
C5.11 Mathematical Geoscience

Extension sheet

[These questions are optional. Some require numerical solutions of the equations, for which

you may write your own code or use the Matlab templates available online.]

1. Carbon cycles Re-consider the model from Sheet 2 Question 1 for the evolution of albedo
and partial pressure of atmospheric CO2,

ȧ = f(a, p) = B(⇥)� a,

ṗ = g(a, p) = ↵(1� wp
µ
e
⇥),

where ⇥(a, p) = q(1�a)�1

⌫
+ �p, and B(✓) is a monotonic function decreasing from a+ to a�,

and where, µ, ↵, ⌫, �, w. and q are all constant parameters.

Taking the specific form
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2
(a+ + a�) +
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(a+ � a�) tanh (c1 + c2✓) ,

with a� = 0.11, a+ = 0.58, c1 = 0.2 and c2 = 0.6, and taking other parameters as µ = 0.3,
q = 1.37, ⌫ = 0.18, � = 0.25, solve the model numerically and confirm the results of the
earlier question. That is, that a steady state on the intermediate branch of the a nullcline
is unstable if ↵ is small enough.

Illustrate how the behaviour of the model depends on the parameters, by plotting example
solutions for a(t) and p(t), and the trajectory (p(t), a(t)) on the phase plane.

2. River mouth. The water depth h and velocity u in a river are modelled using the dimen-
sionless St Venant equations,

ht + (hu)x = 0, F
2(ut + uux) = �hx + 1�

u
2

h
,

where F is the Froude number. The river has uniform depth h = 1 far upstream (where
x ! �1).

(i) If the river flows into a large lake at x = 0 explain with a diagram why it may be
appropriate to prescribe the condition

h ! x as x ! 1.

(ii) Find an implicit expression for the steady-state water depth h(x) in the case F < 1
(subcritical river flow), and draw a sketch of this solution.

(iii) If F > 1 (supercritical river flow), explain why the steady-state solution has h = 1 for
x < xs, and use jump conditions that conserve mass and momentum to determine the
location of the shock,
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Draw a sketch of this solution.

[Recall that the jump condition for a conservation equation Pt + Qx = R is ẋs =
[Q]+�/[P ]+�.]
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3. Anti-dunes A dimensionless model for stream flow over an erodible bed is given by
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where s is the bed elevation, h and u are the water depth and velocity, q⇤(u) is a monoton-
ically increasing bedload function, and F is a constant.

(i) Assuming that s = 0 and h = u = 1 at some point in the flow, find an algebraic
relationship between u and s, and show that the maximum possible value of s is

s⇤ = 1 +
1
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2/3
.

Hence show that q
⇤(u) can be treated as a multivalued function of s, with upper and

lower branches denoted f+(s) and f�(s) respectively. Sketch a graph of this function,
indicating the location of s⇤.

(ii) Consider a travelling wave solution moving with constant velocity �V , where V > 0,
and with bed elevation oscillating continuously between its minimum smin and maximum
smax. The bedslope is continuous except at smin. By writing ⇠ = x + V t, and s = s(⇠),
show that

V
ds

d⇠
= Q� V s� f±(s),

where Q = q + V s is a constant.

(iii) By consideration of the sign of ds/d⇠ show that a solution which evolves smoothly from
smin to smax and back again is only possible if smax = s⇤ and Q = V s⇤+f±(s⇤), and show
that the wavelength of the solution is given by

` =

Z
smax

smin

⇢
V

Q� V s� f�(s)
�

V
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�
ds.

(iv) Draw a rough sketch of the travelling wave profiles for both the bed elevation and the
corresponding water surface.

4. Bergschrund Re-consider the model for a steady-state glacier from Sheet 4 Question 1.
With no sliding, this is given in dimensionless form by
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with a = 1 � x. Boundary conditions are q = 0 at x = 0 and q = 0 at x = xm where q is
the term in square brackets, and the end of the glacier is at xm = 2 (found earlier).

(i) Consider the case 0 < µ ⌧ 1. Find the ‘outer’ solution for H(x) obtained by setting
µ = 0, and explain why there are boundary layers at both x = 0 and x = 2.

(ii) By an appropriate rescaling of the variables, show that the boundary layer at x = 0 is
described by the equation

dĤ
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= 1�


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,
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and by solving this equation numerically, show that there is a unique initial value, Ĥ(0) =
Ĥ⇤, for which the solution matches with the appropriate far-field behaviour of the outer
solution.

[Hint: for n = 3, the correct value is Ĥ⇤ ⇡ 1.25 . . .; try solving the equation with di↵erent

initial values close to this and plot how they compare with the required far-field behaviour.]

(iii) By scaling the variables as x = 2�µ
(n+2)/(n+1)

x̂, H = µ
1/(n+1)

Ĥ, show that the boundary
layer at x = 2 is similarly described by the equation

dĤ
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=
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� 1,

which is to be solved subject to Ĥ = 0 at x̂ = 0. Hence show that the surface slope is
infinite at the end of the glacier, but not as steep as suggested by the outer solution.

5. Marine ice sheets

(i) If the bed of an ice sheet is a plastic material (such as mud), the basal shear stress ⌧b

must be equal to a prescribed yield stress ⌧c. By integrating the vertical and horizontal
force balance equations for a shallow ice layer, show that the ice thickness H(x, t) and
bed elevation b(x) in this case must satisfy

⇢gH (Hx + bx) = �⌧c,

where ⇢ is the ice density and g is the gravitational acceleration.

Write down the mass conservation equation incorporating the ice flux Q(x, t) and con-
stant accumulation rate a0, and suppose that the ice flux is zero at x = 0.

The ice sheet ends in the ocean and calves icebergs from its front at x = xf (t). A model
for this process is to prescribe boundary conditions

H =
⇢o

⇢
d, Q = Q0

✓
d
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at x = xf ,

where d(x) = max(0,�b(x)) is the water depth, ⇢o > ⇢ is the ocean density, and d0, Q0

and ↵ are positive constants (the first of these says that the ice at the front is floating;
the second says that the ice flux depends on the water depth at the front).

(ii) Non-dimensionalise the model using [b] = [d] = d0, [Q] = Q0, [x] = Q0/a0, and [H] =
(2⌧c[x]/⇢g)1/2, to show that

H (Hx + "bx) = �
1

2
, Ht +Qx = 1 0 < x < xf (t),

with
Q = 0 at x = 0, H =

⇢o

⇢
"d, Q = d

↵ at x = xf (t),

where " = d0/[H].

(iii) Supposing " ⌧ 1, find an approximate expression for H(x) and hence calculate the
volume V of the ice sheet (per unit width) depending on xf . By integrating the mass
conservation equation, show that this volume satisfies

dV

dt
= xf � [d (xf )]

↵
,

and hence derive an ordinary di↵erential equation for xf (t).

(iv) Suppose that b(0) > 0 and b(x) ! �1 rapidly as x ! 1. Show that if b(x) is
monotonically decreasing there is a unique (non-trivial) steady state but that if b(x) is
non-monotonic there may be multiple steady states. Discuss their stability.


