
Topics in fluid mechanics

Problem sheet 4.

1. A basic two fluid model of two-phase flow is given by the equations

(αρg)t + (αρgv)z = Γ,

{ρl(1− α)}t + {ρl(1− α)u}z = −Γ,

ρg[vt + vvz] = −pz −M,

ρl[ut +Dluuz] = −pz +M,

where α is void fraction, u and v are liquid and gas phase velocities, p is pressure,
and ρg and ρl are gas and liquid densities; the constant Dl > 1 is a profile coeffi-
cient, and Γ and M are interfacial source and drag terms, which are prescribed
algebraic functions of the variables.

Explain how to find the characteristics of this system when written in the form

Aψt +Bψz = c.

(i) Assuming ρg and ρl are constant and ρg � ρl, show that the characteristics
are generally real.

(ii) If
dρg
dp

=
1

c2g
,

dρl
dp

=
1

c2l
,

calculate approximate values of the characteristics if u ∼ v � cl ∼ cg and
ρg � ρl, and comment on the physical significance of these.

2. Consider a two-phase (liquid-gas) flow through a pipe with cross-sectional area
A. The coordinate system is chosen so that the z-axis points along the centre
of the pipe, and x and y are the cross-sectional coordinates; t denotes time.
Averaged quantities (denoted by bars) only depend on z and t.

(a) Define the indicator function Xg(x, y, z, t) for the gas phase and use it to
derive the mass conservation equation

∂(αρ̄g)

∂t
+
∂(αρ̄gv̄)

∂z
= 0.

In your derivation, the gas volume fraction α(z, t), the gas average density
ρ̄g(z, t) and gas average velocity v̄(z, t) must be defined as integrals over the
pipe cross section. What is the analogous equation (and definitions) for the
liquid phase with density ρ̄l(z, t) and average velocity ū(z, t)?

(b) Now drop the bars on the average variables, and consider an annular flow
through a circular pipe of radius R with a gas core and the liquid flowing along
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the wall, so that the gas-liquid interface is located at radius R
√
α. Assume that

ρg > 0 and ρl > 0 are constant. The momentum conservation equations are

ρg

[
∂(αv)

∂t
+
∂(αv2)

∂z

]
= −α∂p

∂z
− Fgl

A
,

ρl

[
∂{(1− α)u}

∂t
+
∂{(1− α)Dlu

2}
∂z

]
= −(1− α)

∂p

∂z
+

(Fgl − Flw)

A
,

where Dl > 1 is a constant. Fgl denotes the interfacial drag on the gas due to
the liquid, and Flw is the drag on the liquid at the wall. Assume that

Fgl = 2πR
√
αρgfgl(v − u)|v − u|, Flw = 2πRρlflwu|u|,

where fgl and flw are dimensionless friction factors. At z = 0, the inlet condi-
tions are α = α0, v = v0, u = u0, and p = p0.

Non-dimensionalise the system by using the scalings

z ∼ R

fgl
, t ∼ R

fglεα0v0
, α = 1−Bβ,

u ∼ εα0v0, v ∼ α0v0, p− pa ∼ ρgα
2
ov

2
0,

where

B =
flw
fgl

, ε =

(
ρgfgl
ρlflw

)1/2

,

and write the equations in terms of variables β, u, v, p and parameters ε, Dl

and B. Express the non-dimensional inlet values, β0, u0, v0 and p0 in terms of
given quantities.

(c) Suppose 0 < Dl− 1� 1, B � 1, ε� 1. Derive the leading order equations
for the steady state, and find solutions for u > 1, v > 0, β > 0 that satisfy the
inlet conditions β = β0, v = 1, u = u0.

3. The energy equation for a one-dimensional two-phase flow in a tube is given by

ΓL+ αρgcpg(Tt + vTz) + (1− α)ρlcpl(Tt + uTz)− {(αpg)t + (αpgv)z}

−[{(1− α)pl}t + {(1− α)plu}z] = Q,

where
Γ = (αρg)t + (αρgv)z = −[{(1− α)ρl}t + {(1− α)ρlu}z],

and the temperatures of the two phases are assumed equal, and denoted by T .

