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HEALTH WARNING: The following lecture notes are meant as a rough guide to the
lectures. They are not meant to replace the recorded lectures. You should expect that
some material in these notes will not be covered in class and that extra material will be
covered during the recorded lectures (especially longer proofs, examples, and applications).
Nevertheless, I will try to follow the notation and the overall structure of the notes as much
as possible.

WHAT IS EXAMINABLE? The one and only official examinable content of the course
is described on the web page https://courses.maths.ox.ac.uk/.

I will not discuss any further the possible content of the examination paper. Any query
asking whether a certain topic is examinable or non-examinable shall be ignored.
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Useful formulas

A few key formulas and definitions that we will be using throughout this course.

Tensor calculus Here φ, v, T are, respectively, scalar, vector and 2nd-order tensor fields
defined on a moving body. Upper case refer to the reference configuration, lower case to the
current configuration.

F = Grad x = ∂xi
∂Xj

ei ⊗Ej Deformation Gradient (T1)

J = detF Determinant of F (T2)

grad v = ∂v
∂xi
⊗ ei Definition of the gradient of a vector (T3)

grad T = ∂T
∂xi
⊗ ei Definition of the gradient of a tensor (T4)

div T =
∂Tij
∂xi

ej Definition of the divergence of a tensor (T5)

Gradφ = FTgradφ Gradients of a scalar (T6)
Grad v = (grad v)F Gradients of a vector (T7)
Div v = J div (J−1Fv) Divergences of a vector (T8)
Div T = J div (J−1FT) Divergences of a tensor (T9)
div(J−1F) = 0 An important identity (T10)
∂
∂λ(detT) = (detT)tr

(
T−1 ∂T

∂λ

)
A useful identity. λ is a scalar (T11)

Kinematics

F = Grad x(X, t) The deformation gradient (K1)
J = detF Determinant of F (K2)
dx = FdX Transformation of line element (K3)
da = JF-TdA Transformation of area element (K4)
dv = JdV Transformation of volume element (K5)
C = FTF Right Cauchy-Green tensor (K6)
B = FFT Left Cauchy-Green tensor (K7)
E = 1

2

(
FTF− 1

)
Euler strain tensor (K8)

L = grad v Velocity gradient (K9)

Ḟ = LF Evolution of the deformation gradient(v : velocity) (K10)

J̇ = Jdiv v Evolution of the volume element (K11)
D = 1

2

(
L + LT

)
Eulerian strain rate tensor (K12)

W = 1
2

(
L− LT

)
Rate of rotation tensor (K13)

Mechanics Here ρ is the mass density, T , the Cauchy stress tensor, v the velocity, W = JΨ,
where Ψ is the internal energy density.

ρ̇+ ρdivv = 0 Conservation of mass (Eulerian form) (M1)
divT + ρb = ρv̇ Conservation of linear momentum (Eulerian form) (M2)
divTT = T = 0 Conservation of angular momentum (Eulerian form) (M3)

Ẇ = Jtr(TD) Conservation of energy (Eulerian form) (M4)
Tn = t Surface traction associated with T(n: normal outward unit) (M5)
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Material frame indifference Consider two different frame, connected by a rigid body
motion x∗ = Qx + c. Let φ, v, T be, respectively, scalar, vector and 2nd-order tensor fields,
and F the deformation gradient. Then

F∗ = QF
φ is objective if φ∗ = φ
v is objective if v∗ = Qv
T is objective if T∗ = QTQt

List of assumptions

• Continuum assumption. We consider a body with reference configuration B0 ⊂ R3.
At time t, the body occupies the current configuration Bt ⊂ R3. A material point,
initially at X ∈ B0 is mapped to a point x ∈ Bt by the one-parameter mapping x =
χ(X, t) so that χ : B0 → Bt. The continuum assumption states that χ is a bijection
mapping for all time t. This implies that we can write x = χ−1(X). We further assume
that this mapping is twice continuously differentiable in X and t. This assumption
can be relaxed in problems involving phase boundaries (with possible jumps in the
first derivative). In many instances and applications, we will assume that χ is actually
smooth.

• Conservation of mass. We assume the existence of a scalar density function ρ = ρ(x)
defined on the body Bt and whose integral over any material subset Ωt ⊂ Bt of the body
remains constant in time. So that d

dt

∫
Ωt
ρ(x)dv = 0

• Balance of linear momentum. We assume that the rate of change of linear momen-
tum of an arbitrary material subset Ωt ⊂ Bt is equal to sum of all the forces acting on
Ωt.

• Balance of angular momentum. We assume that the rate of change of angular
momentum of an arbitrary material subset Ωt ⊂ Bt with respect to a given point is
equal to sum of all the torques acting on Ωt with respect to the same point.

• Polar media. For polar media, we assume that the body is not subject to body or
contact torques.

• Cauchy’s postulate. Cauchy’s postulate simply state that the traction vector on a
given surface element depends smoothly on the the normal to that element.
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Foreword

The traditional approach to continuum mechanics is to consider the regime of small defor-
mations, where a material is slightly perturbed from an unstressed configuration. In that
regime, the governing equations and constitutive relationships are linear. An example of this
approach is found in This theory of linear elasticity that has been successfully developed over
the last two centuries to address many fundamental problems of physics and engineering [93].

Starting in the 1940’s, it was found that the theory of linear elasticity was inadequate to
model the response of elastomers such as rubbers in large deformations [128, 147]. Similarly,
many tissues and organs also operate in large deformations. For instance, large arteries in
mammals are typically stretched between 20% to 60% from their unloaded configurations
[68, 83] and their response to loads is drastically different from the response of elastomers.
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Figure 1: The importance of nonlinearities and large deformations is demonstrated in a
pressure experiment as originally investigated by Mallock in 1890 [102] (A). The experiment
consists in increasing the pressure inside a tube or a sphere while recording the radius of the
bulge. B. In the case of rubber, the experiment of Osborne and Sutherland [122] shows a
sudden limit-point instability at a critical pressure. Past that pressure, the radius suddenly
increases. C. In a similar experiment performed on a dog bladder, the behavior of the system
is qualitatively different and the instability disappears. In this case, it will be increasingly
harder to increase the size of the bulge by increasing the pressure.

A striking example of the difference between rubbers and soft tissues is observed in experi-
ments first performed in the nineteenth Century [102, 122]. In these experiments, a cylindrical
elastic membrane made out of rubber or soft tissue is pressurized (see Figure 1). At a critical
pressure, the radius of the rubber cylinder will suddenly jump to a new equilibrium, whereas
for soft tissues, the radius will evolve continuously to an asymptotic radius. Therefore, a
continuum theory for the mechanical response of materials in large deformations requires the
general theory of nonlinear elasticity, which, by contrast to the theory of linear elasticity,
assumes neither small deformations, a particular choice of constitutive law, nor a particular
symmetry of the material.
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In these note, we review the general theory of nonlinear solid mechanics, starting with the
description of kinematics and moving to the Cauchy equations governing the response of a
continuum. The first part is a general approach to continuum mechanics. The second part is
the specialisation to elasticity. In the theory of elasticity, these equations are complemented
by constitutive laws relating stresses to strains. The theory is presented at an introductory
level and further details can be found in the textbooks of Ogden [118], Gurtin, Fried, and
Anand [60, 61], Truesdell and Noll [146], or Antman [7].
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1 Introduction: one-dimensional elasticity

� Overview We explore elasticity in one dimension to give a general idea of the different steps

necessary to develop a general theory of elasticity.

1.1 A one-dimensional theory

Here, we consider a one-dimensional continuum that can only deform along its length. There-
fore, there is no bending, twisting, or shearing, just stretching. The emphasis here is on
understanding the different steps that enter in the development of a full theory of continuum
in the simplest possible context. The steps are

1) Kinematics: A description of the possible deformations. The definition of strains,
given by geometry. In our context, it is just the stretch along the line.

2) Mechanics: The definitions of stresses and forces acting on the medium. Then a
statement of balance laws based on the balance of linear and angular momenta, this is
applicable to all continuum media but for our problem, linear momentum is sufficient.

3) Constitutive laws: A statement of the relationship between stresses and strains. This
is where we describe the response of the material under loads.

The results of these three steps is a closed set of equations whose solutions (with appropriate
boundary conditions and initial data) is a description of the stresses and deformations in a
particular body under a particular set of forces.

1.2 Kinematics

Consider a 1D continuum of length L. Any material point is labelled by X ∈ [0, L]. The
motion or deformation is the mapping x = x(X, t), which is assumed smooth and invertible
to ensure that there is no material separation, discontinuity, or overlap. The kinematics is

0 L X

fully described by a the stretch and the velocity at one point.

λ =
∂x

∂X
, stretch; ẋ = V (X, t) =

∂x

∂t
, velocity. (1)

Since the mapping is invertible, we have λ > 0 for all motion. The identity mapping x = X
corresponds to the stress-free (Langrangian) configuration.

Motion: The velocity of a material point is V (X, t) = ẋ = ∂x/∂t. Since X = X(x, t) is
invertible, we can write,

v(x, t) = ẋ(X(x, t), t), (2)

where v is the velocity at the spatial point x.
The acceleration of a point is,

ẍ(X, t) =
d2x

dt2
, or a =

dv

dt
=
∂v

∂t
+ v

∂v

∂x
, (3)
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where

d

dt
=

∂

∂t
+ v

∂

∂x
, (4)

is the material time derivative.

1.3 Dynamics

We use two fundamental principles to obtain equations for the motion of a continuum: the
conservation of mass and the balance of linear momentum (in a general theory we will also
need the balance of angular momentum but it does not play a role in 1D).

1.3.1 Conservation of mass

We define ρ to be the linear density in the current configuration (mass per unit length as
measured in the current configuration) and ρ0 the linear density in the reference configuration.
Assuming no mass is created, we have∫ X2

X1

ρ0 dX =

∫ x2

x1

ρdx, (5)

with x1 = x(X1, t), x2 = x(X2, t). Since dx = λdX, we have∫ X2

X1

ρ0 dX =

∫ X2

X1

ρλ dX, (6)

which implies that λρ = ρ0, the Lagrangian conservation of mass. This is the first conservation
law.

1.3.2 Balance of linear momentum

The general principle for the balance of linear momentum is

d

dt
(linear momentum) = force acting on the system.

Let us decompose this into the following pieces:

0 X1 X2 L

1) The linear momentum: ∫ X2

X1

ρ0ẋ dX (7)

2) forces: themselves further decompose into forces due to external (body) forces or
internal (contact) forces:
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• Body forces, ∫ X2

X1

ρ0f dX (8)

wheref is the density of body force (force per unit mass).

• Contact forces: force the material exerts on itself.

−n(X1) n(X2)

This material exerts a force n(X2) on [0, X2] counted positive (tensile) if the force is
in the direction of the axis, compressive otherwise. Therefore, from the principle of
action=reaction, the contact force acting on the segment [X1, X2] is n(X2)−n(X1).

Therefore, the balance of linear momentum for a one-dimensional continuum implies

d

dt

∫ X2

X1

ρ0ẋ dX =

∫ X2

X1

ρ0f dX + n(X2)− n(X1) (9)

We can obtain an expression with a single integral by moving the derivative inside the integral
and using the fundamental theorem of calculus,∫ X2

X1

∂n

∂X
dX = n(X2)− n(X1). (10)

That is ∫ X2

X1

(
ρ0ẍ− ρ0 + f

∂n

∂X

)
dX = 0. (11)

This relation is valid ∀ X1, X2, so that, we can localise the integral (assuming continuity of
the integrand) to obtain

ρ0a = ρ0f +
∂n

∂X
. (12)

This is an equation for the force n(X) in the material (Cauchy first equation). This equation
is in the reference configuration (all quantities depend on the material variable X and time
t). We can obtain an equation in the current configuration by using dX = λ−1 dx

ρa = ρf +
∂n

∂x
. (13)

But what is ∂n/∂x? We need a constitutive law to close the system.



1 INTRODUCTION: ONE-DIMENSIONAL ELASTICITY 11

1.3.3 Constitutive laws

To close the problem, we need to relate the stresses to the strains, that is a relationship
between σ and λ such as Hooke’s law

n = K(λ− 1). (14)

This Hookean law is only typically valid for small deformations. For large deformations, we
will assume in general that the material is hyperelastic, that is the constitutive law derives
from a potential Ψ capturing the elastic energy associated with deformation so that

n = f(λ) =
∂Ψ

∂λ
. (15)

with the requirement that f(1) = 0 and that the derivative of f at λ = 1 exists. For such
systems, the Hooke constant K = f ′(1) is then simply the linearised behaviour for small
deformations around the stress-free state. The theory of three-dimensional elasticity devel-
oped in next section when applied to the uniaxial extension of an incompressible rectangular
neo-Hookean bar suggests the following nonlinear law

n =
K

3
(λ2 − λ−1), (16)

Close to λ = 1, we recover Hooke’s law (as shown in Fig 2). More generally, materials

0.5 1.0 1.5 2.0 2.5 3.0
λ

-10

- 5

5

n

Figure 2: Comparison between the linear (dash) and nonlinear (solid) Hookean response for
K = 3.

that show strain-stiffening (increase in stiffness for large deformations) or strain-softening
(decrease in stiffness) can be modelled by various functions of the stretch.
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2 Kinematics

� Overview We develop a completely general theory for the deformation of three-dimensional bodies

with no assumptions on displacements. To do so, we introduce two configurations and relate them

through the motion in time and the deformation gradient. The deformation gradient is naturally

defines as a two-point tensors and its analysis require some tensor calculus.

Our first task consists in defining properly the deformation of a body in a three-dimensional
space. To do so, we first define our body as occupying a region of a three-dimensional space.
After a deformation, the body also occupies a region in space and the motion of each point of
the body, from its initial to its current positions, can be defined by a mapping. The relative
motion of nearby points can be extracted from this mapping and its derivatives in space and
time. It allows us to define key quantities such as strains and stretch. Therefore, we first
introduce basic notion of kinematics in three dimensions.

A body B is a set of material points whose elements can be put into a 1-1 correspondence
(bijection) with points in a region B ⊂ E3. As the body moves or deforms, this set can
change with time t ∈ R. In nonlinear elasticity, one considers multiple configurations for the
description of a body and denotes by Bt (or B, when there is no possibility of confusion) the
configuration of B at time t.

For static systems, we use B0 as the initial configuration, typically an unloaded configu-
ration, and B for the current configuration where loads are applied. The initial configuration,
B0, is parameterized by material points relative to the position vector X0 with origin O and
the current configuration, B, by the position vector x with origin o.

The basic assumption for the deformation of a continuum is that the body retains its
integrity and that material points do not overlap during a deformation. Therefore, both B0

and B are bijections of B, and there exists an invertible mapping, pictured in Figure 3, called
deformation or motion χ : B0 → Bt such that

x = χ(X, t), ∀ X ∈ B0 and X = χ−1(x, t), ∀ x ∈ Bt. (17)

In the absence of phase boundaries, singularities, or jumps, we assume that this mapping is
twice continuously differentiable in space and smooth in time.

It is convenient to use two orthonormal rectangular Cartesian bases: the initial basis
{E1,E2,E3} and the current basis {e1, e2, e3} to represent vectors in the initial and current
configurations:

X = XiEi, x = xiei, (18)

where summation over repeated indices is always assumed unless explicitly specified.
The convention in continuum mechanics is to refer to coordinates in the current config-

uration, or quantities expressed with these coordinates, as Eulerian or spatial. Coordinates
in the initial configuration, or quantities expressed with these coordinates, are referred to as
Lagrangian, referential, or material.

2.1 Scalars, vectors, and tensors

To describe the deformations of a body B, we attach, at each material point, physical quan-
tities known as fields, which make continuum mechanics a theory of fields. These quantities
can be scalar fields, such as density, temperature; vector fields, such as velocity, acceleration,
force; or tensor fields, such as deformation gradients or stress and strain tensors. These dif-
ferent fields can all be understood as tensor fields of different orders. By definition, a scalar
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X
E2

E3

E1

e2

e3

e1

x

c(X)

Current
configuration

Initial 
configuration c

B0 B

Figure 3: Basic kinematic of nonlinear elasticity. Two configurations are defined. The
deformation is a 1-1 map between points of the reference configuration B0 and points of the
current configuration B.

field is a tensor field of order 0 and a vector field is a first-order tensor field. Higher-order
tensor fields require the definition of the tensor product.

The scalar product between two vectors a = aiei and b = biei, in the same vector space,
follows the usual definition:

u · v = uivi, (19)

and is used to defined the Euclidean norm

|v| =
√

v · v. (20)

We can also use the scalar product to define the tensor product. Consider two vectors
u = uiei and v = viEi, not necessarily defined in the same vector space. Then, the tensor
product , u⊗v, of these two vectors is a second-order tensor such that, for an arbitrary vector
a = aiEi,

(u⊗ v)a = (v · a)u. (21)

This definition implies that the vector v and a must belong to the same vector space, but in
general, u can belong to a different space. We see from this definition that a second-order
tensor maps vectors from one vector space to vectors in another vector space.

Explicitly, the tensor product is

u⊗ v = uiei ⊗ vjEj = uivjei ⊗Ej . (22)

When there is no possibility of confusion, we can write the components of the second-order
tensor u⊗ v in the Cartesian bases {e1, e2, e3} and {E1,E2,E3} as (u⊗ v)ij = uivj , i, j =
1, 2, 3.
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Equipped with the tensor product, we can define a general second-order tensor in the
Cartesian bases {e1, e2, e3} and {E1,E2,E3} as

T = Tijei ⊗Ej ⇐⇒ Tij = ei ·TEj , (23)

which implies that for a vector a = ajEj ,

(Ta)i = Tijaj . (24)

We define the matrix of components of a tensor in Cartesian coordinates by [T] such that
[T]ij = Tij . We can then extend most definitions and identities of traditional linear algebra
to tensors.

