Extension sheet

[*These questions are optional. Some require numerical solutions of the equations, for which you may write your own code or use the Matlab templates available online.*]

1. Carbon cycles Re-consider the model from Sheet 2 Question 1 for the evolution of albedo and partial pressure of atmospheric $CO₂$,

$$
\dot{a} = f(a, p) = B(\Theta) - a,
$$

$$
\dot{p} = g(a, p) = \alpha (1 - wp^{\mu}e^{\Theta}),
$$

where $\Theta(a, p) = \frac{q(1-a)-1}{\nu} + \lambda p$, and $B(\theta)$ is a monotonic function decreasing from a_+ to a_- , and where, μ , α , ν , λ , w . and q are all constant parameters.

Taking the specific form

$$
B(\theta) = \frac{1}{2}(a_+ + a_-) + \frac{1}{2}(a_+ - a_-)\tanh(c_1 + c_2\theta),
$$

with $a_{-} = 0.11$, $a_{+} = 0.58$, $c_{1} = 0.2$ and $c_{2} = 0.6$, and taking other parameters as $\mu = 0.3$, $q = 1.37, \nu = 0.18, \lambda = 0.25$, solve the model numerically and confirm the results of the earlier question. That is, that a steady state on the intermediate branch of the *a* nullcline is unstable if α is small enough.

Illustrate how the behaviour of the model depends on the parameters, by plotting example solutions for $a(t)$ and $p(t)$, and the trajectory $(p(t), a(t))$ on the phase plane.

2. River mouth. The water depth *h* and velocity *u* in a river are modelled using the dimensionless St Venant equations,

$$
h_t + (hu)_x = 0,
$$
 $F^2(u_t + uu_x) = -h_x + 1 - \frac{u^2}{h},$

where F is the Froude number. The river has uniform depth $h = 1$ far upstream (where $x \rightarrow -\infty$).

(i) If the river flows into a large lake at $x = 0$ explain with a diagram why it may be appropriate to prescribe the condition

$$
h \to x \quad \text{as} \quad x \to \infty.
$$

- (ii) Find an implicit expression for the steady-state water depth $h(x)$ in the case $F < 1$ (subcritical river flow), and draw a sketch of this solution.
- (iii) If $F > 1$ (supercritical river flow), explain why the steady-state solution has $h = 1$ for $x < x_s$, and use jump conditions that conserve mass and momentum to determine the location of the shock,

$$
x_s = -\frac{1}{2} + \frac{1}{2}(1 + 8F^2)^{1/2} - (F^2 - 1)\left[\frac{1}{3}\ln\left(\frac{-\frac{3}{2} + \frac{1}{2}(1 + 8F^2)^{1/2}}{(1 + 2F^2)^{1/2}}\right) + \frac{1}{\sqrt{3}}\tan^{-1}\left(\frac{\sqrt{3}}{(1 + 8F^2)^{1/2}}\right)\right].
$$

Draw a sketch of this solution.

[*Recall that the jump condition for a conservation equation* $P_t + Q_x = R$ *is* $\dot{x}_s =$ $[Q]_{-}^{+}/[P]_{-}^{+}.$

3. Anti-dunes A dimensionless model for stream flow over an erodible bed is given by

$$
\frac{\partial}{\partial x}(hu) = 0, \qquad F^2 u \frac{\partial u}{\partial x} + \frac{\partial s}{\partial x} + \frac{\partial h}{\partial x} = 0,
$$

$$
\frac{\partial s}{\partial t} + \frac{\partial q}{\partial x} = 0, \qquad \frac{\partial q}{\partial x} = q^*(u) - q,
$$

where *s* is the bed elevation, *h* and *u* are the water depth and velocity, $q^*(u)$ is a monotonically increasing bedload function, and *F* is a constant.

(i) Assuming that $s = 0$ and $h = u = 1$ at some point in the flow, find an algebraic relationship between *u* and *s*, and show that the maximum possible value of *s* is

$$
s_* = 1 + \frac{1}{2}F^2 - \frac{3}{2}F^{2/3}.
$$

Hence show that $q^*(u)$ can be treated as a multivalued function of *s*, with upper and lower branches denoted $f_+(s)$ and $f_-(s)$ respectively. Sketch a graph of this function, indicating the location of $s_$ ».

(ii) Consider a travelling wave solution moving with constant velocity $-V$, where $V > 0$, and with bed elevation oscillating continuously between its minimum s_{\min} and maximum *s*_{max}. The bedslope is continuous except at *s*_{min}. By writing $\xi = x + Vt$, and $s = s(\xi)$, show that

$$
V\frac{\mathrm{d}s}{\mathrm{d}\xi} = Q - Vs - f_{\pm}(s),
$$

where $Q = q + Vs$ is a constant.

