Topics in fluid mechanics

PROBLEM SHEET 4.

1. A basic two fluid model of two-phase flow is given by the equations
(apg): + (apgv). =T,

{pl-—a)}y +{p(l — x)u}, =T,
pglve +vv:] = —p. — M,
pilus + Dywu,] = —p, + M,

where « is void fraction, v and v are liquid and gas phase velocities, p is pressure,
and p, and p; are gas and liquid densities; the constant D; > 1 is a profile coeffi-
cient, and I' and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form
AY, + By, =c.

(i) Assuming p, and p; are constant and p, < p;, show that the characteristics
are generally real.
(i) If

dpqg 1 dpr 1

dp 2 dp ¢’
calculate approximate values of the characteristics if © ~ v < ¢ ~ ¢, and
pg < pi, and comment on the physical significance of these.

2. Consider a two-phase (liquid-gas) flow through a pipe with cross-sectional area
A. The coordinate system is chosen so that the z-axis points along the centre
of the pipe, and = and y are the cross-sectional coordinates; ¢ denotes time.
Averaged quantities (denoted by bars) only depend on z and t.

(a) Define the indicator function X,(z,y, z,t) for the gas phase and use it to
derive the mass conservation equation

9(apy) + d(apyv)
ot 0z

In your derivation, the gas volume fraction «(z,t), the gas average density
py(z,t) and gas average velocity ©(z,t) must be defined as integrals over the
pipe cross section. What is the analogous equation (and definitions) for the
liquid phase with density p;(z,t) and average velocity u(z,t)?

= 0.

(b) Now drop the bars on the average variables, and consider an annular flow
through a circular pipe of radius R with a gas core and the liquid flowing along



the wall, so that the gas-liquid interface is located at radius Ry/a. Assume that
pg > 0 and p; > 0 are constant. The momentum conservation equations are
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where D; > 1 is a constant. Iy denotes the interfacial drag on the gas due to
the liquid, and Fy,, is the drag on the liquid at the wall. Assume that

Fy = QWR\/apgfgl(v —u)lv—u|, Fup =27Rp frou|ul,

where fy and f;,, are dimensionless friction factors. At z = 0, the inlet condi-
tions are a = ag, v = vy, U = Uy, and p = py.

Non-dimensionalise the system by using the scalings
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and write the equations in terms of variables £, u, v, p and parameters ¢, D,
and B. Express the non-dimensional inlet values, 3y, ug, vo and pg in terms of
given quantities.

where

(c) Suppose 0 < D;—1 < 1, B < 1, ¢ < 1. Derive the leading order equations
for the steady state, and find solutions for u > 1, v > 0, § > 0 that satisfy the
inlet conditions 8 = fy, v =1, u = .

. The energy equation for a one-dimensional two-phase flow in a tube is given by
LL + apyepg(Ty +0T%) + (1 — ) picp(Th + uT%) — {(apg)e + (apgv)s}

—{A —a)p} +{(1 —a)pu}.] = Q,
where
['= (apg)e + (apgv). = =[{(1 = a)pi}e + {(1 — a)pru}.],
and the temperatures of the two phases are assumed equal, and denoted by T'.

The enthalpy of each phase satisfies dhy, = ¢, dT', and is related to the internal

energy e by

hk:6k+@;
Pk



L = hy — Iy is the latent heat. Deduce that the energy equation can be written
in the form

(apgeg)e + (apgegv). + (1 — a)per]s + [(1 — @) prequ]. = Q.
Define the mixture density by

p=p(l—a)+p

the mixture pressure by
p=(1—a)p+ apy,

the mixture internal energy by
pe = apgeg + (1 — a)pey,
and the mixture enthalpy by
h=e+ E;
p

deduce that
ph = apghy + (1 — a)pihy.
If the flow is homogeneous (i.e., u = v), deduce that

de

p%:Q7

d
where — is the material derivative, and if the pressure drop along the tube
Ap < pgL, show that h =~ e, and deduce that

% _ (pl — pg)Q'
0z pgpiL

. An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length [ is given by

pr T UpPy = —Uzp,

4fpu?
d Y

p(uy +uu,) = —p, — pg —
p(hi + uhy) = Q,

where () is constant, and
L
h ~ h* + pg
p
in the two-phase region; h*, L and () are constants, p, and p; are (constant) gas

and liquid densities, h is enthalpy, and p, p and u are mixture density, pressure
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and velocity. For h < hg,y, the saturation enthalpy, only liquid is present, p = py,
and the above relation for A is irrelevant.

Boundary conditions for the flow are that
h=hy<hg,, u=U({t) at z=0,

h=hg on z=r(t),

where the unknown boiling boundary r(¢) is to be determined, and the pressure
drop along the pipe, Ap, is prescribed.

Show that

and give the definition of 7.

Non-dimensionalise the two-phase model by scaling
pr~p, zr~l, t~1 u U~ ug,
and show that the two-phase velocity and density satisfy

Z—T

—Inp t
u=U+ , Z:T+8/ Uy (t — e€)eb d, 7’:/ U(s) ds,
0 t—1

where Uy (t) = U(t — 1), and give the definition of .

Show that the pressure drop in the single phase region is
Apyy, = [ApiU + Ap, + ApsU?)r,

where
Aflpug _
d 0T

Write down an integral expression for the two-phase pressure drop in the form

Ap; = pud,  Apy = pgl, Apy =

1
Apy, = / (Ap;®; + Apy®, + Aps®y] dz,

where the functions ®;, depend on uw and p and their derivatives.

If U = V in the steady state, explain why 0 < V' < 1. Write down an expression
for Ap as a function of V. Show that if V' is sufficiently close to one, Ap is an
increasing function of V', but that if ¢ is sufficiently small, it is a decreasing
function of V' over part of its range.

Now suppose that Ap; = Ap, = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and p), write

U=V+ov, r=ro+r, u=u+u, p=po+pl,
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and linearise the equations. Hence derive expressions for 1, u; and p;.

By taking v = e, derive an algebraic equation for o from the condition that
the perturbation to Ap is zero. If only the single phase pressure drop term is
included, show that

0 = _%(1 - 6_0)7

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ¢ is assumed to be small,

show that
(e — 1) 4
g = ’y € Y 7 - 1 _ V?
and deduce that Reo — oo as 0 — oo € C, and thus that the model is ill-posed.

If both pressure drops are included (and the two-phase approximation for small
e is used), show that

(1 —e?) A%

S+e ’ (1-V)2’

and deduce that the model is ill-posed for < 1.

Finally, if the inertial term in the single phase region (only) is included, show

that
2e Ap;

(1 — V)2Ap f’
and deduce that the model is well-posed, but the steady state is unstable for
small €.

vol+o(0+e ) —y(l—-e?)=0, v=



