) and is a positive monotone decreasing
function. Show how to non-dimensionalise the model to the form

Ė = µ[f(E1)− f(EΛ+1)e−µΛ − E],

where µ = γτ and Λ = A/τ . Supposing that A = 120 days and τ = 6 days,
explain why you might expect µ to be small.

Write down an equation for the exponent σ in solutions ∝ exp(σt) describing
small perturbations about the steady state, and show that the steady state is
stable if |f ′| < 1

2
.

6. In a model for the evolution of the resting phase cells in a blood cell maturation
model, the cell density M is given by

∂M

∂t
+
∂M

∂ξ
= −RM +Q,

where ξ is the maturation variable,

Q =


2e−γτR[t− τ, ξ − τ ]M [t− τ, ξ − τ ], ξ > τ, t > τ,

2e−(γ0+V0)τe(γ0+V0−γ)ξV0R0(t− τ)N0(t− τ), ξ < τ, t > ξ,

If R = (1 + λ)R0, λ = 2e−γτ − 1, γ0 + V0 = γ, and all these quantities and also
N0 are constant, then the equation for M can be written as

∂M

∂t
+
∂M

∂ξ
= −RM + (1 + λ)RMτ,τ ,

with initial data being

M = M0 = N0V0 on ξ = 0 and t > ξ.

By careful consideration of how the characteristic equations are solved, show
that for t > ξ, M = M(ξ) ≡M0u[(ξ − τ)/τ ], where u(s) satisfies

du

ds
= −αu− Γu1,
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and α = Rτ , Γ = −(1 + λ)Rτ , and u = 1 for s ∈ [−1, 0).

By taking the Laplace transform of the equation (exercising due care with the
delayed term), show that the Laplace transform U(p) of u is given by

U(p) =
h(p)

f(p)
,

where
f(p) = p+ α + Γe−p

and

h(p) = 1− Γ

(
1− e−p

p

)
.

Deduce that U can also be written as

U(p) =
Λep

p [(p+ α)ep + Γ]
+

1

p
,

where
Λ = λRτ.

Hence show that if the inversion contour for U is completed as a square with
upper and lower sides at Im p = ±(n+ 1

2
)π, with n even for Γ < 0, as here, then

by taking the limit as n→∞, u can be found as

u =
∞∑

j=−∞

cj exp (pjs) ,

where pj are the zeros of f(p) (p0 is the real root, and p−j is the copmplex
conjugate of pj). Write down the definition of the constants cj in terms of pj,
and show that they can be expressed as

cj =
Λ

pj (1 + α + pj)
,

so that cj = O(1/j2) for j � 1.
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