
C5.11 Mathematical Geoscience

Problem sheet 1

1. Lapse Rates Suppose the atmosphere is dry, adiabatic and hydrostatic, and obeys the
ideal gas law, so that
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with T = Ts and p = ps at z = 0. The gravitational acceleration g, specific heat capacity
cp, molecular weight Ma, and gas constant R are all constants.

Find T , p and ⇢ as functions of z, and confirm that p/ps = (T/Ts)Macp/R. Explain why an
appropriate definition for the depth of this atmosphere is d = cpTs/g. Roughly how much
thinner is the air at the top of Mt Everest than at sea level according to this model?

Parameter values: cp = 103 J kg�1 K�1, Ma = 29 ⇥ 10�3 kg mol�1, R = 8.3 J K�1 mol�1,
and g = 9.8 m s�2.

2. Two stream approximation The radiative transfer equation for a one-dimensional at-
mosphere is
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where I(z, ✓) is the intensity of longwave radiation, B(z) = �T
4
/⇡, T (z) is the air temper-

ature, ⇢(z) is the density, and the adsorption coe�cient  can be considered constant.

(i) Derive the two-stream approximation,
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where F± are the upward and downward energy fluxes. Write down appropriate boundary
conditions for F± if there is no incoming radiation from the top of the atmosphere z = d,
and the surface temperature at z = 0 is Ts (use the Stefan Boltzmann law). Give an
appropriate definition of the e↵ective longwave emission temperature Te.

(ii) Now make the assumption of local radiative equilibrium, and suppose ⇢(z) is known.
Show that the net upwards flux F = F+ � F� is constant, and solve for F± in terms of
Ts and the optical depth ⌧ =

R
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z
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Use your solution to find the greenhouse factor � = T
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e
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s
, and to sketch the air tem-

perature as a function of height.

(iii) Suppose instead that T (z) is known, and is not necessarily determined by local radiative
equilibrium. Solve for F+ and hence show that the greenhouse factor is given by
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where ⌧ and ⌧s are defined as above.

(iv) For the atmosphere in question 1, show that T/Ts = (⌧/⌧s)R/Macp and ⌧s = ps/g, and
hence give an expression for �(⌧s) in this case. Show that it can be approximated by
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in the limits ⌧s ⌧ 1 and ⌧s � 1, respectively, where �(x) =
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[If keen, evaluate the expression for �(⌧s) numerically and check these approximations.]
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3. Runaway greenhouse e↵ect

(i) Show that for T close to a reference temperature T0, the solution of the Clausius-
Clapeyron equation for saturation vapour pressure psv as a function of temperature
T is approximately

psv ⇡ psv0 exp
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.

where a = MvL/RT0, and we may take T0 = 273 K at psv0 = 600 Pa (the triple point,
where ice, water, and vapour can all exist at equilibrium).

(ii) If the longwave radiation from a planet is ��T 4, the solar flux is Q, the planetary albedo
is zero, and the greenhouse factor is given in terms of vapour pressure p by

�
�1/4 = 1 + b(pv/psv0)

c
,

where b and c are constants, find the equilibrium surface temperature T in terms of pv.

(iii) Hence show that the occurrence of a runaway greenhouse e↵ect is controlled by the
intersection of the two curves

✓ = 1 + �⇠, ✓ = ↵(1 + be
⇠),

where � = 1/ac, ↵ = (Q/4�T 4

0
)1/4. Show that runaway occurs if ↵ > ↵c, where

↵c + � = 1 + � ln(�/b↵c),

and, if � is small, that ↵c ⇡ 1 + � ln(�/b)� �.

(iv) Estimate values of ↵ and � appropriate to the present Earth, and comment on the
implications of these values for climatic evolution if we choose b = 0.06, c = 0.25. What
are the implications for Venus, where the solar flux is twice as great?

Parameter values: � = 5.67 ⇥ 10�8 W m�2 K�4, Mv = 18 ⇥ 10�3 kg mol�1, L = 2.5 ⇥

106 J kg�1, R = 8.3 J K�1 mol�1, Q = 1370 W m�2.

4. Ice albedo feedback A model for the mean temperature T of the Earth’s atmosphere is
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where � and � are constant, and a varies piecewise linearly with temperature, such that
a = a+ for T < Ti, a = a� for T > Tw (with a� < a+), and a(T ) is linear for Ti  T  Tw.

(i) Show graphically that there can be multiple steady states for some range of Q provided
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[Hint: consider the slopes R
0
i
(T ) and R
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(T ) at T = Ti.]

Show that in that case the upper and lower solutions are stable, but the intermediate
one is unstable.

(ii) [Harder] Find the range Q�  Q  Q+ for which multiple steady states occur (i.e. give
formulae for Q± in terms of the other parameters), taking care to distinguish the cases
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