A particularly important class of second-order tensor are the tensors whose component
matrices are square matrices. For these second-order tensors, the determinant and trace of a
second-order tensor are defined, respectively, as

det T = det([T]), tr T = tr ([T]) = Tii. (25)

In particular, in three dimensions, we have

det T = det([T]) = εijkT1iT2jT3k, (26)

where εijk denotes the usual Levi-Civita permutation symbols or permutation symbols, that
is εijk = 1 is (i, j, k) for an even permutation of (1, 2, 3), -1 if it is an odd permutation, and
0 if any index is repeated.

Similarly, the matrix of the transpose of a tensor is the transpose of the matrix, that is

[TT] = [T]T (27)

and a tensor is symmetric, TT = T, if and only if Tij = Tji.
The product of two tensors S and T is only defined when the image of a vector by T is

in the domain of S. Then, for an arbitrary vector a, we have

(ST)a = S(Ta). (28)

In such cases, the matrix of the product is the product of the two matrices:

[ST] = [S][T]. (29)

A tensor S is an orthogonal tensor if

SST = STS = 1, (30)

where 1 is the identity tensor defined as (1)a = a ∀a. As expected, it follows that the com-
ponents of an orthogonal tensor is an orthogonal matrix. The group of all orthogonal tensors
in three dimensions is denoted O(3). A proper orthogonal tensor is an orthogonal tensor
with the additional property det S = 1. The group of all proper orthogonal tensors in three
dimensions is denoted SO(3). Orthogonal and proper orthogonal tensors are particularly
useful to characterize rotations and proper rotations in a three-dimensional space.

We can also contract two tensors together to obtain a scalar by introducing the double
contraction

S : T = tr(ST) = SijTji. (31)
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If the determinant of a tensor T does not vanish, the matrix of inverse of T is the inverse of
the matrix:

[T−1] = [T]−1. (32)

Explicitly, for a tensor T = Tijei ⊗Ej , we have

T−1 = ([T]−1)ijEi ⊗ ej , (33)

so that

TT−1 = 1 = δijei ⊗ ej , (34)

T−1T = 1 = δijEi ⊗Ej , (35)

where δij is the usual Kronecker delta’s symbol (δii = 1 and δij = 0 for i 6= j).
The tensor product can also be used to define higher-order tensors. For instance, a third-

order tensor, Q, and a fourth-order tensor Q, in the basis {e1, e2, e3} are defined as

Q = Qijkei ⊗ ej ⊗ ek, (36)

Q = Qijklei ⊗ ej ⊗ ek ⊗ el. (37)

However, in this case, the equivalence with linear algebra is lost and identities for higher-order
tensors must be obtained by following the rules defining the tensor products and playing the
game of indices. Note that higher-order tensors can also be defined with respect to multiple
vector spaces.

2.2 Spatial derivatives of tensors

Next, we define spatial derivatives of scalar, vector, and tensor fields. We have two sets of
spatial variables, the Lagrangian variables X and the Eulerian variables x. We can therefore
define different types of spatial derivatives depending on the description of a given quantity.

We first consider the case where φ, u, T are scalar, vector and tensor fields respectively
over x, that is

φ = φ(x, t), u = ui(x, t)ei, T = Tij(x, t)ei ⊗ ej . (38)

We define the Eulerian gradient of scalar and vector functions as

grad φ =
∂φ

∂x
=

∂φ

∂xi
ei, (39)

grad u =
∂u

∂x
=

∂u

∂xj
⊗ ej =

∂(uiei)

∂xj
⊗ ej =

∂ui
∂xj

ei ⊗ ej . (40)

The gradient is an operation that increases the order of the tensor and is defined, in general,
as the operation

grad( · ) =
∂( · )
∂xj

⊗ ej . (41)

It follows from this definition that

grad(φu) = u⊗ gradφ+ φ grad u. (42)

Similarly, we define the gradient of a second-order tensor as

grad T =
∂

∂xk
(Tijei ⊗ ej)⊗ ek =

∂Tij
∂xk

ei ⊗ ej ⊗ ek. (43)
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The divergence decreases the order of a tensor by contracting indices. For a vector, we have
simply

div u =
∂ui
∂xi

. (44)

For a second-order tensor, the contraction can take place on the first or second index depend-
ing on the convention. Here, we choose to define the divergence as a contraction on the first
index, that is

div T =
∂Tij
∂xk

ej (ei · ek) =
∂Tij
∂xi

ej . (45)

With this particular definition of the divergence operator, the divergence theorem, applied
on a domain Ω ⊂ R3, reads ∫

∂Ω
Tn da =

∫
Ω

div (TT) dv. (46)

We consider now spatial derivatives with respect to Lagrangian coordinates, that is Φ, U ,
and T are now fields over X:

Φ = φ(X, t), U = ui(X, t)Ei, T = Tij(X, t)ei ⊗Ej . (47)

The Lagrangian gradient is then the operation

Grad( · ) =
∂( · )
∂Xj

⊗Ej . (48)

Note that we use the lower case “grad” and “div” to describe spatial derivatives with respect
to Eulerian coordinates and the upper case “Grad” and “Div” for spatial derivatives with
respect to Lagrangian coordinates. Explicitly, we have

Grad Φ =
∂Φ

∂X
=

∂Φ

∂Xi
Ei, (49)

Grad U =
∂U

∂X
=

∂U

∂Xj
⊗Ej =

∂(UiEi)

∂Xj
⊗Ej =

∂Ui
∂Xj

Ei ⊗Ej , (50)

Grad T =
∂

∂Xk
(Tijei ⊗Ej)⊗Ek =

∂Tij
∂Xk

ei ⊗Ej ⊗Ek. (51)

The divergence is then

Div U =
∂Ui
∂Xi

, (52)

Div T =
∂Tij
∂Xk

ej (Ei ·Ek) =
∂Tij
∂Xi

Ej . (53)

Note that these definitions can be appropriately modified for the case where T = TijEi ⊗Ej

by changing ej → Ej in the definition of Grad and Div.

2.3 Derivatives in curvilinear coordinates

It is often convenient to describe a body and a deformation with respect to curvilinear
coordinates. For instance, it is natural to use cylindrical coordinates to describe simple
deformations of a cylinder. We use the curvilinear coordinates {q1, q2, q3} in the current con-
figuration and {Q1, Q2, Q3} in the reference configuration. These coordinates are related to
the Cartesian coordinates in each configuration through the position vectors x = x(q1, q2, q3)
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and X = X(Q1, Q2, Q3). Here, we use greek subscripts to denote quantities defined in non-
Cartesian coordinates. For instance, we associate to each coordinate set, a set of basis vectors

eα = h−1
α

∂x

∂qα
, Eα = H−1

α

∂X

∂Qα
, α = 1, 2, 3, (54)

where hα and Hα are scale factors, used to normalize the basis vectors:

hα =

∣∣∣∣ ∂x

∂qα

∣∣∣∣ , Hα =

∣∣∣∣ ∂X

∂Qα

∣∣∣∣ , α = 1, 2, 3, (55)

For brevity, we restrict our attention to a set of orthogonal coordinate, so that

eα · eβ = δαβ, Eα ·Eβ = δαβ, α, β = 1, 2, 3. (56)

We define the gradient, grad T = ∇⊗T, of a tensor T at a point x ∈ B as the tensor that
maps a vector v in the tangent space of B at x onto the infinitesimal variation of T along a
path going through x with tangent v. For any given v, we define a path Γ, parameterized
by its arc length s, going through x and tangent to v. The operation of the gradient on a
vector v is

(∇⊗T)v =
dT(Γ(s))

ds
= lim

ds→0

T(Γ(s+ ds))−T(Γ(s))

ds

=
∂T(x)

∂xα
dxα

ds
=
∂T(x)

∂xα
δαβ

dqβ
ds

=
∂T

∂qα
(h−1
α eα · hβeβ)

dqβ
ds

=

(
∂T

∂qα
⊗ h−1

α eα

)
(v), (57)

where we have used the fact that the tangent to Γ at x is hβeβ(dqβ/ds). Since this operation
applies to arbitrary vectors v, the gradient of a tensor in orthogonal curvilinear coordinates
is

grad T = h−1
α

∂T

∂qα
⊗ eα, Grad T = H−1

α

∂T

∂Qα
⊗Eα. (58)

Similarly, we define the divergence of a tensor field T as div T = ∇ ·T, that is

div T = h−1
α eα ·

∂T

∂qα
, Div T = H−1

α Eα ·
∂T

∂Qα
. (59)

Note that we take the scalar product on the left which corresponds to the contraction on the
first index of T. Choosing Cartesian coordinates {q1, q2, q3} = {x1, x2, x3} leads to hα = 1∀α,
and the definitions (58) and (59) reduce to those of the previous section.

As an example, consider the choice of polar coordinates {q1, q2} = {r, θ} in the Euclidean
plane. The position vector is x = r cos θe1 + r sin θe2, so that

er =
∂x

∂r
, hr = 1,

eθ =
1

r

∂x

∂θ
, hθ = r.

(60)

Hence, according to (58), the gradient of a scalar φ is

gradφ = (∂rφ) er +
1

r
(∂θφ) eθ, (61)
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and we recover the usual formula of vector calculus. Similarly, if we write a second-order
tensor T in polar representation:

T = Trrer ⊗ er + Trθer ⊗ eθ + Tθreθ ⊗ er + Tθθeθ ⊗ eθ, (62)

then its divergence is the first order tensor

div T =

(
1

r

∂

∂r
(rTrr) +

1

r

∂Tθr
∂θ
− Tθθ

r

)
er

+

(
1

r

∂

∂r
(rTrθ) +

1

r

∂Tθθ
∂θ

+
Tθr
r

)

)
eθ. (63)

And, the gradient of T is the third order tensor

grad T =
∂T

∂r
⊗ er +

1

r

∂T

∂θ
⊗ eθ

= (∂rTrr) er ⊗ er ⊗ er + (∂rTrθ) er ⊗ eθ ⊗ er

+ (∂rTθr) eθ ⊗ er ⊗ er + (∂rTθθ) eθ ⊗ eθ ⊗ er

+

(
1

r
(∂θTrr)− Trθ − Tθr

)
er ⊗ er ⊗ eθ

+

(
1

r
(∂θTθr) + Trr − Tθθ

)
eθ ⊗ er ⊗ eθ

+

(
1

r
(∂θTrθ) + Trr − Tθθ

)
er ⊗ eθ ⊗ eθ

+

(
1

r
(∂θTθθ) + Trθ + Tθr

)
eθ ⊗ eθ ⊗ eθ.

2.4 Derivatives of scalar functions of tensors

We will also consider scalar functions of tensors and their derivatives with respect to a tensor.
Let A,B,C be second-order tensors with Cartesian components in the basis {e1, e2, e3} given
by Aij , Bij , Cij . Let F = F (A) be a scalar function of A. The derivative of the scalar function
F with respect to the tensor A is a tensor with Cartesian components(

∂F (A)

∂A

)
ij

=
∂F (A)

∂Aji
. (64)

That is
∂F (A)

∂A
=

∂F

∂Aji
ei ⊗ ej . (65)

Now, let A = BC and consider the derivative of F with respect to B. In components, we
have (

∂F (A)

∂B

)
ij

=
∂F (BklClm)

∂Bji

=
∂Akm
∂Bji

∂F (A)

∂Akm
=
∂BklClm
∂Bji

∂F (A)

∂Akm

= δjkδilClm
∂F (A)

∂Akm
= Cim

∂F (A)

∂Ajm

= Cim

(
∂F (A)

∂A

)
mj

. (66)
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So that, in general, we can write

∂F (A)

∂B
= C

∂F (A)

∂A
. (67)

Other useful identities are Jacobi’s relations for the first and second derivative of a non-
vanishing determinant,

∂

∂A
(det(A)) = det(A)A−1, (68)

tr

[(
∂

∂A

∂

∂A
det A

)
B

]
= det(A)

[
tr
(
A−1B

)
A−1 −A−1BA−1

]
,

(69)

where the contraction tr (LA) of a second-order tensor A with a fourth-order tensor L is
defined by (tr (LA))ij = LijklAlk. In the last equality, the derivative of the inverse of a
tensor by itself defines a fourth-order tensor such that

tr

[(
∂

∂A
A−1

)
B

]
= −A−1BA−1. (70)

If A = A(t), the derivative of a scalar function of A with respect to a parameter t can be
obtained by the chain rule. That is,

d

dt
F (A) = tr

(
∂F (A)

∂A

dA

dt

)
. (71)

As an example, the first Jacobi relation (68) can be used to compute the derivative of the
determinant of a tensor with respect to a parameter

d

dt
(det(A)) = tr

(
∂

∂A
(det(A))

dA

dt

)
= det(A)tr

(
A−1 dA

dt

)
. (72)

2.5 The deformation gradient

The central geometric object of nonlinear elasticity that describes locally relative deforma-
tions is the deformation gradient , obtained as the spatial derivative of the mapping χ. Given
a vector x = xi(X)ei, the deformation gradient tensor is F = Gradχ. In Cartesian coordi-
nates, it reads

F =
∂

∂Xj
(xiei)⊗Ej =

∂xi
∂Xj

ei ⊗Ej ≡ Fijei ⊗Ej . (73)

Note that the bases in which the gradient is taken are mixed. Geometrically, F is a linear map
that transforms a vector v in the tangent space TpB0 at a material point p ∈ B0 to a vector
Fv in the tangent space TpB at the same material point but in the current configuration (see
Figure 4).

We can also express the deformation gradient in curvilinear coordinates. Let {q1, q2, q3}
and {Q1, Q2, Q3} be the coordinates in the reference and current configuration, respec-
tively. The deformation χ in the bases {e1, e2, e3} and {E1,E2,E3} is given by qα =
qα(Q1, Q2, Q3), α = 1, 2, 3. Then, following the definition of the gradient (58), we have

Grad x = H−1
β

∂x

∂Qβ
⊗Eβ

= H−1
β

∂x

∂qα

∂qα
∂Qβ

⊗Eβ (74)

=
hα
Hβ

∂qα
∂Qβ

eα ⊗Eβ, (75)
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X0 E2

E3

E1

e2

e3

e1

B0 B
x

Fv Fv

Figure 4: The deformation gradient maps vectors on the tangent space at a material point
in the initial configuration to vectors in the tangent space in the current configuration at the
same material point.

where we used ∂x
∂qβ

= hβeβ and the scale factors hα, Hβ given by (55). Then, we conclude

that the matrix of coefficients of the deformation gradient F = Fαβeα ⊗Eβ is

[F]αβ = Fαβ =
hα
Hβ

∂qα
∂Qβ

(no summation on indices). (76)

Θ θR

ERΘE

X

Y

e r
θe

x

y

r

c

B0 B

Figure 5: Deformation of a ring into another ring in the plane.

As an example, we consider the deformation of a ring in a plane to another ring shown in
Figure 5. In the two sets of polar coordinates {q1, q2} = {r, θ} and {Q1, Q2} = {R,Θ}, this
deformation is given by

r = f(R), θ = Θ. (77)
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For these coordinates, we have hr = HR = 1 and hθ = r, HΘ = R, and the deformation
gradient is

[F ] =

[
hr
HR

∂r
∂R

hr
HΘ

∂r
∂Θ

hθ
HR

∂θ
∂R

hθ
HΘ

∂θ
∂Θ

]
=

[
f ′(R) 0

0 f(R)
R

]
, (78)

that is,

F = f ′(R)er ⊗ER +
r

R
eθ ⊗EΘ. (79)

2.6 Volume, surface, and line elements

The deformation of a body may change the relative size of material elements. First, consider
a set of material points in the reference configuration Ω0 ⊆ B0. This set evolves in time and
is deformed to a new volume Ω ⊆ B in the current configuration. The new volume is related
to the reference volume by ∫

Ω
dv =

∫
Ω0

JdV, (80)

where
J (X, t) = det F (X, t) (81)

is the Jacobian of the transformation that represents the local change of volume, that is the
image of an infinitesimal volume element dv at a material point p is

dv = J dV, (82)

as shown in Figure 6.

χ

B0 B

dv=JdV 
dV 

X
x(X)

Figure 6: Transformation of volume: In a deformation, an infinitesimal volume element dV
at a material point evolves by a factor J to a new volume dv = J dV .

Since volume elements are positive and cannot vanish in a deformation, we require that
J > 0 in all deformations, which ensures the invertibility of the deformation gradient. That
is, there exists a second-order tensor F−1 mapping vectors from B to B, such that F−1F = 1.
Explicitly, this tensor is

F−1 = grad X(x, t). (83)

A transformation that conserves locally every volume element, that is J = 1, is said to be
isochoric.
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Similarly, we can define an area element by considering a material area element normal
to a given vector N. Then, it is standard to show [118] that the surface integral transforms
as ∫

∂Ω
n da =

∫
∂Ω0

JF−TN dA, (84)

where n (x, t) and N (X, t) are outward unit normals, dA and da are the area elements at
a given point as shown in Figure 7. That is, an infinitesimal element of area defined in

χN dA
n da=JF-TNdA

x(X)dA
da

X

B0 B

Figure 7: Transformation of area: In a deformation, an infinitesimal area is transformed
according to Nanson’s rule.

the reference configuration by a normal N and surface area dA is transformed into another
element of area in the current configuration defined by a vector n with area da and related
to the reference one by Nanson’s formula:

n da = JF−TN dA. (85)

Finally, consider a local infinitesimal vector dX tangent to a material line in B0 at a
material point p, then its image is dx = FdX as shown in Figure 8. If M is the unit vector
along dX then

dX = M dS and dx = m ds, (86)

where dS = |dX| and ds = |dx|. This last identity implies that m ds = FM dS. Now take
the norm of each side:

|ds|2 = (FM · FM)|dS|2 = (FTFM) ·M|dS|2. (87)

Equivalently, we can write
ds

dS
=
√

(FTFM) ·M, (88)

where ds/dS is the change of length of a material line in the direction M. This last rela-
tionship can be used to define the stretch, λ = λ(M) of a material line in the direction M
as

λ(M) =
√

(FTFM) ·M. (89)

Since we are interested in characterizing elastic materials, we need to characterize defor-
mations which change the relative length of line elements. Therefore, stretches provides a
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X x(X)

χdX
dX’

dx=FdX
dx’=FdX’

B0 B

Figure 8: Transformation of material lines: In a deformation, an infinitesimal line element is
mapped by the deformation gradient to a new line element.

natural measure of strain in a material. A material is said to be unstrained in the direction
M if and only if λ(M) = 1.

