
Topics in fluid mechanics

Problem sheet 3.

1. An isolated turbulent cylindrical plume in a stratified medium of density ρ0(z)
is described by the inviscid Boussinesq equations

ρ(uur + wuz) = −pr,

ρ(uwr + wwz) = −pz − ρg,

uρr + wρz = 0,

1

r
(ru)r + wz = 0,

where (r, z) are cylindrical coordinates, (u,w) the corresponding velocity com-
ponents, p the pressure, ρ the density, ρ0 the reference density, and g is the
acceleration due to gravity. If ρ = ρ0 − ∆ρ, explain what is meant by the
Boussinesq approximation.

Suppose the edge of the plume is at radius r = b, such that w = 0 there.
Suppose also that the plume entrains ambient fluid, such that

(ru)|b = −bαw̄,

where w̄ denotes the cross-sectional average value of w. Deduce that the plume
volume flux

Q = 2π

∫ b

0

rw dr

satisfies
dQ

dz
= 2παbw̄.

The momentum flux is defined by

M = 2π

∫ b

0

rw2 dr.

Show, assuming that
∂p

∂z
= −ρ0g

throughout the plume, that

dM

dz
= 2π

∫ b

0

rg′ dr,

where

g′ =
g∆ρ

ρ0
.
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Why would the hydrostatic approximation be appropriate?

The buoyancy flux is defined by

B = 2π

∫ b

0

rwg′ dr;

assuming g′ = 0 at r = b, show that

dB

dz
≈ −N2Q,

where the Brunt–Väisälä frequency N is defined by

N =

(
−gρ

′
0(z)

ρ0

)1/2

,

and it is assumed that ∆ρ� ρ0.

2. A fluid flows in a rapidly rotating container D such that its velocity is given by
the system

∇.u = 0,

ut + k× u = −∇p.

Assuming k is in the z direction, show that

∇× (k× u) = −uz,

∇.(k× u) = −k.ω, ω = ∇× u.

Hence show that p satisfies

∇2ptt + pzz = 0 in D.

Next, show that

uttt + ut + k(k.∇)p− k×∇pt = −∇ptt,

and deduce that if u.n = 0 on the boundary ∂D, then

(n.k)pz − n× k.∇pt + n.∇ptt = 0 on ∂D.

Oscillatory solutions of the form p = φ(r)eiλt are sought. Write down the
equation satisfied by φ, and show that it is hyperbolic (with z being the time-

like variable) if |λ| < 1, and that the ‘wave speed’ is
λ√

1− λ2
.

Write down the equation and boundary conditions for φ in the two-dimensional
(x, z) unit square [0, 1]×[0, 1], and deduce that normal mode solutions cosmπx cosnπz
exist, and find the corresponding values of λ.
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3. Derive a reference state for a dry atmosphere (no condensation) by using the
equation of state

p =
ρRT

Ma

,

the hydrostatic pressure
∂p

∂z
= −ρg,

and the dry adiabatic temperature equation

ρcp
dT

dt
− dp

dt
= 0.

Show that
T̄ = T0 −

gz

cp
, p̄ = p0p

∗(z),

where

p∗(z) =

(
1− gz

cpT0

)Macp/R

.

Use the typical values cpT0/g ≈ 29 km, Macp/R ≈ 3.4, to show that the pressure
can be adequately represented by

p̄ = p0 exp(−z/H),

where here the scale height is defined as

H =
RT0
Mag

≈ 8.4 km.

(A slightly better numerical approximation near the tropopause is obtained if
the scale height is chosen as 7 km.)

4. The mass and momentum equations for atmospheric motion in the rotating
frame of the Earth can be written in the form

ρt + ∇. [ρu] = 0,

ρ

[
du

dt
+ 2Ω× u

]
= −∇p− ρgk̂,

where (x, y, z) are local Cartesian coordinates at latitude λ = λ0. What is the
magnitude of Ω?

Scale the variables by writing

x, y ∼ l, z ∼ h, u, v ∼ U, w ∼ δU, t ∼ l

U
,

ρ ∼ ρ0, T ∼ T0, p = p0p̄(z) + 2ρ0ΩUl sinλ0 P,
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where

δ =
h

l
, p0 = ρ0gh =

ρ0RT0
M

,

and show that the horizontal components take the form

ε
du

dt
− fv = −1

ρ
Px,

ε
dv

dt
+ fu = −1

ρ
Py,

where

f =
sinλ

sinλ0
,

and give the definition of the Rossby number ε. Show that in a linear approxi-
mation,

f ≈ 1 + εβy,

where

β =
l

RE

cotλ0
ε

= O(1),

and RE is Earth’s radius.

The dimensionless pressure Π = p/p0, density ρ, temperature T and potential
temperature θ in the atmosphere satisfy the relations

ρ =
Π

T
, T = θΠα, −∂Π

∂z
= ρ,

where α =
R

Macp
is constant. Assuming that

Π = p̄+ ε2P, θ = θ̄ + ε2Θ,

and that ε� 1, deduce that ρ ≈ ρ̄(z), and thence that

w = O(ε), ρ̄u ≈ −Py, ρ̄v ≈ Px.

Show also that consistency between the two forms of scaled pressure requires
the definition of the velocity scale to be

U =
8(Ωl sinλ0)

3

gh
,

and determine this value, if l = 1,000 km, λ0 = 45◦, g = 9.8 m s−2, h = 8 km.

Show that

Θ ≈ θ̄2
∂

∂z

[
P

p̄1−α

]
,

and by defining a stream function via P = ρ̄ψ and assuming that θ̄ ≈ 1, deduce
that Θ ≈ ψz, and hence deduce the thermal wind equations:

∂u

∂z
= −∂Θ

∂y
,

∂v

∂z
=
∂Θ

∂x
.
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5. The quasi-geostrophic potential vorticity equation is

d

dt

[
∇2ψ +

1

ρ̄

∂

∂z

(
ρ̄

S

∂ψ

∂z

)]
+ βψx =

1

ρ̄

∂

∂z

(
ρ̄H

S

)
,

where ∇2 =
∂2

∂x2
+

∂2

∂y2
, and ρ̄, S and H are functions of z, the first two being

positive. The horizontal material derivative is

d

dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
, u = −ψy, v = ψx.

In the Eady model of baroclinic instability, solutions to the QGPVE are sought
in a channel 0 < y < 1, 0 < z < 1, with boundary conditions

d

dt
ψz = 0 at z = 0, 1, ψx = 0 at y = 0, 1,

and it is supposed that ρ̄ and S are constant, and β = H = 0. Show that a
particular solution is the zonal flow ψ = −yz, and describe its velocity field.
By considering the thermal wind equations, explain why this is a meaningful
solution.

By writing ψ = −yz + Ψ and linearising the equations, derive an equation for
Ψ, and show that it has solutions

Ψ = A(z)eik(x−ct) sinnπy,

providing
(z − c)(A′′ − µ2A) = 0,

(z − c)A′ = A on z = 0, 1,

where you should define µ.

Using the fact that xδ(x) = 0, show that if 0 < c < 1, the solution can be found
as a Green’s function for the equation A′′ − µ2A = 0.

Give a criterion for instability, and show that for the normal mode solutions in
which A is analytic,

c =
1

2
± 1

µ

{(µ
2
− coth

µ

2

)(µ
2
− tanh

µ

2

)}1/2

,

and hence show that the zonal flow is unstable if µ < µc, where

µ

2
= coth

µ

2
,

and calculate this value. Deduce that the flow is unstable for S < Sc, and
calculate Sc.
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