(iii) By consideration of the sign of $ds/d\xi$ show that a solution which evolves smoothly from *s*_{min} to *s*_{max} and back again is only possible if $s_{\text{max}} = s_*$ and $Q = V s_* + f_{\pm}(s_*)$, and show that the wavelength of the solution is given by

$$
\ell = \int_{s_{\min}}^{s_{\max}} \left\{ \frac{V}{Q - Vs - f_{-}(s)} - \frac{V}{Q - Vs - f_{+}(s)} \right\} ds.
$$

- (iv) Draw a rough sketch of the travelling wave profiles for both the bed elevation and the corresponding water surface.
- 4. Bergschrund Re-consider the model for a steady-state glacier from Sheet 4 Question 1. With no sliding, this is given in dimensionless form by

$$
\frac{\partial}{\partial x}\left[\left(1-\mu\frac{\partial H}{\partial x}\right)^n \frac{H^{n+2}}{n+2}\right] = a,
$$

with $a = 1 - x$. Boundary conditions are $q = 0$ at $x = 0$ and $q = 0$ at $x = x_m$ where q is the term in square brackets, and the end of the glacier is at $x_m = 2$ (found earlier).

- (i) Consider the case $0 < \mu \ll 1$. Find the 'outer' solution for $H(x)$ obtained by setting $\mu = 0$, and explain why there are boundary layers at both $x = 0$ and $x = 2$.
- (ii) By an appropriate rescaling of the variables, show that the boundary layer at $x = 0$ is described by the equation

$$
\frac{\mathrm{d}\hat{H}}{\mathrm{d}\hat{x}} = 1 - \left[\frac{(n+2)\hat{x}}{\hat{H}^{n+2}}\right]^{1/n},
$$

and by solving this equation numerically, show that there is a unique initial value, $H(0)$ = H_* , for which the solution matches with the appropriate far-field behaviour of the outer solution.

[*Hint: for* $n = 3$ *, the correct value is* $\hat{H}_* \approx 1.25...$ *; try solving the equation with different initial values close to this and plot how they compare with the required far-field behaviour.*]

(iii) By scaling the variables as $x = 2 - \mu^{(n+2)/(n+1)}\hat{x}$, $H = \mu^{1/(n+1)}\hat{H}$, show that the boundary layer at $x = 2$ is similarly described by the equation

$$
\frac{\mathrm{d}\hat{H}}{\mathrm{d}\hat{x}} = \left[\frac{(n+2)\hat{x}}{\hat{H}^{n+2}}\right]^{1/n} - 1,
$$

which is to be solved subject to $\hat{H} = 0$ at $\hat{x} = 0$. Hence show that the surface slope is infinite at the end of the glacier, but not as steep as suggested by the outer solution.

5. Marine ice sheets

(i) If the bed of an ice sheet is a plastic material (such as mud), the basal shear stress τ_b must be equal to a prescribed yield stress τ_c . By integrating the vertical and horizontal force balance equations for a shallow ice layer, show that the ice thickness $H(x,t)$ and bed elevation $b(x)$ in this case must satisfy

$$
\rho g H \left(H_x + b_x \right) = -\tau_c,
$$

where ρ is the ice density and q is the gravitational acceleration.

Write down the mass conservation equation incorporating the ice flux $Q(x, t)$ and constant accumulation rate a_0 , and suppose that the ice flux is zero at $x = 0$.

The ice sheet ends in the ocean and calves icebergs from its front at $x = x_f(t)$. A model for this process is to prescribe boundary conditions

$$
H = \frac{\rho_o}{\rho} d, \qquad Q = Q_0 \left(\frac{d}{d_0}\right)^\alpha \quad \text{at} \quad x = x_f,
$$

where $d(x) = \max(0, -b(x))$ is the water depth, $\rho_o > \rho$ is the ocean density, and d_0, Q_0 and α are positive constants (the first of these says that the ice at the front is floating; the second says that the ice flux depends on the water depth at the front).

(ii) Non-dimensionalise the model using $[b]=[d] = d_0, [Q] = Q_0, [x] = Q_0/a_0$, and $[H] =$ $(2\tau_c[x]/\rho g)^{1/2}$, to show that

$$
H(H_x + \varepsilon b_x) = -\frac{1}{2}, \quad H_t + Q_x = 1 \qquad 0 < x < x_f(t),
$$

with

$$
Q = 0
$$
 at $x = 0$, $H = \frac{\rho_o}{\rho} \varepsilon d$, $Q = d^{\alpha}$ at $x = x_f(t)$,

where $\varepsilon = d_0/[H]$.

(iii) Supposing $\varepsilon \ll 1$, find an approximate expression for $H(x)$ and hence calculate the volume V of the ice sheet (per unit width) depending on x_f . By integrating the mass conservation equation, show that this volume satisfies

$$
\frac{\mathrm{d}V}{\mathrm{d}t} = x_f - [d(x_f)]^{\alpha},
$$

and hence derive an ordinary differential equation for $x_f(t)$.

(iv) Suppose that $b(0) > 0$ and $b(x) \rightarrow -\infty$ rapidly as $x \rightarrow \infty$. Show that if $b(x)$ is monotonically decreasing there is a unique (non-trivial) steady state but that if $b(x)$ is non-monotonic there may be multiple steady states. Discuss their stability.