In (87), we see the appearance of an important tensor in the description of strain for a
three-dimensional body, namely the right Cauchy-Green tensor

C = FTF. (90)

A material is unstrained at a given point if it is unstrained in all directions. That is λ(M) =
1 ∀M. In terms of the right Cauchy-Green tensor, this implies C = 1.

Geometrically, the tensor C can be interpreted as a metric on B as it provides a way to
measure distances and angles on the new body.

2.7 Polar decomposition theorem

The action of the deformation gradient F on a vector M can be decomposed into a rotation
about a direction m, followed by a stretch of size λ(M). This decomposition into a stretch
and a rotation can be applied directly to the deformation gradient through the polar decom-
position theorem stating that: For a second-order tensor F such that det F > 0, there exist
unique positive definite symmetric tensors U, V and a unique proper orthogonal tensor R
such that,

F = RU = VR.

The positive symmetric tensors U and V are called the left and right stretch tensors, respec-
tively. Their squares can easily be obtained from F as follows

FTF = U2 ≡ C, the right Cauchy-Green tensor,

FFT = V2 ≡ B, the left Cauchy-Green tensor.

Since V = RURT, U and V have the same eigenvalues {λ1, λ2, λ3}. The principal stretches,
can be obtained conveniently as the square roots of the eigenvalues of either C or B. Note
that since U and V are positive symmetric, the principal stretches are positive and real and
the corresponding eigenvectors {u1,u2,u3} and {v1,v2,v3} of U and V form two bases.
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Therefore, the stretch tensors can be written as

U =
3∑
i=1

λiui ⊗ ui, (91)

V =

3∑
i=1

λivi ⊗ vi. (92)

Since J = det F = det(RU) = (det R)(det U) = det U = det V, we have J = λ1λ2λ3 and we
can re-write F as

F =
3∑
i=1

λivi ⊗ ui. (93)

2.8 Velocity, acceleration, and velocity gradient

The motion associated with a deformation x = χ(X, t), X ∈ B0, is associated with change
in time t. Since X is the position of a material point, the velocity and acceleration of this
material point are, respectively,

v(x, t) =
∂

∂t
χ(X, t) ≡ χ̇(X, t), (94)

a(x, t) =
∂2

∂t2
χ(X, t) ≡ χ̈(X, t). (95)

In general, we define the material time derivative d/dt as a total time derivative with
respect to a fixed material coordinate X. For a scalar field φ = φ(x, t), the material derivative
is

d

dt
φ ≡ dφ

dt

∣∣∣∣
X

≡ φ̇ ≡ ∂φ

∂t
+ (gradφ) · v, (96)

and we define the derivative of a vector field u = u(x, t) similarly as

d

dt
u =

∂u

∂t
+ (grad u) v. (97)

Another important kinematic quantity is the velocity gradient tensor , defined as

L = grad v, Lij =
∂vi
∂xj

, L = Lijei ⊗ ej . (98)

Since, in general the chain rule gives Grad u = (grad u)F, we have

Grad v = (grad v)F = LF, (99)

but also,

Grad v = Grad ẋ =
∂

∂t
Grad x =

∂F

∂t
= Ḟ, (100)

so that the evolution of the deformation gradient can be expressed in terms of the velocity
gradient tensor as

Ḟ = LF. (101)
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Taking the determinant of each side of this last equality and applying Jacobi’s formula (72)
for the derivative of the determinant of a nonsingular matrix

∂

∂t
det F = (det F) tr(F−1Ḟ) = (det F) tr(L) (102)

leads to an equation for the evolution of the determinant:

J̇ = J tr(L) = J div v. (103)

In particular, since J 6= 0, we note the well-known relationship between conservation of
volume during motion and the vanishing of the divergence of the velocity:

div v = 0 ⇐⇒ J̇ = 0. (104)

2.9 Examples of deformation

2.9.1 Homogeneous deformation

x = FX + x, F constant (105)

• Simple elongation

F = U = λ1U
(1) ⊗U(1) + λ2

(
U(2) ⊗U(2) + U(3) ⊗U(3)

)
(106)

• Dilation

F = λ1 (107)

• Simple shear

(0, 1) (γ, 1)

x1 = X1 + γX2, x2 = X2, x3 = X3, (108)

which imply (homework),

=⇒ F =

 1 γ 0
0 1 0
0 0 1

 , U2 =

 1 γ 0
γ 1 + γ2 0
0 0 1

 (109)

2.9.2 Inflation of a spherical shell

We consider the symmetric deformation of a spherical shell with radii R = A and R = B
in the initial configuration into a spherical shell of radii r = a and r = b in the current
configuration. We consider the possibility where both A and a vanish (a sphere under load);
the case where A = 0 but a > 0 (the cavitation of a sphere); as well as the case A > 0 and
a = 0 (the anti-cavitation of a spherical shell). Under the deformation, the shell expands and
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any point located at (R,Θ,Φ) in the reference configuration is moved to the point (r,Θ,Φ)
where r = r(R) as shown in Figure 9. Explicitly, the deformation, x = χ(X), reads

r = r(R), θ = Θ, φ = Φ, (110)

so that the position vectors are, respectively,

X = RER, x = r(R)er =
r(R)

R
X. (111)

Due to the symmetry of the deformation, we can identify the basis vectors so that ER =
er,EΘ = eθ,EΦ = eφ.

c
R0 r(R0)

A0 a

b

B0

Figure 9: Radial deformation of a shell with inner and outer radii A and B to a shell with
radii a and b.

To compute the deformation gradient, we use the method described in Section 2.5. We
have two sets the two sets of spherical coordinates {qα} = {r, θ, φ} and {Qα} = {R,Θ,Φ}.
For these coordinates, the scale factors, defined by (55), are

hr = 1, HR = 1, (112)

hθ = r, HΘ = R, (113)

hφ = r, HΦ = R. (114)

Following Equation (76), the deformation gradient is

F = r′er ⊗ er +
r

R
eθ ⊗ eθ +

r

R
eφ ⊗ eφ,

which we write
F = diag(r′, r/R, r/R), (115)

where the primes denote derivatives with respect to R.
Note if we only consider isochoric deformation then det F = 1, which implies

r′
( r
R

)2
= 1 =⇒ r′r2 = R2 ⇐⇒ 1

3

d(r3)

dR
= R2 =⇒ r3 = R3 + C. (116)
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Since r(a) = A, r(b) = B,

C = b3 −B3 = a3 −A3 =⇒ a3 = b3 −B3 +A3 =⇒ r =
√
a3 −A3 +R3 (117)

This is a one-parameter family of solutions.
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3 Conservation Laws, Stress, and Dynamics

� Overview We use basic physical principles to derive local equations for the evolution of mass and

stress in space. The requirement for localising the balance of linear momentum naturally leads to the

definition of the Cauchy stress tensor.

We have obtained a complete description of the deformation of a body. Starting with a
mapping χ, we defined the deformation gradient F. This tensor contains all information on
relative deformation of a body, such as local changes of volume, area, and stretch. It was
used to define secondary quantities, such as the left and right Cauchy-Green tensor, B and
C, that contain information on the strain developed during a deformation. Now that we
have a complete kinematic description of the of the body, we can define physical fields at
each point on the body and used fundamental laws of physics to find local equations between
these fields.

The governing equations of continuum mechanics are obtained by considering the local
balance of physical quantities: mass, linear momentum, angular momentum, and energy. The
traditional approach to derive local laws consists in stating a balance law on an arbitrary
subset of the body and, under suitable conditions, obtaining local relationships between
physical quantities expressed as differential equations. We illustrate this process first on the
balance of mass.

3.1 Balance of mass

To describe the properties and response of a material, we attach physical quantities at each
point of the body B. First, we define a scalar field ρ = ρ(x, t), the volume density (mass per
unit current volume) at each point of the body in the current configuration and assume that
the mass of any subset of the body Ω ⊆ B is conserved in time, that is

d

dt

∫
Ω
ρ (x, t) dv = 0. (118)

The problem here is that the position of a material subset Ω evolves with time, and the time
derivative cannot be directly applied to the integrand. Therefore, we first map the integral
to the reference configuration

d

dt

∫
Ω0

ρ (x(X, t), t) JdV = 0, (119)

where we have used the transformation of a volume element (82).
Second, since the domain Ω0 is fixed, we can write

d

dt

∫
Ω0

Jρ (x, t) dV =

∫
Ω0

d

dt
(Jρ) dV = 0. (120)

Third, since we wish to obtain a balance law in the current configuration, we map the integral
back, that is ∫

Ω0

d

dt
(Jρ) dV =

∫
Ω

d

dt
(Jρ) J−1dv =

∫
Ω

(ρ̇+ ρdiv v) dv = 0, (121)

where we have used (103).
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Fourth, assuming that the integrand is continuous, the vanishing of an integral on an
arbitrary domain implies that it vanishes pointwise, which leads to the usual continuity
equation for the evolution of density in the current configuration [60]

ρ̇+ ρ div v = 0. (122)

The procedure consisting in mapping an integral relationship between configurations and
localizing this relationship to obtain a local differential equation is a two-step process called
the Maxwell transport and localization procedure, respectively.

In the first step, integrals in the current configuration are transformed into integrals in
the initial configuration that are expressed on a fixed domain. In this configuration, the
balance law can be written as a single integral over a domain. Once this expression has been
obtained, the integral can be mapped back to the current configuration.

In the second step, a local differential equation is obtained from the integral by assuming
that it holds on an arbitrary subset and that the integrand is continuous.

Note that the localization procedure can be also applied directly to the first integral
appearing in (121). That is

d

dt
(Jρ) = 0. (123)

If we define the reference density ρ0 (X, t) = J (X, t) ρ (x(X, t), t), then the mass conservation
in the reference configuration is simply

∂

∂t
ρ0 = 0. (124)

3.1.1 Transport formulas

We will be making systematic use of the Maxwell transport to obtain balance laws. It is
therefore important to obtain general transport relationships for for any scalar φ or vector
field u associated with the moving body in the current configuration. Indeed, following the
same steps as in (119-121), we obtain [120] the useful transport formulas:

d

dt

∫
Ω
φ dv =

∫
Ω

(φ̇+ (div v)φ) dv, (125)

d

dt

∫
Ω

u dv =

∫
Ω

(u̇ + (div v)u) dv, (126)

where Ω ⊆ B is an arbitrary subset.

3.2 Balance of linear momentum

The balance of linear momentum expresses the fundamental relationship between the rate of
change of linear momentum of a body as a result of the force applied to the body. When
applied to a rigid body, it simply leads to the well-know Newton’s second law. However, in
the case of a deformable body, the body also experiences internal forces that need to be taken
into account.

In the current configuration, the total linear momentum on any part of the body Ω ⊆ B
is simply ∫

Ω
ρ(x, t)v(x, t)dv, (127)

where ρ(x, t) is the density and v(x, t) the velocity of a point at (x, t).
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The total force acting on a point x ∈ Ω includes a body-force density b, representing the
contributions of external forces and a contact-force density tn, representing the force per unit
area resulting in contact. Therefore, the total force acting on Ω is∫

Ω
ρ(x, t)b(x, t)dv +

∫
∂Ω

tnda. (128)

Euler’s first law of motion then states that the rate of change of the linear momentum on
any part of the body Ω ⊆ B is equal to the sum of the forces acting on Ω [146]. Therefore, in
our context, this law reads

d

dt

∫
Ω
ρ(x, t)v(x, t)dv︸ ︷︷ ︸

rate of change of linear momentum

=

∫
Ω
ρ(x, t)b(x, t)dv +

∫
∂Ω

tnda︸ ︷︷ ︸
sum of body and contact forces

. (129)

We apply the transport formula (126) by mapping the rate of linear momentum to the
reference configuration

d

dt

∫
Ω
ρv dv =

d

dt

∫
Ω0

ρvJ dV =

∫
Ω0

d

dt
(ρvJ) dV, (130)

=

∫
Ω0

(ρv̇ + ρ̇v + ρvdiv v︸ ︷︷ ︸
=0, per continuity

) JdV, (131)

=

∫
Ω
ρv̇ dv, (132)

where we have used the identity (103).
In order to apply the localization procedure, we need to express all the quantities as a

single integral. However, the last integral in (129) is a surface integral. Therefore, it needs
to be expressed as a volume integral. The standard way to transform a surface integral as a
volume integral is to use the divergence theorem. However, the integrand does not have the
required form for a direct application of the divergence theorem. This difficulty prompts us
to re-express the contact-force density tn in a tensorial form.

We first use the Cauchy’s stress principle stating that the contact-force density depends
continuously on the unit normal n. Then, Cauchy’s tetrahedral argument [118] can be used
to show that the contact-force density depends linearly on the unit normal, so that

tn = Tn, (133)

where T is a second-order tensor independent of n. This last identity has the correct form
for the application of the divergence theorem (46):∫

∂Ω
tn da =

∫
∂Ω

Tn da =

∫
Ω

div (TT) dv (134)

The tensor T is the Cauchy stress tensor, a central quantity describing forces per unit area
in a material. Using this last equality, Euler’s law (129) simplifies to∫

Ω
ρv̇dv =

∫
Ω
ρbdv +

∫
Ω

div (TT) dv, (135)

and the localization procedure leads to the first Cauchy equation:

div (TT) + ρb = ρv̇. (136)
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3.3 Balance of angular momentum

In a continuum both forces and torques have to be balanced. The corresponding balance for
torque is Euler’s second law of motion stating that the rate of change of angular momentum
of an arbitrary material subset Ω ⊆ B with respect to a given point is equal to the sum of all
torques acting on Ω with respect to the same point.

The total angular momentum of Ω is∫
Ω
ρx× vdv, (137)

where, without loss of generality, we choose to express the angular momentum with respect
to the origin.

If we assume here that the material under consideration is non-polar , that is the body is
not subject to extra body or contact torques and cannot support couple stresses, then the
total torque due to body and traction forces acting on Ω, with respect to the origin, is∫

Ω
ρx× b dv +

∫
∂Ω

x× tn da. (138)

Then, Euler’s second law can be written as

d

dt

∫
Ω
ρx× vdv︸ ︷︷ ︸

rate of change of angular momentum

=

∫
Ω
ρx× b dv +

∫
∂Ω

x× tn da.︸ ︷︷ ︸
torques due to body and traction forces

(139)

The transport procedure and the continuity equation can be used to simplify this expression
to ∫

Ω
ρx× (v̇ − b) dv =

∫
∂Ω

x×Tn da, (140)

where we have expressed the contact force in terms of the Cauchy stress tensor, tn = Tn.
Cauchy’s first equation (136) can be used to transform the right hand side of this expression
to obtain ∫

Ω
x× div (TT) dv =

∫
∂Ω

x×Tn da. (141)

By application of the divergence theorem and the localization procedure, the last integral
implies that the Cauchy stress tensor is symmetric, that is

TT = T. (142)

We can now simplify (136) to obtain the standard form of Cauchy’s equation, also known as
the equation of motion for a continuum:

div T + ρb = ρv̇, (143)

3.4 Many stress tensors

The Cauchy stress tensor is the natural measure for contact forces measured in the current
configuration per unit area in the current configuration. The contact forces acting on the
boundary ∂Ω of a region Ω can be extracted from T by considering different directions with
respect to the boundary. Let n be the normal vector to ∂Ω at a point p in the body. Then,
recalling that tn = Tn, the normal stress, that is, the force per area normal to ∂Ω, applied
at p is

n · tn = n · (Tn). (144)
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Considering a vector m tangent to ∂Ω at p (that is m · n = 0), the product

m · tn = m · (Tn). (145)

is a shear stress acting on Ω at p.
While the Cauchy stress is a natural measure for forces acting on a continuum it is not

always a convenient quantity for computation since the area in the current configuration
changes during the deformation. Therefore, it is often useful to measure contact forces with
respect to areas measured initially in the reference configuration. To do so, we apply Nanson’s
formula n da = JF−TN dA to the traction vector to obtain the contact-force on a material
area element:

tn da = Tn da = (JTF−T)N dA = ST N dA, (146)

where
S = JF−1T (147)

is the nominal stress tensor . Its transpose, ST, is the first Piola-Kirchhoff stress tensor . It
is also called the engineering stress tensor , as it is a convenient quantity for experimental
measurements.

Since T is symmetric, we have

STFT = FS. (148)

3.5 Balance of energy for elastic materials

The equations for the stress and mass density derived so far are valid for a large class of
continuum bodies independently of their specific material characteristics, including solids and
fluids. To close the system of equations, constitutive relationships between stress, deformation
gradient, rate of deformation and density must be imposed to characterize the particular
body under consideration. The balance of energy provides restriction on the form of these
constitutive relationships. Here, we turn our attention to elastic materials.

