Problem sheet 1

1. Lapse Rates Suppose the atmosphere is dry, adiabatic and hydrostatic, and obeys the ideal gas law, so that

$$\rho c_p \frac{\mathrm{d}T}{\mathrm{d}z} - \frac{\mathrm{d}p}{\mathrm{d}z} = 0, \qquad \frac{\mathrm{d}p}{\mathrm{d}z} = -\rho g, \qquad p = \frac{\rho RT}{M_a},$$

with $T = T_s$ and $p = p_s$ at z = 0. The gravitational acceleration g, specific heat capacity c_p , molecular weight M_a , and gas constant R are all constants.

Find T, p and ρ as functions of z, and confirm that $p/p_s = (T/T_s)^{M_a c_p/R}$. Explain why an appropriate definition for the depth of this atmosphere is $d = c_p T_s/g$. Roughly how much thinner is the air at the top of Mt Everest than at sea level according to this model?

Parameter values: $c_p = 10^3 \text{ J kg}^{-1} \text{ K}^{-1}$, $M_a = 29 \times 10^{-3} \text{ kg mol}^{-1}$, $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$, and $g = 9.8 \text{ m s}^{-2}$.

2. Two stream approximation The radiative transfer equation for a one-dimensional atmosphere is

$$\cos\theta \,\frac{\partial I}{\partial z} = -\kappa\rho(I-B),$$

where $I(z, \theta)$ is the intensity of longwave radiation, $B(z) = \sigma T^4 / \pi$, T(z) is the air temperature, $\rho(z)$ is the density, and the adsorption coefficient κ can be considered constant.

(i) Derive the two-stream approximation,

$$\frac{1}{2}\frac{\mathrm{d}F_{+}}{\mathrm{d}z} = -\kappa\rho(F_{+} - \pi B), \qquad -\frac{1}{2}\frac{\mathrm{d}F_{-}}{\mathrm{d}z} = -\kappa\rho(F_{-} - \pi B),$$

where F_{\pm} are the upward and downward energy fluxes. Write down appropriate boundary conditions for F_{\pm} if there is no incoming radiation from the top of the atmosphere z = d, and the surface temperature at z = 0 is T_s (use the Stefan Boltzmann law). Give an appropriate definition of the effective longwave emission temperature T_e .

(ii) Now make the assumption of local radiative equilibrium, and suppose $\rho(z)$ is known. Show that the net upwards flux $F = F_+ - F_-$ is constant, and solve for F_{\pm} in terms of T_s and the optical depth $\tau = \int_z^d \kappa \rho \, dz$.

Use your solution to find the greenhouse factor $\gamma = T_e^4/T_s^4$, and to sketch the air temperature as a function of height.

(iii) Suppose instead that T(z) is known, and is not necessarily determined by local radiative equilibrium. Solve for F_+ and hence show that the greenhouse factor is given by

$$\gamma = e^{-2\tau_s} + \int_0^{\tau_s} 2\left(\frac{T}{T_s}\right)^4 e^{-2\tau} \,\mathrm{d}\tau,\tag{(\star)}$$

where τ and τ_s are defined as above.

(iv) For the atmosphere in question 1, show that $T/T_s = (\tau/\tau_s)^{R/M_a c_p}$ and $\tau_s = \kappa p_s/g$, and hence give an expression for $\gamma(\tau_s)$ in this case. Show that it can be approximated by

$$\gamma \sim 1 - \frac{8R}{4R + M_a c_p} \tau_s$$
 and $\gamma \sim (2\tau_s)^{-4R/M_a c_p} \Gamma \left(1 + \frac{4R}{M_a c_p}\right)$

in the limits $\tau_s \ll 1$ and $\tau_s \gg 1$, respectively, where $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ is the Gamma function.

[If keen, evaluate the expression for $\gamma(\tau_s)$ numerically and check these approximations.]

3. Runaway greenhouse effect

(i) Show that for T close to a reference temperature T_0 , the solution of the Clausius-Clapeyron equation for saturation vapour pressure p_{sv} as a function of temperature T is approximately

$$p_{sv} \approx p_{sv0} \exp\left[a\left(\frac{T-T_0}{T_0}\right)\right].$$

where $a = M_v L/RT_0$, and we may take $T_0 = 273$ K at $p_{sv0} = 600$ Pa (the triple point, where ice, water, and vapour can all exist at equilibrium).

(ii) If the longwave radiation from a planet is $\sigma \gamma T^4$, the solar flux is Q, the planetary albedo is zero, and the greenhouse factor is given in terms of vapour pressure p by

$$\gamma^{-1/4} = 1 + b(p_v/p_{sv0})^c,$$

where b and c are constants, find the equilibrium surface temperature T in terms of p_v .

(iii) Hence show that the occurrence of a runaway greenhouse effect is controlled by the intersection of the two curves

$$\theta = 1 + \delta \xi, \quad \theta = \alpha (1 + be^{\xi}),$$

where $\delta = 1/ac$, $\alpha = (Q/4\sigma T_0^4)^{1/4}$. Show that runaway occurs if $\alpha > \alpha_c$, where

$$\alpha_c + \delta = 1 + \delta \ln(\delta/b\alpha_c),$$

and, if δ is small, that $\alpha_c \approx 1 + \delta \ln(\delta/b) - \delta$.

(iv) Estimate values of α and δ appropriate to the present Earth, and comment on the implications of these values for climatic evolution if we choose b = 0.06, c = 0.25. What are the implications for Venus, where the solar flux is twice as great?

Parameter values: $\sigma = 5.67 \times 10^{-8}$ W m⁻² K⁻⁴, $M_v = 18 \times 10^{-3}$ kg mol⁻¹, $L = 2.5 \times 10^6$ J kg⁻¹, R = 8.3 J K⁻¹ mol⁻¹, Q = 1370 W m⁻².

4. Ice albedo feedback A model for the mean temperature T of the Earth's atmosphere is

$$c\frac{dT}{dt} = R_i - R_o, \qquad R_i = \frac{1}{4}Q(1-a), \quad R_o = \sigma\gamma T^4,$$

where σ and γ are constant, and a varies piecewise linearly with temperature, such that $a = a_+$ for $T < T_i$, $a = a_-$ for $T > T_w$ (with $a_- < a_+$), and a(T) is linear for $T_i \leq T \leq T_w$.

(i) Show graphically that there can be multiple steady states for some range of Q provided

$$\frac{T_w - T_i}{T_i} < \frac{a_+ - a_-}{4(1 - a_+)}$$

[*Hint: consider the slopes* $R'_i(T)$ and $R'_o(T)$ at $T = T_i$.]

Show that in that case the upper and lower solutions are stable, but the intermediate one is unstable.

(ii) [Harder] Find the range $Q_{-} \leq Q \leq Q_{+}$ for which multiple steady states occur (*i.e.* give formulae for Q_{\pm} in terms of the other parameters), taking care to distinguish the cases

$$\frac{T_w - T_i}{T_w} \gtrsim \frac{a_+ - a_-}{4(1 - a_-)}.$$