(C5.11 Mathematical Geoscience

Problem sheet 1

1. Lapse Rates Suppose the atmosphere is dry, adiabatic and hydrostatic, and obeys the
ideal gas law, so that
dT  dp 0 dp pRT
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with T'= T, and p = ps at z = 0. The gravitational acceleration g, specific heat capacity
¢p, molecular weight M,, and gas constant R are all constants.
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Find T, p and p as functions of z, and confirm that p/p, = (T/T,)Ms/E. Explain why an
appropriate definition for the depth of this atmosphere is d = ¢,T/g. Roughly how much
thinner is the air at the top of Mt Everest than at sea level according to this model?

Parameter values: ¢, = 10° J kg ' K™ M, =29 x 1073 kg mol™!, R=8.3J K™ mol ™",

and g = 9.8 m s~2.

2. Two stream approximation The radiative transfer equation for a one-dimensional at-
mosphere is
ol
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where I(z, ) is the intensity of longwave radiation, B(z) = oT*/xw, T(z) is the air temper-
ature, p(z) is the density, and the adsorption coefficient x can be considered constant.

(i) Derive the two-stream approximation,
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where I are the upward and downward energy fluxes. Write down appropriate boundary
conditions for F if there is no incoming radiation from the top of the atmosphere z = d,
and the surface temperature at z = 0 is T (use the Stefan Boltzmann law). Give an
appropriate definition of the effective longwave emission temperature 7.

(ii) Now make the assumption of local radiative equilibrium, and suppose p(z) is known.
Show that the net upwards flux F' = F;, — F_ is constant, and solve for Fl in terms of

T, and the optical depth 7 = fzd kp dz.
Use your solution to find the greenhouse factor v = T4/T2, and to sketch the air tem-
perature as a function of height.

(iii) Suppose instead that T'(z) is known, and is not necessarily determined by local radiative
equilibrium. Solve for F; and hence show that the greenhouse factor is given by
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where 7 and 7, are defined as above.

(iv) For the atmosphere in question 1, show that T/T, = (7/7,)Ma¢ and 7, = kp,/g, and
hence give an expression for v(7,) in this case. Show that it can be approximated by
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in the limits 7, < 1 and 7, > 1, respectively, where I'(z) = fooo t*~le~t dt is the Gamma
function.

[If keen, evaluate the expression for v(7s) numerically and check these approximations.]
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3. Runaway greenhouse effect

(i) Show that for 7' close to a reference temperature Tp, the solution of the Clausius-
Clapeyron equation for saturation vapour pressure pg, as a function of temperature

T is approximately
T—-T,
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where a = M,L/RTy, and we may take Ty = 273 K at ps,o = 600 Pa (the triple point,
where ice, water, and vapour can all exist at equilibrium).

(ii) If the longwave radiation from a planet is oyT", the solar flux is @, the planetary albedo
is zero, and the greenhouse factor is given in terms of vapour pressure p by

771/4 =1+ b(pv/psvo)c>
where b and ¢ are constants, find the equilibrium surface temperature 71" in terms of p,.
(iii) Hence show that the occurrence of a runaway greenhouse effect is controlled by the
intersection of the two curves
0=1+6¢ 0=a(l+bed),
where 6 = 1/ac, a = (Q/40T)Y/*. Show that runaway occurs if a > a,, where

ae+0=1+01In(0/ba),
and, if § is small, that a, ~ 1+ 01n(d/b) — 4.

(iv) Estimate values of o and § appropriate to the present Earth, and comment on the
implications of these values for climatic evolution if we choose b = 0.06, ¢ = 0.25. What
are the implications for Venus, where the solar flux is twice as great?

Parameter values: 0 = 5.67 x 1078 W m=2 K™%, M, = 18 x 1072 kg mol™!, L = 2.5 x
100 kg™, R=83JK 'mol™, Q =1370 W m—2.
4. Ice albedo feedback A model for the mean temperature T of the Earth’s atmosphere is
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where o and 7 are constant, and a varies piecewise linearly with temperature, such that
a=ay for T <T;, a=a_ for T >T, (with a_ < ay), and a(T) is linear for 7; < T < T,,.

(i) Show graphically that there can be multiple steady states for some range of ) provided

T, —T; a; —a_
< .
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[Hint: consider the slopes R,(T) and R.(T) at T =T;.]
Show that in that case the upper and lower solutions are stable, but the intermediate
one is unstable.
(ii) [Harder] Find the range @)— < @ < @4 for which multiple steady states occur (i.e. give
formulae for Q)+ in terms of the other parameters), taking care to distinguish the cases
T, — T, > ar —a— .
T 4(1—a-)