The general principle for the balance energy states that for any part of a body Ω ⊆ B,
the rate of change of the total mechanical energy E is balanced by the power of the forces P.
If we ignore heat dissipation, the total energy for an elastic material is the sum of the kinetic
energy and an internal elastic energy. That is, we have

E =
1

2

∫
Ω
ρv · v dv︸ ︷︷ ︸

kinetic energy

+

∫
Ω
J−1W dv︸ ︷︷ ︸

internal energy

, (149)

where W is the internal elastic energy density per unit reference volume.
The power of the forces acting on Ω is given by

P =

∫
Ω
ρb · v dv +

∫
∂Ω

tn · v da. (150)

The balance of energy is then

dE
dt

= P. (151)
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The transport and localization procedure applied to the energy principle together with the
equations of continuity and motion, lead to a local form of energy balance [118] for the stress
power

dW

dt
= tr(SḞ). (152)

From a thermodynamic point of view, the combination of S and F in the stress power tr(SḞ),
identifies these two tensors as being work conjugate, that is they form a conjugate pair of
stress and deformation tensors. We will use this important identity later on when we further
restrict the dependence of the internal energy.
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4 Constitutive equations

� Overview We close the system of Cauchy equations for stress, density, and velocity by introducing

a relationship between stresses and strains, the constitutive equations. Depending on the choice of

constitutive equations, the continuum equations can describe a fluid, a solid, or a gas.

So far, we have obtained through conservation of mass and balance of momenta, the
following three equations

ρ̇+ ρdiv v = 0, mass (153)

div T + ρb = ρv̇, linear momentum (154)

TT = T, angular momentum (155)

There are 10 unknowns: 1 in ρ, 3 in vector v and 6 in the symmetric tensor T. But there
are only 4 equations. We need 6 extra relationships to close this system. These will be given
by the constitutive equations.

4.1 3 types of assumptions

1) Possible deformations.
e.g. Only rigid motions are allowed (F = R, 3 parameters). =⇒ rigid body mechanics.
e.g. Only isochoric motion =⇒ Incompressible material.

2) Constraining the stress tensor
e.g. T = T (F)
e.g. T = −p1

3) Relate stress to motion
e.g. pressure function of density, ρ (for a gas).

4.1.1 Particular examples

1) Ideal fluids

(a) det F = 1 (Isochoric)

(b) ρ = const

(c) T = −p1

Note: the pressure is not determined by the motion (ball under uniform pressure).
(Lagrange multiplier for the pressure.)

2) Elastic fluids

(a) T = −p1
(b) p = p(ρ)

Here ρ̈ = P ′(ρ0)∆ρ and
√
p′ is the sound speed.

N.B.: both fluids are inviscid (do not exert shearing forces!)

A particular case of an elastic fluids is an ideal gas: p = λργ , for λ > 0, γ > 1.
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3) Newtonian fluids. Shear stress through friction.
Take L = grad v which gives relative motion of particles, velocity gradient.

(a) det F = 1, incompressible

(b) T = −p1 + C[L] where C is a linear function of L.

Note C[0] = 0 =⇒ T = −p1, A Newtonian fluid at rest is ideal
Note C[L] has 40 independent constants (once we have removed arbitrariness of p1.
However objectivity (independence from observer) implies

C[L] = 2µD, D =
1

2
(L + LT ), (156)

which has a single constant, viscosity µ. This implies

ρv̇ = div T + ρb (157)

div v = 0 (158)

T = −p1 + 2µD (159)

After some algebra,

ρ
∂v

∂t
+ ρv · grad v = µ∆−grad p+ ρb, (160)

div v = 0, (161)

which are the Navier–Stokes equations. (N.B. ν = µ/ρ is the kinematic viscosity.)

Stokes flow : 1) steady, 2) neglect acceleration.

∆v = grad p− b (162)

div v = 0. (163)

N.B. for more general fluids, T = −p1 +N (L).

4.2 Elastic materials

For elastic materials, we have the simple relationship

T = Z(F) (164)

This implies that the stress in B at x depends on F and not on the history of the deformation
(path-independent). Also, by the definition of the reference configuration (assuming that it
is stress free), we have

Z(1) = 0. (165)

This relationship defines a Cauchy, elastic material.

4.3 Constitutive equations for hyperelastic materials

We further assume that the material is hyperelastic. That is, the internal energy density W
is a function of F alone. Explicitly, we posit that

W (X, t) = W (F(X, t),X), (166)
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in which case, W is referred to as the strain-energy function of the system. Using (71), the
time derivative of W is

d

dt
W (F) = tr

(
∂W

∂F
Ḟ

)
, (167)

so that the energy balance (152) reads now

tr

[(
∂W

∂F
− S

)
Ḟ

]
= 0. (168)

Since this identity must be true for all motions, we conclude that

S =
∂W

∂F
, (169)

where we used the derivative of a scalar W with respect to the second-order tensor F defined
with respect to Cartesian bases in the reference and current configurations, by

∂W

∂F
=
∂W

∂Fji
Ei ⊗ ej ,

(
∂W

∂F

)
ij

=
∂W

∂Fji
. (170)

Written in terms of the Cauchy stress this identity provides a constitutive relationship relating
the Cauchy stress to the deformation gradient:

T = J−1F
∂W

∂F
. (171)

4.4 Internal material constraint

If we consider a material where the possible deformations are constrained during all motions,
extra internal material constraints must be satisfied. We consider the case where these con-
straints take the form C(F) = 0 where C(F) is a smooth scalar function of the deformation
gradient. For instance, in the case of an incompressible material, we assume that all defor-
mations must preserve volume, which implies det(F) = 1. In this case, C(F) = det(F)− 1.

A simple way to ensure that a constraint holds is to introduce a Lagrangian multiplier
p = p(X, t) and modify accordingly the energy density W →W − pC so that Equation (168)
reads now

tr

[(
∂

∂F
(W − pC)− S

)
Ḟ

]
= 0, (172)

which leads to

S =
∂W

∂F
− p∂C

∂F
. (173)

In terms of the Cauchy stress, we have

T = J−1FS = J−1F
∂W

∂F
− pN, (174)

where

N = J−1F
∂C

∂F
, (175)
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is the reaction stress enforcing the constraint. In particular, for incompressible materials, we
have

∂C

∂F
= (det F) F−1 = JF−1, (176)

that is, N = 1. The constitutive relationship for an incompressible hyperelastic material is
then

T = F
∂W

∂F
− p1. (177)

Recalling that a hydrostatic pressure is a stress that is multiple of the identity, we can identify
the reaction stress in (177) with a hydrostatic pressure. Physically, we see that a pressure p
is required to enforce locally the conservation of volume,

For a given W = W (F), the Cauchy stress for compressible or incompressible materials
can be written in the general form

T = J−1F
∂W

∂F
− p1, (178)

where J = 1 for an incompressible material and p = p(x, t) must be determined. If the
material is unconstrained, then p = 0.
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5 Summary of equations

� Overview A brief pause to collect all the equations we have seen so far. Counting to make sure

that the numbers of unknowns match the muber of equations is always a good idea

We can now collect the different equations from the previous sections to obtain a closed
set of equations

ρ̇+ ρdiv v = 0, continuity equation (179)

div T + ρb = ρv̇, equation of motion (180)

TT = T, symmetry of Cauchy stress tensor (181)

T = J−1F
∂W

∂F
− p1, constitutive law (182)

Since the elements of F are related to the motion χ by F = Gradχ, and v = ∂tχ(X(x, t), t),
there are ten unknowns in this system: the scalar field ρ, the vector field χ and the six
components of the symmetric tensor T for ten equations (excluding the third equation that
reduces the number of unknowns in T).

It is also sometimes convenient to write these equations with respect to the reference
variables [118]:

ρ̇0 = 0, continuity equation (183)

Div S + ρ0B = ρ0v̇ equation of motion (184)

STFT = FS, symmetry of Cauchy stress tensor (185)

S =
∂W

∂F
− pJF−1, constitutive law (186)

where the divergence and gradient are now taken in the initial reference configuration, ρ0 =
J(X, t)ρ(x(X, t), t) is the reference density at a material point, B = b(x(X, t), t) is the body
force acting at the same point, and v̇ = v̇(x(X, t), t) is the acceleration of a material point.

5.1 Boundary conditions

Equilibrium and static solutions are obtained by setting v(X, t) = 0 for all X ∈ B0 and for
all time t. The equilibrium solutions must satisfy the conditions imposed on the boundary.
Depending on the setting, many different types of boundary conditions can be applied and
it is well appreciated that the solutions will depend crucially on these conditions. The two
main types of boundary conditions are dead loading and rigid loading.

In dead loading, a traction is prescribed and maintained constant throughout the defor-
mation, i.e. the prescribed traction is independent of deformation. A typical example of dead
loading is hydrostatic loading where a constant pressure P > 0 is applied at the boundary in
the current configuration. In this case, tn = −Pn, so that T = −P1.

In rigid loading , fixed displacements are prescribed at the boundary.
In mixed-loading , a surface traction tb and deformation xb are prescribed at the boundary:

Tn = tb for X ∈ ∂Bt0 (187)

x(X) = xb for X ∈ ∂Bd0 (188)

where ∂Bt
0 and ∂Bd

0 are parts of the body boundary such that ∂Bt
0 ∪ ∂Bd

0 = ∂B0 and ∂Bt
0 ∩

∂Bd
0 = ∅. Note that tb can be a function of the deformation gradient as well as of the position.



6 ISOTROPIC MATERIALS 39

6 Isotropic materials

� Overview We can make much progress by further restricting our analysis to special claases of

materials with given symmetry. The simplest ones are the isotropic materials.

6.1 Objectivity and material symmetry

The functional form of the elastic energy can be restricted by combining a fundamental
principle, the principle of objectivity, together with symmetry properties of the material.

The principle of objectivity or material-frame indifference [146] states that material prop-
erties are independent of superimposed rigid-body motions. For hyperelastic materials, the
principle of objectivity implies

W (QF) = W (F), ∀Q ∈ SO(3), (189)

where SO(3) is the set of all proper orthogonal tensors. The principle of objectivity implies
that W only depends on F through C, so that we can write W (F) = W̄ (C). Here, to simplify
the notation we will drop the overbar and simply write W (F) = W (C).

Next, we consider the implication of material symmetries. A material is said to be sym-
metric with respect to a linear transformation if the reference configuration is mapped by
this transformation to another configuration which is mechanically indistinguishable from it.
The set of all such linear transformations constitutes a symmetry group Q ⊆ SO(3). The
symmetry condition for a hyperelastic material is [118]

W (FQ) = W (F), ∀Q ∈ Q. (190)

6.2 symmetry of isotropic materials

The maximal possible symmetry group is SO(3), which defines an isotropic material . The
case of isotropic materials is particularly important both for its simplicity and its wide ap-
plicability. Isotropy implies that the strain-energy function depends on F only through V,
where V is the symmetric second-order tensor appearing in the polar decomposition F = VR.
Indeed, choosing Q = RT in (190) leads to

W (FQ) = W (FRT) = W (VRRT) = W (V). (191)

Combining isotropy with objectivity, we have

W (QFQ̃T) = W (FQ̃T) = W (F) = W (V), ∀Q, Q̃ ∈ SO(3), (192)

and choosing Q̃ = QR in W (QFQ̃T) leads to the conclusion that the strain-energy function
satisfies

W (V) = W (QVQT), ∀Q ∈ SO(3). (193)

The property (193) defines W as an isotropic function of V. By inspection, it can readily
be observed that the determinant and trace are simple examples of isotropic functions of
a second-order tensor. More generally, an isotropic function of V can only depend on V
through its three principal invariants

{tr(V),
1

2

(
tr(V)2 − tr(V2)

)
, det(V)}. (194)
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However, since V is a symmetric positive-definite tensor, it is often more convenient to express
W through the principal invariants of the left Cauchy-Green tensor B = V2 = FFT:

I1 = tr(B) = λ2
1 + λ2

2 + λ2
3, (195)

I2 =
1

2

(
I2

1 − tr(B2)
)

= λ2
2λ

2
3 + λ2

3λ
2
1 + λ2

1λ
2
2, (196)

I3 = det(B) = λ2
1λ

2
2λ

2
3. (197)

Equivalently, it implies that W only depends on F through its principal stretches λ1, λ2, λ3

(the square roots of the principal values of B). With a slight abuse of notation, we write
either W = W (I1, I2, I3), or W = W (λ1, λ2, λ3).

For an isotropic compressible material, we have J = 1, which implies that λ3 = 1/(λ1λ2).
Therefore, W can be either expressed in terms of {λ1, λ2} or {I1, I2}.

To compute the explicit form of the Cauchy stress tensor for a compressible material in
terms of the invariants and their derivatives we use

∂I1

∂F
= 2FT,

∂I2

∂F
= 2I1F− 2FTB,

∂I3

∂F
= 2I3F

−1, (198)

to find
T = w01 + w1B + w2B

2, (199)

where the functions wi depend on the invariants and are given explicitly by

w0 = 2J
∂W

∂I3
− p, (200)

w1 = 2J−1∂W

∂I1
+ 2J−1∂W

∂I2
I1, (201)

w2 = −2J−1∂W

∂I2
. (202)

As before we choose p = 0 for compressible materials and J = I3 = 1 for incompressible
materials. If the reference configuration is assumed stress-free, then we must have T(F =
1) = 0, that is the functions wi = wi(I1, I2, I3) satisfy

w0(3, 3, 1) + w1(3, 3, 1) + w2(3, 3, 1) = 0. (203)

A convenient alternative representation, the Rivlin–Ericksen representation, is obtained
from (199) by using Cayley–Hamilton’s theorem [60] for B. In terms of the invariants, the
Cayley–Hamilton theorem in three dimensions reads

B3 − I1B
2 + I2B− I31 = 0. (204)

Substituting B2 = I1B− I21 + I3B
−1 in (199) gives

T = β01 + β1B + β−1B
−1, (205)

where

β0 = 2J
∂W

∂I3
+ 2J−1I2

∂W

∂I2
− p, (206)

β1 = 2J−1∂W

∂I1
, (207)

β−1 = −2J
∂W

∂I2
. (208)
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6.3 Adscititious inequalities

The principle of objectivity together with isotropy leads to a representation of the strain-
energy function in terms of three invariants. This formulation still leads to many choices for
a suitable functional form of W . If we want to establish general results independent of the
particular choice of strain-energy function, we can impose certain desired behaviors [151]. For
instance, we may require that, in simple extension an isotropic elastic body extends rather
than shrinks. These conditions take the form of inequalities either on the coefficients of the
constitutive relations, or on the principal stresses and strains. They are called adscititious
inequalities as they come from outside the theory and are derived empirically from everyday
experience or experiments [147]. We mention here three standard inequalities often used in
elasticity and suitable for most elastomers.

• Baker-Ericksen inequalities. The Baker-Ericksen inequalities follow from the re-
quirement that the greater principal stress occurs in the direction of the greater principal
stretch [9] which implies

λi 6= λj ⇒ (ti − tj)(λi − λj) > 0, i, j = 1, 2, 3, (209)

where {t1, t2, t3} and {λ1, λ2, λ3} are the principal stresses and principal stretches ob-
tained by the spectral decomposition

V =

3∑
i=1

λivi ⊗ vi, T =

3∑
i=1

tivi ⊗ vi. (210)

Condition (209) imposes the following restrictions on the coefficients in (205):

λ2
iλ

2
jβ1 > β−1, if λi 6= λj , (211)

λ4
iβ1 > β−1, if λi = λj . (212)

For a hyperelastic body under uniaxial tension, the deformation is a simple extension in
the direction of the (positive) tensile force. The ratio of the tensile strain to the strain
in the perpendicular direction is greater than one if and only if the Baker-Ericksen
inequalities hold [103].

• The ordered-forces inequalities. Similar to the Baker-Ericksen inequalities, the
ordered-forces inequalities state that the greater stretch occurs in the direction of the
greater force. While similar, the two sets of inequalities do not imply each other [146,
p. 157]. However, it can be shown that if two of the three principal stresses are non-
negative, then the Baker-Ericksen inequalities follow from the ordered-forces inequali-
ties, and if two of the three principal stresses are non-positive, then the ordered-forces
inequalities are implied by the Baker-Ericksen inequalities.

• Empirical inequalities. Based on experimental observations in elastomers, the fol-
lowing empirical inequalities on the coefficients of (205) have been postulated [115]:

β0 6 0, β1 > 0, β−1 6 0, (213)

for the compressible case. For the incompressible case, only the last two inequalities
are considered. These inequalities directly imply the Baker-Ericksen inequalities (211)
but not conversely.
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6.3.1 Example: pure shear of an elastic cube

The adscititious inequalities can be used to establish general qualitative trends. For instance,
consider a homogeneous isotropic hyperelastic cube subject to a pure shear stress on its
top face as shown in Figure 10. In Cartesian coordinates, this stress can be written as
T = T (e1 ⊗ e2 + e2 ⊗ e1), where T > 0 is constant. Equivalently, in matrix form, it reads

[T ] =

 0 T 0
T 0 0
0 0 0

 . (214)

(0,0,0) (1,0,0)

(0,1,0) (1,1,0)

(0,0,1) (1,0,1)

(1,1,1)(0,1,1)

)0,0,a()0,0,0(

(a+d,b,0)(d,b,0)

(0,0,c) (a,0,c)

(a+d,b,c)(d,b,c)
T

Figure 10: A cube deformed under pure shear stress T applied to the top face (d =
√
b2 − a2).

Since T is constant, in the absence of body force, the equation of motion is identically
satisfied. The corresponding deformation is homogeneous. That is the deformation gradient
is independent of the position. For a pure shear stress, it reads

x = aX +
√
b2 − a2Y, y = bY, z = cZ. (215)

It consists of a triaxial stretch, a pure strain deformation, combined with a simple shear in
the direction of the shear force if and only if the Baker-Ericksen inequalities hold. Therefore,
the Baker-Ericksen inequalities guarantee that the shear strain is in the same direction as the
shear force.

If the Baker-Ericksen inequalities are not satisfied, the material would shear in the direc-
tion opposite to the direction of the shear stress. This behavior would be unrealistic, even
though there is no fundamental principle that would rule it out. It is only through our own
experience of everyday materials that we infer its physical impossibility.