The enthalpy of each phase satisfies dhk = cpk dT , and is related to the internal
energy ek by

hk = ek +
pk
ρk

;
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L = hg − hl is the latent heat. Deduce that the energy equation can be written
in the form

(αρgeg)t + (αρgegv)z + [(1− α)ρlel]t + [(1− α)ρlelu]z = Q.

Define the mixture density by

ρ = ρl(1− α) + ρgα,

the mixture pressure by
p = (1− α)pl + αpg,

the mixture internal energy by

ρe = αρgeg + (1− α)ρlel,

and the mixture enthalpy by

h = e+
p

ρ
;

deduce that
ρh = αρghg + (1− α)ρlhl.

If the flow is homogeneous (i. e., u = v), deduce that

ρ
de

dt
= Q,

where
d

dt
is the material derivative, and if the pressure drop along the tube

∆p� ρgL, show that h ≈ e, and deduce that

∂u

∂z
=

(ρl − ρg)Q
ρgρlL

.

4. An approximate homogeneous two-phase model for density wave oscillations in
a pipe of length l is given by

ρt + uρz = −uzρ,

ρ(ut + uuz) = −pz − ρg −
4fρu2

d
,

ρ(ht + uhx) = Q,

where Q is constant, and

h ≈ h∗ +
ρgL

ρ

in the two-phase region; h∗, L and Q are constants, ρg and ρl are (constant) gas
and liquid densities, h is enthalpy, and ρ, p and u are mixture density, pressure
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and velocity. For h < hsat, the saturation enthalpy, only liquid is present, ρ = ρl,
and the above relation for h is irrelevant.

Boundary conditions for the flow are that

h = h0 < hsat, u = U(t) at z = 0,

h = hsat on z = r(t),

where the unknown boiling boundary r(t) is to be determined, and the pressure
drop along the pipe, ∆p, is prescribed.

Show that

r(t) =

∫ t

t−τ
U(s) ds,

and give the definition of τ .

Non-dimensionalise the two-phase model by scaling

ρ ∼ ρl, z, r ∼ l, t ∼ τ, u, U ∼ u0,

and show that the two-phase velocity and density satisfy

u = U +
z − r
ε

, z = r + ε

∫ − ln ρ

0

U1(t− εξ)eξ dξ, r =

∫ t

t−1

U(s) ds,

where U1(t) = U(t− 1), and give the definition of ε.

Show that the pressure drop in the single phase region is

∆psp = [∆piU̇ + ∆pg + ∆pfU
2]r,

where

∆pi = ρlu
2
0, ∆pg = ρlgl, ∆pf =

4flρlu
2
0

d
, u0 =

l

τ
.

Write down an integral expression for the two-phase pressure drop in the form

∆ptp =

∫ 1

r

(∆piΦi + ∆pgΦg + ∆pfΦf ] dz,

where the functions Φk depend on u and ρ and their derivatives.

If U = V in the steady state, explain why 0 < V < 1. Write down an expression
for ∆p as a function of V . Show that if V is sufficiently close to one, ∆p is an
increasing function of V , but that if ε is sufficiently small, it is a decreasing
function of V over part of its range.

Now suppose that ∆pi = ∆pg = 0. To examine the stability of the steady state
(denoted by a suffix zero for r, u and ρ), write

U = V + v, r = r0 + r1, u = u0 + u1, ρ = ρ0 + ρ1,
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and linearise the equations. Hence derive expressions for r1, u1 and ρ1.

By taking v = eσt, derive an algebraic equation for σ from the condition that
the perturbation to ∆p is zero. If only the single phase pressure drop term is
included, show that

σ = −1
2
(1− e−σ),

and deduce that the steady state is stable.

If only the two-phase pressure drop is included, and ε is assumed to be small,
show that

σ = γ(eσ − 1), γ =
2V

1− V
,

and deduce that Reσ →∞ as σ →∞ ∈ C, and thus that the model is ill-posed.

If both pressure drops are included (and the two-phase approximation for small
ε is used), show that

σ =
γ(1− e−σ)

δ + e−σ
, δ =

4εV 2

(1− V )2
,

and deduce that the model is ill-posed for δ < 1.

Finally, if the inertial term in the single phase region (only) is included, show
that

νσ2 + σ(δ + e−σ)− γ(1− e−σ) = 0, ν =
2ε∆pi

(1− V )2∆pf
,

and deduce that the model is well-posed, but the steady state is unstable for
small ε.
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