For the deformation (215), obtained under pure shear, we define the Poynting effect as 0 <
b 6= 1 [115]. Specifically, if a cube is deformed under pure shear, the positive Poynting effect
occurs when b > 1 [13], i.e. the sheared faces spread apart, whereas the negative Poynting
effect is obtained when b < 1, i.e. the sheared faces are drawn together. It can be shown that
the validity of the empirical inequalities (with β−1 < 0) is a necessary and sufficient condition
for the positive Poynting effect as found in rubber materials [113]. However, experimental
observations suggests that semi-flexible polymer gels exhibit a negative Poynting effect [84],
which implies β−1 > 0. Therefore, it appears that the last of the empirical inequalities may
not hold for some biological materials and should be replaced by the generalized empirical
inequalities [114] which simply state β0 6 0 and β1 > 0.
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6.4 Choice of strain-energy functions

The choice of strain-energy functions W = W (F) for particular applications is a controver-
sial and difficult problem. Methods based on a statistical analysis of the microstructure have
been proposed [16, 39]. However, typically, phenomenological models are used to capture
the essential features of a material such as its behavior under shear or its strain-hardening
or strain-softening properties [76, 79, 134], while respecting basic material properties such
as convexity and objectivity [154]. Note that the words model and material are used ex-
changeably to describe these particular strain-energy functions. For instance, a neo-Hookean
material is a material described by the neo-Hookean model, that is a hyperelastic material
with the particular form of strain-energy density function given below. These models can be
calibrated and fitted to uniaxial or biaxial experiments [72, 73, 92, 96, 135, 136, 150, 148].
Here, we limit our presentation to a few key popular models for incompressible materials that
capture specific features and are widely used in applications. A summery is given in Table 1.

• Neo-Hookean materials. The simplest model, and the starting point of many theo-
ries, is the neo-Hookean model [40]:

Wnh =
C1

2
(I1 − 3). (216)

This strain-energy function can be derived from statistical mechanics as a macroscopic
limit of the energy density of an amorphous cross-linked network of polymeric molecules
[38, 39, 143, 144]. Each molecule in this network is a freely jointed chain with the same
number of monomer units and their end-to-end distances follow a Gaussian distribution.

For small deformations, the macroscopic parameter C1 can be identified with the shear
modulus µ and is proportional to the product kBT of the Boltzmann constant with the
absolute temperature. The Young’s modulus is then related to C1 by

E = 3µ = 3C1. (217)

A simple generalization of neo-Hookean material is obtained by assuming that the
strain-energy function is only a function of the first invariant, W (F) = W (I1). This
class of models are know as generalized neo-Hookean materials [4, 155], for which gen-
eral results can easily be established [100].

• Mooney-Rivlin materials. The neo-Hookean model can be interpreted as the low-
est approximation of a strain-energy function with respect to the strain tensor E =
(FTF−1)/2, the so-called second-order elasticity approximation. This model is a good
descriptor for many elastomers in tension or compression but it often fails to capture
quantitatively behaviors associated with shear or torsion. The next order approxima-
tion for incompressible isotropic elasticity gives rise to third-order elasticity [27, 32, 58].
Expressed in terms of invariants, it takes the form of the Mooney-Rivlin strain-energy
function

Wmr =
C1

2
(I1 − 3) +

C2

2
(I2 − 3). (218)

The combination C1 +C2 = µ can be identified again as the shear modulus. Therefore,
we can write

C1 = µ(
1

2
+ α), C2 = µ(

1

2
− α). (219)
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The Baker-Ericksen inequalities imply that α ∈ [−1/2, 1/2]. This model can also be
derived from statistical-mechanics arguments by relaxing some of the assumptions that
lead to the neo-Hookean model [45].

• Ogden materials. A general approach for material modeling, originally proposed by
Ogden [117, 119, 121], consists in considering a general expansion with N terms of the
form

WogN =

N∑
i=1

µi
αi

(λαi1 + λαi2 + λαi3 − 3) . (220)

Each parameter µi and αi is a material constant to be determined. These constants
are related to the shear modulus µ of small deformations by

N∑
i=1

µiαi = 2µ. (221)

In practice, the number of terms is limited to N 6 6. The possibility of having a
large number of parameters provides a systematic way to explore many different behav-
iors and can be used to fit experimental data of both elastomers and biological tissues
[82, 112, 152, 153].

• Fung-Demiray materials. Many soft tissues and elastomers exhibit strong strain-
hardening properties. That is, in simple extension, it becomes increasingly difficult to
further extend the material. Examples of generalized neo-Hookean materials that have
been used to capture this effect in soft tissues are the Fung and Gent models. The Fung
model [49, 50, 94, 142], in its simplest form, reads

Wfu =
µ

2β
[expβ(I1 − 3)− 1], (222)

where β > 0 controls the strain-hardening property. In the limit β → 0 the Fung model
reduces to the standard neo-Hookean model. This particular form of the Fung model
was first proposed by Demiray in 1972 [29, 30].

• Gent materials. Another popular model is the Gent model that has finite-chain
extensibility enforced by a singular limit of the strain-energy function [53, 77, 79]

Wge = − µ

2β
log[1− β(I1 − 3)]. (223)

The neo-Hookean model is obtained in the limit β → 2.

For a compressible material, there is an extra dependance on the invariant I3 = J2.
Again, a choice must be made to take into account the energy associated with local changes
of the volume. Typically, an additive choice is made for which the strain-energy function is
separated into an incompressible part and a compressible part [74, 101] so that

W = Winc(I1, I2) +Wcomp(I3) (224)

and a model from Table 1 is adopted for Winc(I1, I2). Possible choices for Wcomp(I3) include:
µc(I3 − 1), µc(J − 1)2, µc ln I3, µc ln J , where µc is a material parameter related to the bulk
modulus.
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Name Definition soft tissues elastomers

neo-Hookean Wnh = C1
2 (I1 − 3)

Mooney-Rivlin Wmr = C1
2 (I1 − 3)+C2

2 (I2 − 3)

Ogden 1 Wog1 =
2µ

β2
(λβ1 + λβ2 + λβ3 − 3) β ≥ 9 β ≈ 3

Fung Wfu =
µ

2β
[expβ(I1 − 3)− 1] 3 < β < 20

Gent Wge = − µ

2β
log[1− β(I1 − 3)] 0.4 < β <3 0.005 < β < 0.05

Table 1: A list of phenomenological strain-energy functions for isotropic incompressible ma-
terials. Note that the materials have been written so that they share the same infinitesimal
shear modulus µ. The limits β → 2 in Wog1 and, β → 0 in Wfu and Wge all lead to the
neo-Hookean strain-energy function. Estimates are taken from: 1-term Ogden is [15, 138],
Gent [53, 55, 76, 78], Fung [28, 71].
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7 Examples of boundary value problems

� Overview For a given strain-energy density function, we can write a full system of equations

which can be solved for given boundary conditions. We (finally!) give some simple solutions for

homogeneous and semi-inverse problems.

7.1 A simple homogeneous deformation

Homogeneous deformations are specified by a constant deformation gradient so that

x = FX + c, (225)

where F and c are constant.
For a homogenous isotropic compressible material, this choice implies that T is constant,

and in the absence of a body load, the equilibrium equations are therefore trivially satisfied.
The solution is then fully specified by the boundary conditions and the constitutive law [133].

Consider for example, the diagonal deformation of a cuboid into another cuboid shown
in Figure 11 and described by

xi = λiXi, i = 1, 2, 3 (no summation over i). (226)

The corresponding deformation gradient is [F] = diag(λ1, λ2, λ3) and, consequently, the

c

e1

e2

e3

E1

E2

E3 H3

H2

H1 h1

h2

h3

Figure 11: A simple diagonal homogenous deformation transforming a cuboid into another
cuboid. The deformation is characterized by the three constants λi = hi/Hi, i = 1, 2, 3.

Cauchy stress tensor is also diagonal: [T] = diag(t1, t2, t3). The deformation and stresses are
then obtained from the constitutive law

ti =
λi
J

∂W

∂λi
, i = 1, 2, 3 (no summation over i). (227)

For instance, in a hydrostatic uniaxial extension, the stress is prescribed in one direction,
that is t3 = N and t1 = t2 = 0. By symmetry, we have λ1 = λ2 and

t2 =
1

λ2λ3
W2 = 0, t3 =

1

λ2
2

W3 = N. (228)

These equations constitute a systems of two equations for two unknowns.
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We further specialize these equations to a compressible neo-Hookean material with a
strain-energy function of the form

W =
µ1

2
(I1 − 3)− µ1

2
(I3 − 1) +

µ2

4
(I3 − 1)2. (229)

This particular form is chosen so that all stresses vanish at λ1 = λ2 = λ3 = 1. Equations (228)
then read

0 = µ1(
1

λ3
− λ2

2λ3) + µ2λ
2
2λ3(λ4

2λ
2
3 − 1), (230)

N = µ1(
λ3

λ2
2

− λ2
2λ3) + µ2λ

2
2λ3(λ4

2λ
2
3 − 1). (231)

The Young’s modulus E is obtained for small deformations as the ratio of uniaxial stress to
the uniaxial stretch, that is

E =
∂N(λ2, λ3)

∂λ3

∣∣∣∣
λ2=λ3=1

+

(
∂N(λ2, λ3)

∂λ2

∂λ2

∂λ3

)∣∣∣∣
λ2=λ3=1

= 2µ1
2µ1 − 3µ2

µ1 − 2µ2
. (232)

If we now consider the same deformation but for an incompressible material with a neo-
Hookean strain-energy function W = µ(I1 − 3)/2, we have λ1 = λ2 again by symmetry, but
λ3λ

2
2 = 1 by incompressibility. We replace the constitutive law (227) by

ti = λi
∂W

∂λi
− p i = 1, 2, 3 (no summation over i). (233)

The boundary conditions lead to

p =
µ

λ3
, N (λ3) =

(
λ3

3 − 1
)
µ

λ3
, (234)

which defines a Young’s modulus

E =
∂N(λ3)

∂λ3

∣∣∣∣
λ3=1

= 3µ. (235)

7.2 The half-plane in compression

As a second example, we consider another type of homogeneous deformation applied to an in-
compressible hyperelastic half-space with a free surface, characterized by W = W (λ1, λ2, λ3),
under pure homogeneous static deformation with principal stretch ratios λ1, λ2, λ3 [14, 59].
We take e2 = E2 normal to the surface with the half-space located in X2 > 0, so that λ2 is the
stretch ratio in the direction normal to the free surface. We consider homogeneous loadings so
that the Cauchy stress tensor, in Cartesian coordinates, can be written [T] = diag(t1, t2, t3)
with deformation gradient [F] = diag(λ1, λ2, λ3).

There are three typical types of loading which are of interest as shown in Figure 12:

• Equibiaxial strain. An equibiaxial strain is associated with deformations with equal
strains in the plane, that is λ1 = λ3. In this case, the half-space is compressed with
equal force in the 1- and 3-directions, and expands freely in the 2-direction, so that

t1 = λ1W1 − λ2W2, t2 = 0, t3 = t1, (236)

where Wi = ∂λiW .
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t1t1

X2>0

X2<0

t1 t1 t1

t3=t1

t3=t1
t2=0 t2=0

t1

t3=0

t2=0

λ3=1

λ3=λ1,  λ2=λ1
-2

Equibiaxial
λ3=1,  λ2=λ1

-1
Plane strain

λ2=λ3,   λ2=λ1
-1/2

Uniaxial

A. B. C.

Figure 12: Three typical deformations of a half space. A. Equibiaxial strain. B. Plane strain.
C. Uniaxial strain

• Plane strain. Plane strain corresponds to the condition λ3 = 1. It corresponds to a
half-space compressed in the 1-direction and prevented from expanding/contracting in
the 3-direction. Thus, it expands in the 2-direction, normal to the free surface. This
deformation is maintained by applying the tractions

t1 = λ1W1 − λ2W2, t2 = 0, t3 = λ3W3 − λ2W2 6= t1. (237)

• Uniaxial strain. A uniaxial strain is defined by t3 = 0. That is, the half-space is free
to expand in the 2- and 3-directions, and

t1 = λ1W1 − λ2W2, t2 = 0, t3 = 0. (238)

It follows from the incompressibility condition that λ1λ2λ3 = 1 and therefore the three
cases can be written in general as

λ2 = λn1 with


n = −2 equibiaxial,
n = −1 plane strain,
n = −1

2 uniaxial.
(239)

Therefore, we can use λ1 to fully characterize the deformation. For a given strain-energy
function, the stresses developed as a function of λ1 can be computed by direct evaluation of
the relations (236–237).

Once the stresses are known, a natural problem is to look for possible bifurcations. That
is, we wish to identify a critical value of λ1 such that the half-space develops surface wrinkles
as one would expect when compressing a large rubber block. We will not consider this
problem here but it is an active area of research.

7.3 Inflation of a spherical shell.

1) Elastic, incompressible, isotropic spherical shell with strain-energy W (I1, I2, I3).

2) Symmetric inflation

A 6 R 6 R, F = ∂x
∂X (see §2.9) (240)

x = f(R)X, r = f(R)R. (241)
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F =

 λr
λθ

λφ

 =

 r′

r/R
r/R

 . (242)

λr = r′(R), λθ = r/R = λφ (243)

λa = a/A, λb = b/B, r =
3
√
a3 −A3 +R3 (244)

where a is the single unknown parameter. Therefore

λθ = λφ = λ = r/R, λr = λ−2 (245)

n

−pn

T · n =

{
−P on r = a

0 on r = b
(246)

ST ·N = JPF−TN (mapping of traction vector){
Tn = −Pn on ∂B
ST ·N = −PJF−TN, on ∂B

(247)

=⇒ Trr =

{
−P on r = a

0 on r = b
(248)

or

Srr =

{
−Pλ−1

r = −Pλ2 on R = A

0 on R = B
(249)

Note that the boundary condition depends on the deformation.
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3) b = 0 and div T = 0,

=⇒ dTrr
dr

+
2

r
(Trr − Tθθ) = 0, (250)

or

dSrr
dR

+
2

R
(Srr − Sθθ) = 0. (251)

Constitutive equations,

S =
∂W

∂F
− pF−1, (252)

or

T = F
∂W

∂F
− p1. (253)

Then

Srr =
∂W

∂λr
− pλ−1

r , Sθθ =
∂W

∂λθ
− pλ−1

θ (254)

which are functions of λ(R).

4) Solve the equation div S = 0. To do so, we choose λ as a variable. Define h(λ) =
W (λ−2, λ, λ), then

dSrr
dλ

= −2
Srr − Sθθ
λ− λ−2

= − h′(λ)

λ3 − 1
,

=⇒ P =

∫ λa

λb

h′(λ)

λ3 − 1

∂tr
∂r

+
2

r
(tr − tθ) = 0, (255)

tr = λrWr − p = λ−2Wr − p, tθ = λWθ − p, tφ = tθ. (256)

tr − tθ = λ−2Wr − λWθ (257)

=⇒ ∂tr
∂r

+
2

r
(λ−2Wr − λWθ) = 0. (258)

Introduce auxiliary function, h(λ) = W (λ−2, λ, λ),

h′(λ) =
∂h

∂λ
= Wr.(−2λ−3) +Wθ.1 +Wφ.1 = −2λ−1(λ−2Wr − λWθ) (259)

∂tr
∂r

=
∂tr
∂λ

∂λ

∂r
(260)
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compressive

P
P < 0
sucking

P > 0
blowing

tr(λb)

λa

1

λ =
r

R(r)
,

∂λ

∂r
=

1

R
− rR′

R2

R3 = r3 − a3 +A3, R′R2 = 3r3, R′ =
r2

R2
= λ2.

∂λ

∂r
=

1

R
(1− λ3) (261)

=⇒ ∂tr
∂r

=
∂tr
∂λ

1

R
(1− λ3) =

λh′(λ)

r
. (262)

∂tr
∂λ

=
h′(λ)

1− λ3
, =⇒ tr =

∫ λ

λa

h′(λ)

1− λ3
dλ (263)

At λ = λb, tr = −P ,

−P = −
∫ λb

λa

h′(λ)

1− λ3
dλ, =⇒ P =

∫ λb

λa

h′(λ)

1− λ3
dλ = f(λa). (264)

Note

λa = a/A, λb =
1

B
3
√
a3 −A3 +B3 =

1

B
3
√

(λa − 1)A3 +B3. (265)

For a given P , we find a, hence the deformation and the value of tr at all points.

Note that W = µ
2 (λ2

r + λ2
θ + λ2

φ),

=⇒ h =
µ

2

(
1

λ4
+ 2λ2

)
. (266)

Note the nonlinearity in the 1/λ4 term.

=⇒ h′

1− λ3
= −2µ(λ−2 + λ−5), (267)

P = −2µ

(
1

λ
+

1

4λ4

)∣∣∣∣λb(λa)

λa

. (268)
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7.4 The inflation-extension of a tube

As an example of non-homogeneous static deformations, we consider the problem of an incom-
pressible hyperelastic cylindrical shell subject to combined extension and inflation [34, 80, 88]
in the absence of body loads. We consider a simple thought experiment in which the tube is
capped at both ends and subject to an axial extension ζ due to an internal pressure P and to a
total axial load N on the top cap. The tube of initial inner radius A and outer radius B > A,
and height H is then deformed into a tube with radii a, b and height h as shown in Figure 13.
We consider a finite deformation in which the cylinder is allowed to inflate and extend while
remaining cylindrical at all times regardless of possible stability issues [12, 21, 57, 65, 64].

χ

-P

H

h
2b

2B

N

ez

Figure 13: Inflation-extension of a tube. The tube is inflated with an internal pressure P
(which is equivalent to an external pressure −P as shown) and an axial load N resulting from
an applied load and the pressure acting on the end caps.

For this problem, the deformation x = χ(X, t), in cylindrical coordinates {r, θ, z} and
{R,Θ, Z} reads

r = r(R), θ = Θ, z = ζZ, (269)

where ζ is the constant axial stretch of the cylinder such that h = ζH. The position vectors
in the reference and current configurations are

X = RER + ZEZ , x = r(R)er + ζZez. (270)

where {ER,EΘ,EZ} and {er, eθ, ez} are the two standard cylindrical bases. Following the
identity (76), the deformation gradient F = Grad(χ) with respect these coordinates is given
by

F = r′er ⊗ER +
r

R
eθ ⊗Eθ + ζez ⊗EZ , (271)

where the prime denotes differentiation with respect to R. Equivalently, we can write

[F] = diag(r′,
r

R
, ζ) ≡ diag(λr, λθ, λz), (272)

which defines the three principle stretches {λr, λθ, λz}.
The incompressibility condition det(F) = 1 = λrλθλz leads to

r′r =
R

ζ
, (273)
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which, together with r(A) = a, leads to

r =

√
a2 +

R2 −A2

ζ
. (274)

Then, λ = λθ is given by

λ =
r

R
=

1

R

√
a2 +

R2 −A2

ζ
. (275)

Therefore, the deformation is fully specified by two parameters: the axial stretch ζ and the
radial stretch of the inner wall λa = a/A so that

λb =
b

B
=

1

ζ

√
1 +

A2

B2
(ζλ2

a − 1). (276)

Since the deformation is diagonal in cylindrical coordinates and only depends on R, it
follows from Equation (199) that the Cauchy stress tensor is also diagonal in these coordinates
so that

[T] = diag(tr, tθ, tz) ⇔ T = trer ⊗ er + tθeθ ⊗ eθ + tzez ⊗ ez. (277)

This particular form of the Cauchy stress tensor implies that the Cauchy equation div T = 0
in cylindrical coordinates reduces to a single scalar equation

dtr
dr

+
1

r
(tr − tθ) = 0. (278)

This equation can be integrated once over r:

tr(r) = tr(a) +

∫ r

a

tθ − tr
r

dr, r ∈ [a, b]. (279)

We now examine the boundary conditions. First, due to inflation, the jump in pressure
between the inner and outer sides of the cylinder is P = tr(b) − tr(a). Without loss of
generality, we choose

tr(a) = −P, tr(b) = 0, (280)

which in (279) implies

P =

∫ b

a

tθ − tr
r

dr. (281)

Second, the boundary conditions on the two caps of the tube, defined as the two rings at
z = 0 and z = h, can be written

tz(z = 0) = Nz, tz(z = h) = Nz. (282)

However, since a constant axial stretch ζ cannot be used to fit a constant Nz, we replace
this point-wise condition on the caps of the cylinder by an integral condition for the total
axial load applied on the cap [129, 130]

2π

∫ b

a
Nzrdr = N ≡ F + χPπa2, (283)

thereby eliminating the explicit dependence on the variable r. The total axial loadN is further
decomposed into an external applied load F , that corresponds to pulling or compressing the
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tube, and the load created by the internal pressure acting over the cap. That load is simply
the pressure times the projected area of the cap. The coefficient χ is 1 for a capped cylinder,
and 0 for an infinite cylinder [23, 57].

For incompressible materials, this last expression is not the most practical one as the term
Tzz will contain an arbitrary pressure. An equivalent expression can be obtained by adding
and subtracting Trr to obtain

2π

∫ b

a
Tzzr dr = 2π

∫ b

a
(Tzz − Trr + Trr)r dr. (284)

The last term can be integrated by parts, and use of the balance law (340) gives

2π

∫ b

a
Tzzrdr = π

∫ b

a
(2Tzz − Trr − Tθθ)rdr + Pπa2. (285)

which implies

π

∫ b

a
(2Tzz − Trr − Tθθ)rdr = F + (χ− 1)Pπa2, (286)

and the last term vanishes for a capped cylinder.
To close the system, we use the constitutive law:

tr = λr
∂W

∂λr
− p, tθ = λθ

∂W

∂λθ
− p, tz = λz

∂W

∂λz
− p, (287)

and substitute the functions of (λr = 1/(λζ), λθ = λ, λz = ζ) in (281-283) so that tθ − tr =
Q(r, λa, ζ).

The semi-inverse problem consists then in finding the values of (λa, ζ) corresponding to
the two external loads (F, P ) through the analysis of the two equations (281-283). Note that
once (λa, ζ) is known, the stress tr(r) can be computed as

tr(r) = −P +

∫ r

a
Q(r, λa, ζ) dr, (288)

and the remaining stresses are obtained from (287).

7.4.1 A toy model for an artery

As an example, we consider a toy model for an artery subject to pressure and tensile stretch.
The artery is modeled as a capped tube (χ = 1) made of a Fung material with values taken
from Table 1. The system is subjected to an fixed axial force F and varying pressure P
[149]. We solve Equations (281)-(283) for (λa, ζ) and plot P as a function of ζ, so that if the
pressure is controlled, one can determine the amount of axial stretch in the tube.

First, we consider the case of a neo-Hookean material. The curve P (ζ) shown in Figure 14
is non-monotonic and presents a maximal value of pressure after which unbounded extensional
growth follows. This behavior is a drawback of the neo-Hookean model which is not well
defined for arbitrarily large deformations and stresses.

Second, we consider the effect of the strain-stiffening parameter β. In Figure 15, we see
that for small values of β, a non-monotonic behavior is observed in moderate deformations,
followed by a rapidly increasing pressure for larger deformations. For larger values of the
strain-stiffening parameter, the behavior is monotonic and increasingly large pressures are
needed for further small incremental extensions.
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Figure 14: Behavior of a tube under pressure and axial force for a Neo-Hookean material
(A = 1, B = 1.2, µ = 1, F = 0.1, χ = 1). The neo-Hookean model is ill defined past a critical
pressure P1.
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Figure 15: Behavior of a tube under pressure and axial force for a Fung material (β > 0).
Parameters for all figures:A = 1, B = 1.2, µ = 1, F = 0.1, χ = 1.
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We conclude that the behavior of the neo-Hookean model is qualitatively different from
the behavior of the Fung model even for very small values of the strain-stiffening parameter
β. In particular, typical axial strains in arteries are around 1.3 to 1.6, in the region where the
response of the structure clearly depends on the choice of the material model. This simple
computation clearly demonstrates the importance of the choice of the material model for
a given problem and the need to use nonlinear rather than linear elasticity to study these
problems.

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

0.130

0.135

0.140
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0.150

0.155

0.160 P

P1
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z
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z3 z1 z2

Figure 16: Limit-point instability in of a tube under pressure and axial force for a Fung
material (β = 0.05). The curve P (ζ) has a minimum and a maximum. If the internal
pressure of the tube is raised to P1, a sudden extension occurs through a jump from ζ1 to ζ2.
When the pressure is then decreased to P2, a second jump occurs to ζ3 (lower arrow).

The non-monotonic behavior shown in Figure 16, for intermediate values of β, is the
well-known limit-point instability that already appeared in the experiment by Osborne and
Sutherland (compare Figure 1 with Figure 16) for spherical and cylindrical shells under
internal pressure [2, 6, 22, 54, 116, 117]. For certain materials, the pressure-stretch curve
for spherical shells may present a maximum, followed by a minimum; in that case, once the
maximum is reached, and the pressure is increased, the stretch will “jump” to a significantly
higher value. In spherical shells, several authors have shown that this limit-point instability
disappears as the strain-hardening parameter is increased [11, 15, 83, 118].

It is tempting to associate certain pathologies such as aneurysms appearing in arteries
to a possible mechanical instability. However, the stabilizing effect due to strain-stiffening
leads us to conclude that a simple explanation for the formation of aneurysms in terms
of limit-point instability is not plausible [26, 91]. The same general trend is exhibited by
more realistic models of arteries, involving multiple layers, fiber anisotropy, and residual
stress as we will consider in Section ??. Nevertheless, various authors have looked at the
interesting possibility that aneurysms could be triggered by a local mechanical instability
resulting in a localized, but stable, bulged configuration that would then evolve slowly and
remodel [46, 47, 48, 123, 124, 131]. Aneurysms are such complex progressive diseases that
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it is unlikely that their formation could be explained simply as a mechanical phenomenon.
Still, it is now appreciated that mechanics and mechanical feedback play an important role
in the proper function of arteries and in the formation of aneurysms process [52, 127].
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8 Universal deformations for isotropic materials

� Overview Only a few problems have exact solution in isotropic incompressible solutions. Here we

give a complete list of all known solutions. An open problem is to determine if this list is complete.

One of the advantages of the general formalism of nonlinear elasticity is the possibility
of solving boundary-value problems for arbitrary strain-energy functions. However, it is not
clear that a given class of deformations can exist for any strain-energy function in the ab-
sence of body loads. A semi-inverse problem consists in specifying a class of deformations
(for instance the inflation of a sphere) with several unknown functions or constants that are
determined through the equilibrium equations. The question is then to determine all trans-
formations that can be effected through boundary traction in every homogeneous isotropic
hyperelastic material, and in the absence of body forces, the so-called universal deformations
for which the semi-inverse problem is well-defined [10, 36, 37].

For compressible materials, Ericksen [37] proved that the homogeneous deformations given
in Section 7.1 are the only possible universal deformations. That is, without further restricting
the class of strain-energy functions or applying body loads, homogeneous deformations are
the only ones that can be sustained for arbitrary strain-energy functions [125].

For incompressible materials, a number of interesting universal deformations are known,
but the general problem of determining all such possible deformations is still open [10, 41]. In
addition to homogenous deformations (classified as Family 0), there are five known families
of universal deformations. Each family of solutions exists for all strain-energy functions and
suitable boundary tractions. Since the deformation is known, the boundary tractions needed
to maintain a given solution can be found by evaluating the Cauchy stress tensor at the
boundary. Doing so, one is able to relate the parameters appearing in the solution to the
loads required to maintain them.

• Family 0. Homogeneous deformations of a rectangular block:

xi = FijXj , i = 1, 2, 3, (289)

where (X1, X2, X3) and (x1, x2, x3) are the Cartesian coordinates of a material point in
the reference and current configurations, respectively. The deformation is specified by
the nine constants appearing in the deformation gradient F.

• Family 1. Bending, stretching, and shearing of a rectangular block (shown in Fig-
ure 17). This deformation is defined with three arbitrary constants (a, b, c) (ab 6= 0)
by

r =
√

2aX, θ = bY, z =
Z

ab
− bcY, (290)

where (X,Y, Z) and (r, θ, z) are the Cartesian and cylindrical coordinates of a material
point in the reference and current configurations, respectively.

In these coordinates, the matrix of components of the deformation gradient reads (for
a > 0):

[F] =

 √a/
√

2X 0 0

0 b
√

2aX 0
0 −bc 1/(ab)

 . (291)
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c

c

c=0

c>0

Figure 17: Family 1. Bending, stretching, and shearing of a rectangular block. When the
parameter c vanishes, the deformation corresponds to the bending/stretching of a block. The
parameter c is associated to shearing out of the bending plane.

• Family 2. Straightening, stretching, and shearing of a sector of a cylindrical shell,
depicted in Figure 18, and defined for three arbitrary constants (a, b, c) (ab 6= 0) by

x =
1

2
ab2R2, y =

Θ

ab
, z =

Z

b
− cΘ

ab
, (292)

where (R,Θ, Z) and (x, y, z) are the cylindrical and Cartesian coordinates of a material
point in the reference and current configurations, respectively.

In these coordinates, the matrix of components of the deformation gradient is given by

[F] =

 ab2R 0 0
0 1/(abR) 0
0 −c/(abR) 1/b

 . (293)

• Family 3. Inflation, bending, torsion, extension, and shearing of a sector of an annular
wedge, shown in Figure 19, defined by six arbitrary constants (a, b, c, d, e, f) with the
constraint a(cf − de) = 1:

r =
√
aR2 + b, θ = cΘ + dZ, z = eΘ + fZ, (294)

where (R,Θ, Z) and (r, θ, z) are the cylindrical coordinates of a material point in the
reference and current configurations, respectively. The shearing is both axial (torsional)
and azimuthal. That is the region at constant Z becomes a helicoidal surface.
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c

c

c=0

c>0

Figure 18: Family 2. Straightening, stretching, and shearing of a sector of a cylindrical shell.
When the parameter c vanishes, the deformation corresponds to the straightening of the
cylinder. The parameter c is associated to extra shearing of the resulting block.
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In these coordinates, the matrix of components of the deformation gradient is given by

[F] =


aR√
aR2+b

0 0

0 c
√
aR2+b
R d

√
aR2 + b

0 e/R f

 . (295)

c
c

c

d=e=0 d=0 e=0 d=0 e=0
Figure 19: Family 3. Inflation, bending, torsion, extension, and shearing of a cylindrical
shell. The parameters d and e control the torsion and the shearing along the axis.

• Family 4. Inflation (+) or inversion (-) of a sector of a spherical shell, shown in
Figure 20 with a single constant a:

r =
3
√
±R3 + a, θ = ±Θ, φ = Φ, (296)
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where (R,Θ,Φ) and (r, θ, φ) are the spherical coordinates of a material point in the
reference and current configurations respectively.

In these coordinates, the matrix of components of the deformation gradient is given by

[F] =


± R2

(R3+a)2/3 0 0

0 ±
3√R3+a
R 0

0 0 ±
3√R3+a
R

 . (297)

c

Figure 20: Family 4. Inflation of a spherical shell to another spherical shell. The deformation
is controlled by a single parameter. A possible choice is the ratio of current to reference inner
radii.

• Family 5. Inflation, bending, extension, and azimuthal shearing of an annular wedge,
shown in Figure 21, with five constants (a, b, c, d, e) constrained by the condition a2ce =
1:

r = aR, θ = cΘ + d log(bR), z = eZ, (298)

where (R,Θ, Z) and (r, θ, z) are the cylindrical coordinates of a material point in the
reference and current configurations, respectively.

In these coordinates, the matrix of components of the deformation gradient is given by

[F] =

 a 0 0
ad ac 0
0 0 e

 . (299)
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c

Figure 21: Family 5. Inflation, bending, extension, and azimuthal shearing of an annular
wedge. Note that the deformation is essentially planar since the deformation in the z–
direction is homogenous.
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9 Anisotropic materials

� Overview Anisotropic materials are a little more complicated but they are quite interesting as

anisotropy is found in many biological systems.

Many elastic biological tissues have highly anisotropic mechanical properties [51, p. 500].
These anisotropic properties are determined primarily by the presence of fibers [42, 156]. For
instance, for animal soft tissues such as tendons, arterial wall, aortic valve, myocardium and
pericardium, anisotropy is determined in the first place by the arrangement of the collagen
fibers [83, 51, 69, 85, 97] in a mostly isotropic elastin matrix.

Collagen is a fibrous protein, which comprises 25% of the total protein mass in mammals
[5, p. 1184] and is the most abundant protein in vertebrates. Collagen is present in tissues in
various forms, in particular, in the form of fibrils, which consist of many cross-linked collagen
molecules, that are from 50 to 500 nm in diameter and can further organize into fascicles.
Special collagen type, geometry, density, and arrangement endows tissues with anisotropic
mechanical properties. Collagen fibers in tendons are parallel and aligned in the direction
of loading, while in the arterial wall, a significant fiber dispersion around two preferred fiber
directions is observed. It also provides the tissue with strongly nonlinear mechanical responses
as illustrated by the phenomenon of stretch locking in rabbit skin [97] shown in Figure 22.

A. B.

Figure 22: A. Langer’s lines showing line of anisotropy in the skin. B. Uniaxial tension test on
rabbit skin shows different behaviors in direction along or across Langer’s lines (reproduced
from [18], based on data [97]). Solid lines represent the computational simulation based on
an eight-chain model [8]. The dotted lines are the so-called locking stretches after which no
further stretch is possible (picture courtesy of Ellen Kuhl).

In plant tissues the same mechanical role is played by cellulose microfibrils based on sugar
chains, and with Young’s modulus around 130 GPa, reinforcing an isotropic matrix composed
of hemicellulose and lignin molecules with respective Young’s modulus around 40 MPa and 2
GPa [19]. It is the fine control of fiber geometry and density that provides plants with their
mechanical property and their ability to respond to their environment [35, 43, 99].

Similarly, in the fungal kingdom, the cell wall is, typically, constructed of chitin microfib-
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rils embedded in an elastic matrix of amorphous material composed of chitosan and chitin
[20, 81]. Such a composite material naturally lends itself to modeling in terms of an elastic
matrix with fiber reinforcements [56].

C.B.A.

Figure 23: Examples of fiber reinforcement in biological tissues. A. Microtubule alignment
in the exocarp cells of Cardamine hirsuta. The microtubules wind helically around the cells
(picture courtesy of Angela Hay [67]). B. Microfibrils in green algae. The X-ray analysis
shows the characteristic X structure indicating a mostly helical fiber [44]. C. Fiber wall
structure of the sporangiophore of the fungus Phycomyces showing spiraling fibers in the
cytoplasm together with the same characteristic X-ray signature [111].

As the internal structure of a tissue determines its mechanical properties, it is reasonable
to include it in a constitutive model. The theory of nonlinear fiber-reinforced elastic compos-
ites, developed by Rivlin, Spencer and others [3, 139, 140, 145], asserts that the strain-energy
function is in general expressed through a set of deformation invariants, whose number de-
pends on the symmetry exhibited by the material. In this theory, fibers are modeled by
continuous fields, that is they are represented by local directions of anisotropy rather than
actual physical fibers. A popular, a priori, assumption in constitutive models is that the
total stress generated by the whole tissue is the sum of stresses generated by its constituents
[73, 95, 96]. This assumption can be used to incorporate quantitative data characteriz-
ing a tissue’s structure directly into the constitutive relation, e.g. fiber volume fraction or
orientation-dependent density can be included as multiplicative factors in the appropriate
term. In addition, structural approaches allow for a formulation of phenomenological laws
for fiber remodeling and the study of the dynamics of mechanically induced fiber reorientation
[33, 62, 105, 106].

9.1 One fiber

A material reinforced by fibers that are perfectly aligned in one direction is an example of
a transversely isotropic material , i.e. a material which has one distinguished direction. The
fiber direction is specified by a unit vector M in the reference configuration as shown in
Figure 24. For this fiber, we define the structure tensor

H = M⊗M, (300)
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M

m=FM

x(X)
X

Figure 24: A one-fiber material. In an anisotropic one-fiber material, the response of the
material depends on the deformation gradient F and the direction of a distinguished material
line represented by a unit vector M. In a deformation, this direction is mapped to a vector
m = FM.

that contains all information about material anisotropy. We assume that the strain-energy
function of the fiber-reinforced material depends on H, and as a consequence, the requirement
of isotropy W (QTCQ) = W (C) is not identically satisfied for an arbitrary proper orthogonal
second order tensor Q. Instead, it must be satisfied for all proper orthogonal tensors Q such
that QM = ±M. This condition is enforced by considering that the strain-energy function
is a function of both C and H, that is W = W (C,H), and demanding that

W (C,H) = W (QTCQ,QTHQ), ∀Q ∈ SO(3). (301)

A strain-energy function for such materials depends in general on a deformation tensor
through five scalars, which consists of the three usual isotropic deformation invariants I1,
I2, I3 defined by

I1 = tr B, I2 =
1

2
[I2

1 − tr (B2)], I3 = det B = J2. (302)

and two extra pseudo-invariants, which are related to the strains in the fibers when deformed.

I4 = M · (CM) = C : H, I5 = M · (C2M) = C2 : H, (303)

where we used the double contraction between second-order tensors

A : B = tr(AB) = AijBji. (304)

The invariant I4 has a natural interpretation as the square of the fiber stretch in the current
configuration, that is the norm of m = FM.

The general form for the Cauchy stress tensor (178) in terms of W remains valid. Using
the identities

F
∂I4

∂F
= 2FM⊗ FM = 2m⊗m, (305)

F
∂I5

∂F
= 2F(M⊗ FCM + CM⊗ FM)

= 2(m⊗Bm + Bm⊗m), (306)
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we obtain an explicit expression for the Cauchy stress tensor:

T = J−1 [ − pI + 2W1B + 2W2(I1B−B2) + 2I3W3

+ 2W4m⊗m + 2W5(m⊗Bm + Bm⊗m)] , (307)

where Wi = ∂W/∂Ii, i = 1, . . . , 5.

9.2 Two fibers

Many biological tissues are reinforced in two directions and, accordingly, can be modeled by
a material with two fibers. The mechanical advantage of a tissue with two fibers appear
in extension. With a single fiber, an extension in any direction away from the fiber always
produces shear. With two fibers, the shear produced by each fiber can be balanced by the
other fiber when they have the same material response and their average direction matches
the maximal principal direction. Further, the angle between the two fibers can be tuned to
change the overall stiffness of the material.

Reinforcing by an additional family of fibers further reduces the symmetry of the material,
but it extends the set of invariants from five to nine. These four extra scalars account for the
strains in the second family and the coupling between the two fiber families [140]. We use
the unit vectors M and M′ to define two preferred directions in the reference configuration
B0. The energy for an unconstrained material with two families of fibers is a function of eight
invariants. These are the principal invariants I1, I2, I3 together with two pseudo-invariants
I4, I5 that depend on M, two pseudo-invariants I6, I7 that depend on M′ and two coupling
terms I8, I9 defined by

I4 = M · (CM), I5 = M · (C2M),

I6 = M′ · (CM′), I7 = M′ · (C2M′), (308)

I8 = (M ·M′)M · (CM′), I9 = (M ·M′)2.

Note that the last invariant is not a function of the deformation and will only appear as a
constant in the strain-energy function. It will therefore be ignored from the analysis at the
expense of a possible re-definition of the strain-energy function. The strain-energy function
W is now a function of all first eight invariants so that we write

W = W (I1, I2, I3, I4, I5, I6, I7, I8) . (309)

For an incompressible material we have I3 = 1, and the explicit expression for the Cauchy
stress tensor is

T = −pI + 2W1B + 2W2(I1B−B2)

+ 2W4m⊗m + 2W6m
′ ⊗m′

+ 2W5(m⊗Bm + Bm⊗m) + 2W7(m′ ⊗Bm′ + Bm′ ⊗m′)

+ W8(m⊗m′ + m′ ⊗m)(M ·M′), (310)

where m = FM, m′ = FM′, and Wi = ∂W/∂Ii for i = 1, . . . , 8.

9.3 Example: The fiber-reinforced cuboid

We consider the homogeneous deformation of a hyperelastic, incompressible cuboid B0 =
[0, L1] × [0, L2] × [0, L3], subjected to constant normal external loads t1, t2, t3 measured as
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force per unit area in the deformed configuration. The cuboid is made out of a homogeneous
material reinforced by two families of fibers, which are aligned symmetrically in the E1 −E2

plane, as shown in Figure 25. The directions of the fiber families are M = (cos Θ, sin Θ, 0),
M′ = (cos Θ,− sin Θ, 0).

t2

t1t1

t3

t3

t2

Figure 25: A cuboid is subjected to external hydrostatic loading, maintaining constant normal
stress on each face of the cuboid. The material is reinforced by two families of fibers, which
are in-plane, aligned symmetrically, and make an angle Θ with the E1 direction.

We further restrict our attention to a simple form for the isotropic and anisotropic re-
sponses, the so-called standard fiber-reinforcing model [31, 75, 108, 109, 110, 126, 145]

W = Wiso +Waniso =
µ

2
(I1 − 3) +

µγ

2

[
(I4 − 1)2 + (I6 − 1)2

]
, (311)

The constitutive equation (310) for this strain-energy function is

T = −p1 + µF
[
1 + 2γ(I4 − 1)M⊗M + 2γ(I6 − 1)M′ ⊗M′]FT. (312)

Due to the particular choice of fiber alignment and strength, the two equal and opposite
fibers with angle ±Θ in the E1–E2 plane are mapped into two equal and opposite fibers with
angle ±θ as shown in Figure 26. We also have I4 = I6 = λ2

1 cos2 Θ + λ2
2 sin2 Θ, where λi is

the stretch in Xi direction, and

[M⊗M + M′ ⊗M′] = 2diag(cos2 Θ, sin2 Θ, 0). (313)

Hence, we have

T = −p1 + µB
[
1 + 4γ(λ2

1 cos2 Θ + λ2
2 sin2 Θ− 1)diag(cos2 Θ, sin2 Θ, 0)

]
.
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Θ θ

M m=FMχ

Figure 26: Deformation of two equal and opposite fibers
.

For a homogenous deformation, the Cauchy stress is homogeneous as well and the Cauchy
equation are identically satisfied. The particular form of the fiber stiffness and alignment and
the boundary conditions

T(Xi = 0) = T(Xi = Li) = tiei, (314)

imply that [T] = diag(t1, t2, t3). From (9.3), we see that F, in these coordinates, must also
be diagonal, that is [F] = diag(λ1, λ2, λ3). Thus, (312) together with the incompressibility
condition become

t1 = −p+ µ
(
λ2

1 + 4γ(λ2
1 cos2 Θ + λ2

2 sin2 Θ− 1)λ2
1 cos2 Θ

)
, (315)

t2 = −p+ µ
(
λ2

2 + 4γ(λ2
1 cos2 Θ + λ2

2 sin2 Θ− 1)λ2
2 sin2 Θ

)
, (316)

t3 = −p+ µλ2
3, (317)

λ1λ2λ3 = 1, (318)

where the four unknowns λi and p can be determined from the loads ti and the fiber orien-
tation angle Θ. The last two relations (318) and (317) give λ3 = λ−1

2 λ−1
1 and p = µλ2

3 − t3,
so that, after substitution in the first two equations, the problem can be reduced to finding
(λ1, λ2) as a function of t1, t2, t3, that is

A =
λ2

1 − λ2
2

4γ
+ (λ2

1 cos2 Θ + λ2
2 sin2 Θ− 1)(λ2

1 cos2 Θ− λ2
2 sin2 Θ), (319)

B =
−1

2γλ2
1λ

2
2

+
λ2

1 + λ2
2

4γ
+ (λ2

1 cos2 Θ + λ2
2 sin2 Θ− 1)(λ2

1 cos2 Θ + λ2
2 sin2 Θ), (320)

where

A =
t1 − t2

4γµ
, B =

t1 + t2 − 2t3
4γµ

. (321)

Geometrically, Equations (319-320) define, for given A and B, two level sets, and the solution
lies at their intersection.

In many situations, fibers embedded in a matrix may not support compressive loads as
they would buckle under compression [73, 141]. Therefore, we further restrict the study of
our model to the fiber-tensile region, defined by

λf = λ2
1 cos2 Θ + λ2

2 sin2 Θ > 1, Θ ∈ [0, π/2]. (322)

Fibers are unstrained on the boundary of the region (322), and are in compression when
λ2

1 cos2 Θ + λ2
2 sin2 Θ < 1.

We first compute the effect of fiber alignment and stiffness by computing an effective
Young’s modulus. Young’s modulus is only defined for isotropic material, but in a given
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direction, one can define a modulus as the ratio of the uniaxial tension N by the stretch in
the same direction in the limit of small deformations. That is, the effective Young’s modulus
in a direction is defined as the gradient of N in that direction evaluated at the stress-free
state. For example, for an uniaxial tension in the e1 direction t1 = N, t2 = t3 = 0, we define

Eeff ≡
∂N

∂λ1

∣∣∣∣
λ1=1

, (323)

and, after linearizing (319-320) around the unstressed configuration, we find

Eeff = µ
4 [3 + 5γ + 3γ cos(4Θ)]

4 + 3γ − 4γ cos(2Θ) + γ cos(4Θ)
. (324)

As shown in Figure 27, the effective Young’s modulus has a maximum for Θ = 0 when the

Θm

µ(3+8γ)

µ(3+8γ)/(1+2γ)

π/20

Eeff

Compressive fibers

No compressive fibers

3µ Θ

Figure 27: Effective Young’s modulus for a fiber-reinforced sheet as a function of the fiber
angle.

fibers are aligned with the axis. It then takes the value

Eeff(Θ = 0) = (3 + 8γ)µ. (325)

The minimum effective Young’s modulus Eeff(Θ = Θm) = 3µ is attained for

Θm = tan−1
√

2 = π/2− Φm ≈ 54.74◦, (326)

where Φm ≈ 35.26◦ is the magic angle that appears in several interesting applications. It will
be discussed in detail in Section 9.5.

For Θm < Θ < π/2, I4 < 1 and the fibers are in compression. If we allow for compressive
fibers, Eeff increases to the locally maximal value of

Eeff(Θ = π/2) =
µ(3 + 8γ)

1 + 2γ
. (327)
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In the absence of compressive fibers, the material behaves isotropically and the effective
modulus remains at 3µ.

Remarkably, we see that the apparent stiffness of a material in a given direction can
be tuned to any value between the matrix stiffness and the fiber stiffness by choosing the
appropriate fiber angle Θ and fiber density. The modulus ratio between the two extremal
values is 1 + 3γ/8 and atypical ratio of γ is between 10 and 1000. This simple effect is at
work in fungi, plants, and animal tissues where, typically, the isotropic elastic matrix remains
mostly unchanged while fibers are constantly turned over to maintain the appropriate level
of homeostatic stress, the tissue stiffness or allowing for healing [33, 62, 83, 107].

As an example in the aorta, an elastin matrix reinforced with two equal and opposite fibers
helically wrapping around a cylindrical geometry, the effective Young’s modulus is around 90
kPa at the ascending aorta and 10 kPa at the femoral bifurcation, which correlates with the
elastin content [17].

In the nonlinear regime, we observe an interesting behavior. As expected, the stretch along
the tensile stress always increases as shown in Figure 28. Similarly, the stretch perpendicular
to the direction of the applied load in the fiber plane always decreases as we would expect for
an isotropic material. However, in the direction normal to the fibers, the material thickness
determined by λ3 can increase, decrease, or first decrease then increase. This non-monotonic
behavior depends on the balance between the nonlinear material response and the anisotropy.

We can identify in the parameter space, (1/γ,Θ), these different behaviors by solving
Equations (319-320) under the condition λ3 = 1 that is λ1 = λ2. This extra condition leads
to two curves in the plane (1/γ,Θ) given by [104]

1

γ
= sin2(2Θ),

1

γ
= sin2(2Θ)− 4 sin4 Θ. (328)

These curves are shown in Figure 29 together with the corresponding points of Figure 28.
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Figure 28: The three principal stretches as a function of the tension. For some values of
γ and Θ, the thickness of the cuboid always decreases, always increases, or first decreases,
then increases. Parameter values: (a): Θ = π/8, γ = 4/3; (b): Θ = π/8, γ = 4; (c):
Θ = π/4, γ = 4.
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Figure 29: Parameter space for inversion: depending on the relative fiber stiffness γ and the
fiber direction Θ, in tension, the thickness of a either decreases (Zone I), increases (Zone II), or
first decreases, then increases (Zone III). Insert shown for different values of the tension. The
stretch profiles as a function of the tension for specific points (a,b,c) are given in Figure 28.
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9.4 Example: The fiber-reinforced cylinder

We now consider a tube made out of an incompressible material with initial inner radius
A = 1, outer radius B > A, and height H deformed into a tube with radii a and b and
height h. We assume that the tube is allowed to inflate, extend, and twist while remaining
cylindrical at all time. This problem is the classic inflation-extension-torsion problem for the
cylinder. It is a particular case of Family 3 of semi-inverse problems (294). In the usual
cylindrical coordinates {r, θ, z} and {R,Θ, Z} the deformation is given by

r =

√
a2 +

R2 −A2

ζ
, (329)

θ = Θ + τζZ, (330)

z = ζZ, (331)

where the axial stretch ζ and the twist τ are constant.
The position vectors are, respectively,

X = RER + ZEZ , (332)

x = λRer + ζZez. (333)

Using identity (76), the deformation gradient, F = Grad x, in cylindrical coordinates is given
by

[F] =

 1
λζ 0 0

0 λ ζτr
0 0 ζ

 , (334)

where we have used the incompressibility condition det F = 1 and

λ =
r

R
=

1

R

√
a2 +

R2 −A2

ζ
. (335)

Therefore, a single parameter fully describes the radial profile of the deformation. Setting
λa = a/A, it follows that

λb =
b

B
=

1

ζ

√
1 +

A2

B2
(ζλ2

a − 1). (336)

The anisotropic response of the cylinder is modeled by two families of embedded fibers
M and M′. For simplicity, we will refer to a family of distributed fibers simply as a fiber.
Both fibers wind helically around the axis and may induce a rotation of the cylinder under
extension depending on their strengths and angle. The components of the direction vectors
with respect to the basis (ER,EΘ,EZ) are MR

MΘ

MZ

 =

 0
cos Φ
sin Φ

 ,
 M ′R
M ′Θ
M ′Z

 =

 0
− cos Ψ
sin Ψ

 . (337)

Here we have assumed that the fibers remain locally tangent to the cylinder. Following
Figure 30, the angles between the fibers and the circumferential direction are denoted by Φ
and Ψ. Note that we have chosen the angle Ψ so that when the angles are equal Φ = Ψ, the
two fibers make the same angle with the axis, and are said to be opposite.
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Φ
Ψ

AB

M

M’

H

Figure 30: Geometry of the fibers. The angle Φ denote the direction of the first fiber with
respect to the cross section (counted counter-clockwise) and the angle Ψ is the angle of the
second fiber (counted clockwise).
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A.

B.

m

m’

m

m’

Figure 31: Two simple toys demonstrate the principle of opposite fibers and the change in
fiber orientation in compression and tension. Top: The boing-boing rocket stores elastic
energy under compression by changing the fiber angle. The rocket can be released by quickly
removing one finger. Bottom: the finger trap. In extension, the cylinder radius decreases
and traps the fingers.

Opposite fibers are a common occurrence and they are found, for instance, in the popular
toys shown in Figure 31. Under a deformation F, the orientation of the fiber characterized by
a vector M with angle Φ in the reference configuration is mapped, in the current configuration,
to the vector

m =

 mr

mθ

mz

 = FM =

 0
λ cos Φ + rζτ sin Φ

ζ sin Φ

 . (338)

Therefore, the new fiber angle is

φ = arctan

(
ζ sin Φ

λ cos Φ + rζτ sin Φ

)
. (339)

For these deformations, the only non-vanishing component of the Cauchy equation div T = 0
is

dTrr
dr

+
1

r
(Trr − Tθθ) = 0. (340)

This equation can be integrated once over r

Trr(r) =

∫ b

r

Trr − Tθθ
r

dr, a 6 r 6 b. (341)

We consider a simple thought experiment in which the tube is capped at both ends and
subject to an axial extension ζ due to an internal pressure P and to a total axial load N
on the top cap. The tube is also subject to an external moment M leading to a torsion
represented by τ .

First, we express the boundary condition in the radial direction. Taking the radial compo-
nent of the Cauchy stress tensor T to vanish at the outer boundary, we have Trr(r = b) = 0.
On the inner wall, the boundary condition associated with the pressure is Trr(r = a) = −P .
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Therefore, the two conditions on the pressure can be used to simplify (341) to

P =

∫ b

a

Tθθ − Trr
r

dr. (342)

Second, the condition on the two end caps is a combination of an external axial stress
superimposed on the pointwise stress due to the internal pressure acting on the end cap:

Tzz(z = 0) = Nz, Tzz(z = h) = Nz, (343)

Following the discussion of Section 7.4, we replace these point-wise conditions by an integral
condition relating the total application of forces and moments on the caps of the cylinder:

2π

∫ b

a
Tzzr dr = N = F + χPπa2, (344)

where the total axial load N is decomposed into an external applied load F and the load
created by the internal pressure acting over the cap. Following the argument in Section 7.4,
this last condition can be replaced by

π

∫ b

a
(2tz − tr − tθ)rdr = F + (χ− 1)Pπa2, (345)

and the last term vanishes for a capped cylinder as case considered here.
Third, when τ 6= 0, we have to take into account the possibility of applying a moment on

the ends. This loading can be expressed also as integral condition relating the total moment
acting on the tube axis to the axial stress. That is,∫ b

a
Tθzr

2 dr = M. (346)

Therefore, the three boundary conditions are:

C1 :

∫ b

a

Tθθ − Trr
r

dr = P, (347)

C2 : π

∫ b

a
(2Tzz − Trr − Tθθ)r dr = F, (348)

C3 : 2π

∫ b

a
Tθzr

2 dr = M. (349)

The semi-inverse problem consists in finding the values of (λa, ζ, τ) corresponding to the three
external loads (F,M,P ) through the analysis of equilibria.

9.4.0.1 The standard fiber-reinforcing model with fiber extension. We further
restrict our attention to the standard fiber-reinforcing model

Wiso =
µ1

2
(I1 − 3), (350)

Wfib(I4) =
µ4

4
(I4 − 1)2, Wfib(I6) =

µ6

4
(I6 − 1)2, (351)

where the material parameters µi > 0 have the dimension of a pressure.
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From the strain-energy function, we compute the Cauchy stress tensor

T = F
∂W

∂F
− p1, (352)

where p is the Lagrangian multiplier associated with incompressibility. In our case, these
equations simplify to

T = 2W1B + 2W4m⊗m + 2W6m
′ ⊗m′ − p1, (353)

with Wi = ∂IiW . The non-vanishing components of the Cauchy stress tensor are given by

Trr = −p+ 2W1ζ
−2λ−2,

Tθθ = −p+ 2
(
λ2 + r2ζ2τ2

)
W1

+ 2(λ cos Φ + rζτ sin Φ)2W4 − 2(λ cos Ψ− rζτ sin Ψ)2W6,

Tzz = −p+ 2ζ2W1 + 2ζ2 sin Φ2W4 + 2ζ2 sin Ψ2W6,

Tzθ = Tθz = 2ζ [rζτW1 + sin Φ(λ cos Φ + rζτ sin Φ)W4

− sin Ψ(λ cos Ψ− rζτ sin Ψ)W6] .

Since the constitutive relationships are written in terms of {λ, ζ, τ}, we rewrite the three
boundary conditions in terms of integrals over λ by using the identity

dr

dλ
= A

(1− ζλ2
a)

1/2

(1− ζλ2)3/2
, (354)

which yields the equivalent boundary conditions

C1 :

∫ λb

λa

Trr − Tθθ
λ(λ2ζ − 1)

dλ = P, (355)

C2 : πA2

∫ λb

λa

1− ζλ2
a

(1− ζλ2)2
λ(2Tzz − Trr − Tθθ) dλ = F, (356)

C3 : 2πA3

∫ λb

λa

(1− ζλ2
a)

3/2

(1− ζλ2)5/2
λ2Tzθ dλ = M. (357)

While explicit expression for the three integrals for (M,N,P ) for the particular choice (350-
351) can be obtained, they are far too cumbersome to be useful.

9.4.0.2 Membrane limit. We can take advantage of the assumption that the tube is
thin and expand the three integrals (M,N,P ) in the thickness of the tube. Without loss of
generality, we measure all lengths with respect to the inner reference radius, that is we set
A = 1. Then, we introduce ε by B = 1 + ε and expand

M = M (1)ε+M (2)ε2 + . . . , (358)

F = F (1)ε+ F (2)ε2 + . . . , (359)

P = P (1)ε+ P (2)ε2 + . . . . (360)
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Explicitly, to first order these expressions read

M (1) = 2πλ [ζλµ1τ + µ4J4 sin(Φ)(ζλτ sin(Φ) + λ cos(Φ)) (361)

+ µ6J6 sin(Ψ)(ζλτ sin(Ψ)− λ cos(Ψ))] ,

F (1) = −π
ζ

[
µ1

ζ2λ2

(
1 + ζ4λ2

(
λ2τ2 − 2

)
+ ζ2λ4

)
(362)

+ µ4J4

(
ζ sin(Φ)

(
ζ
(
λ2τ2 − 2

)
sin(Φ) + 2λ2τ cos(Φ)

)
+ λ2 cos2(Φ)

)
+ µ6J6

(
ζ2
(
λ2τ2 − 2

)
sin2(Ψ)− 2ζλ2τ sin(Ψ) cos(Ψ) + λ2 cos2(Ψ)

)]
,

P (1) =
1

ζ

[
µ1

ζ2λ4

(
ζ4λ4τ2 + ζ2λ4 − 1

)
(363)

+ µ4J4(ζτ sin(Φ) + cos(Φ))2 + µ6J6(cos(Ψ)− ζτ sin(Ψ))2
]
,

where

J4 = (I4 − 1)

= ζ sin(Φ)
(
ζ
(
λ2τ2 + 1

)
sin(Φ) + 2λ2τ cos(Φ)

)
+ λ2 cos2(Φ)− 1,

J6 = (I6 − 1)

= ζ2
(
λ2τ2 + 1

)
sin2(Ψ)− 2ζλ2τ sin(Ψ) cos(Ψ) + λ2 cos2(Ψ)− 1.

9.4.1 A cylinder with equal fibers but different orientations

As a first example of the possible behaviors in this rich system, we consider the problem
of rotation under pressure in a tube with two fibers with equal strength, µ6 = µ4, but of
varying angle. If we fix one fiber, we can vary the angle of the other fiber and ask whether a
change in pressure will lead to a reversal in rotation from a left-handed rotation to a right-
handed rotation. The condition for inversion is obtained by considering the change of torsion
τ with respect to pressure τ = τ(P ) and identifying the points at which this relationship is
stationary. The condition τ ′(P ) = 0 leads to

µ4 sin(Φ−Ψ) [6µ1(2 cos(Φ + Ψ) + cos(3Φ + Ψ) + cos(Φ + 3Ψ))

+8µ4 sin2(Φ + Ψ)(cos(Φ) cos(Ψ)− 2 sin(Φ) sin(Ψ))
]

= 0.

(364)

We show in Figure 32 the inversion curves in the parameter space (Φ,Ψ), for µ1 � µ4 and
µ4 � µ1. The two limits are easily obtained analytically from (364) by taking µ1 = 0 or
µ4 = 0. We see the role of the magic angle introduced in Section 9.3 and discussed below,
as being the distinguished value at which an inversion of rotation appears for systems with
stiff fibers. In this case, if we start with one fiber oriented at the magic angle and vary the
other one there will just be a single inversion of rotation (when the two are equal). For other
values, there will be two inversions, one when the two angles are equal and the second at
different values of the angle, showing the interesting property of no net rotation (in small
deformations) despite the tube being clearly anisotropic.

9.5 Application: The hydrostatic skeleton

A simple cylindrical structure, known as a cylindrical hydrostatic skeleton with reinforced
fibers is found in many ectothermic and soft-bodied organisms such as nemertean and turbel-
larian worms. Of particular note is the work of Harris and Crofton [63] and Clark and Cowey
[24]. Building on the concept of a hydrostatic skeleton [86, 87, 132], they model the worm
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body as a cylindrical membrane reinforced with a lattice of crossed, inextensible, fibers wind-
ing around the membrane with helical geometry, and they characterize the possible extension
and retraction of the lattice network as being analogous to that of lazy tongs or a trellis.
Their mathematical model, which is purely geometric, proved to be remarkably successful in
explaining their detailed experimental studies of the locomotion and flattening of worms.

Consider a cylinder of height 2πP and radius R with a helical inextensible fiber of fixed
length D as shown in Figure 33. The volume enclosed is simply

V = 2π2R2P = D3/(4π) sin2 Φ cos Φ. (365)

The maximal volume is attained when ∂ΦV = 0, that is for

Φ∗m = π/2− tan−1
√

2 ≈ 35.26◦ (366)

as shown in Figure 34. For any given volume 0 < V1 < Vmax, there exist two angles Φ1

and Φ2 in (0, π/2) that give rise to a cylinder of volume V1. Therefore, in principle, a worm
could change its extension from H1 = D cos Φ1 to H2 = D cos Φ2 > H1 at constant volume.
This change in extension can be obtained by contracting fiber muscles, a transformation that
can take place by flattening the cross section to conserve the volume. In the initial and
final configurations, the fibers have length D and are at rest. Therefore, in this range of
parameters, the hydrostatic skeleton can adopt two shapes of different lengths and maintain
these shapes without muscular contraction.

We refer to the reciprocal of this angle, Φm = π/2−Φ∗m, as the magic angle since it seems
to appear, as if by magic, in many different settings in mechanics and in solid-state nuclear
magnetic resonance [57, 57, 70, 66, 137]. For instance, this angle is believed to be key in
understanding the elongation of notochords [1, 89, 90]. Further, an inanimate analogue of
the model of Clark and Cowey can be found in the McKibben actuator which consists of a
flexible tube surrounded by a sheath of braided families of inextensible fibers helically wound
in opposing directions. This design is the basis for so called pneumatic artificial muscles
used in robotics, prosthetics, and orthotics [25, 98]. These actuators are typically pressure
controlled and their precise functionality is determined by the weave of the fibers. As with
the Clark and Cowey model, the fiber winding angle of 35.26◦ plays a special role in the
actuator design.

We will now show that the magic angle also appears naturally as a special limiting case
of a nonlinear elastic model. We start our analysis with the simple case of a cylinder with
two families of fibers of equal strength (µ6 = µ4) and opposite orientation (Ψ = Φ). This
corresponds to the classic case of the McKibben actuators, arteries, and other hydrostats.
Under extension or inflation, the couples created by the two fibers cancel out and there is no
net couple associated with the deformation and thus no rotation or twist (τ = 0).

We are particularly interested in identifying inversion due to internal change of pressure.
We look at the condition under which the radial strain does not vary under a change a
pressure. A local analysis for small strains [57] leads to the condition

3µ1 + µ4 sin2(Φ)(1− 3 cos(2Φ)) = 0. (367)

The condition for an inversion in the axial strain is

Φ∗m =
1

2
arccos

(
1

3

)
≈ 35.26440◦. (368)

By denoting µ = µ1/µ4 as the ratio of matrix modulus to the fiber modulus, we obtain a
complete description of the possible inversions under a change in pressure in the parameter
space (µ,Φ) as shown in Figure 35.
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Depending on the design criterion, one can consider different tube constructions by varying
the fiber angle. For fiber angles larger than Φm the tube contracts under increased pressure
and this behavior provides a model for pneumatic muscles. For tubes with fiber angle close
to Φm, the deformation of the tube in the axial direction is minimal. For fiber angles less
than Φm, the tube extends maximally. Note that this analysis is only valid for small enough
P . For larger pressure, we expect the tube to increase eventually in length and radius.
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Figure 32: Twist induced by inflation for a cylindrical membrane in small deformation as a
function of the orientation of the two fibers.
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Figure 33: A geometric model of hydrostatic skeleton obtained by assuming that the skeleton
can have a cylindrical shape, with inextensible fibers winding helically around the cylinder.
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Figure 34: The magic angle gives the maximal enclosed volume of a cylinder reinforced by
inextensible fibers of fixed length D. For V < Vmax there exist two angles at fixed volume.
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Figure 35: Parameter space for the radial and axial expansion of a thin tube under pressure.
Depending on the relative stiffness of the fiber versus the matrix and the fiber angle, a capped
tube under pressure can extend radially and axially (bottom left), extend radially but shrink
axially (top), or extend axially but shrink radially (bottom right).
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10 Linear Elasticity

� Overview We show how to obtain the equations of linear elasticity by linearising the general

nonlinear equations of elasticity for small displacements. We also consider the solution of simple

problems.

10.1 Infinitesimal strain tensor

The central object is not the mapping χ but the displacement.

u

x

χ

u = x−X = χ(X, t)−X (369)

=⇒ ∇u = Grad χ− 1 = H = F− 1, (370)

the displacement gradient.
Assumptions:

• Displacement gradient is small.

Now consider the strain tensor,

Enonlin =
1

2

(
FTF− 1

)
(371)

F = 1 + H =⇒ E =
1

2

(
(1 + H)

(
1 + HT

)
− 1

)
=

1

2
(H + HT )︸ ︷︷ ︸

E

+O(H2) (372)

E =
1

2
(H + HT ) =

1

2

(
∇u + (∇u)T

)
(373)

10.2 Constant relationships

S = S(F), T = T (F). (374)

We assume S(1) = 0 (no residual stress).

=⇒ S = S(1 + H) = S(1)︸︷︷︸
0

+DS(1)[H]︸ ︷︷ ︸
C[H]

+O(H2), (375)
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where C is linear in H.

T = T (1)︸ ︷︷ ︸
0

+DT (1)[H] +O(H2) (376)

Which one to use?

T = J−1FS (377)

=⇒ T = J−1FS (378)

and

T = DT [H] = J−1(1 + H)DS(1)[H] = det(1 + H)(1 + H)DS(1)[H] +O(H2) (379)

=⇒ DT [H] = DS[H] = DS[H] = C[H] (380)

C elasticity tensor,

Tij = Cijk`Hk` (381)

Major symmetries:

Cijk` = Ck`ij (382)

Minor symmetries:

Cijk` = Cij`k = Cjik` = Cji`k (383)

=⇒ from 81 components to 36 independent components.
Note also

Tij = Cijk`

[
1

2
(H + HT )︸ ︷︷ ︸

E

+
1

2
(H−HT )

]
k`

(384)

Tij = Cijk`Ek` (385)

constant relationship for linear elasticity.

10.3 Isotropic linear elasticity

If the material is isotropic:

Sij = Tij = 2µeij + λ(tr E)δij (386)

where

Cijk` = λδijδk` + 2µδikδj` (387)

for µ and λ the Lamé coefficients. From the symmetry of C and positive definiteness, we have

µ > 0, 2µ+ 3λ > 0. (388)

Note: C is positive definite means

E.C(E) > 0, ∀E ∈ Sym. (389)

Material hyperelasticity ⇐⇒ C is positive definite
=⇒ C is symmetric.

If the body is homogeneous, then ρ0, λ, µ are constant.
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10.3.1 Equations:

u = (χ)(X)−X.

S = C[E], e = 1
2(∇u +∇uT ) (390)

Div S + b0 = ρ0ü = ρ0a (391)

Assume homogeneity and isotropy,

S = 2µE + λ(tr E)1. (392)

Div S = �2µDiv

(
1

�2
(∇u +∇uT )

)
+ λDiv

(
tr

1

2
(∇u +∇uT )1

)
(393)

= µ∆u + µGrad Div u + λGrad Div u (394)

= µ∆u + (µ+ λ)Grad Div u (395)

Therefore we have the Navier equation,

µ∆u + (µ+ λ)Grad Div u + b0 = ρ0ü (396)

Note that u = u(X) implies that x does not appear any more (we can replace X by x if we
want – I don’t).

In components,

u = u(X, t) = uiEi (397)

implies

ρ0
∂2ui
∂t2

= bi + µ

3∑
j=1

∂2ui
∂X2

j

+ (λ+ µ)
∂2uj

∂Xi∂Xj
(398)

10.4 Examples

To understand the meaning of the elastic moduli, we consider simple deformations.

1) Pure shear, u = (γX2, 0, 0)

[E] =
1

2

 0 γ 0
γ 0 0
0 0 0

 , [σ] =

 0 τ 0
τ 0 0
0 0 0

 , (399)

=⇒ τ = µγ =⇒ µ is the shear modulus.

2) Uniform compression, u = δX and u = x−X = (δ + 1)X−X

E = δ1, σ = −p1 (400)
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σ11 = −p

σ12 = −p at ∂Ω

We use

E =
1

2µ

[
σ − λ

2µ+ 3λ
(tr σ)1

]
(401)

δ1 =
1

2µ

[
−p1 +

λ

2µ+ 3λ
3p1

]
(402)

=
1

2µ
p

[
−(2µ+ 3λ) + 3λ

2µ+ 3λ

]
1 (403)

= − p

2µ+ 3λ
(404)

=⇒ p = −(2µ+ 3λ)δ = −3

(
2µ+ 3λ

3︸ ︷︷ ︸
κ

)
δ, (405)

where κ is the modulus of compression. Remember the condition 2µ+ 3λ > 0!

3) Uniaxial tension, σ = tE1 ⊗E1

σ11

[E] = diag(α, β, β), α =
t

E
, β = −να. (406)

E =
µ(2µ+ 3λ)

µ+ λ
, ν =

λ

2(µ+ λ)
(407)

Here E is equated to the infinitesimal Young’s modulus and ν is equated to Poisson’s
ratio.

E =
1

E
((1 + ν)σ − ν(tr σ)1) (408)
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an alternative form for E.

Expect ν > 0 (Care! It’s an auxetic material!)

Now

κ =
2µ+ 3λ

3
=

E

3(1− 2ν)
, (409)

so that as ν → 1/2, κ→∞, and we would need an infinite force to change the volume.
Therefore incompressible materials have ν = 1/2.

10.5 Incompressible linear elasticity

Recall: Incompressibility:

det F = 1, =⇒ det(1 + H) = 1 + tr H +O(H2) = 1 (410)

Therefore tr H = 0 = Div u, and

Div u = 0 ⇐⇒ tr E = 0 (411)

Also

T = −p1 + J−1F
∂W

∂F
, σ = −p1 + Cijk`ek` (412)

For isotropic material,

σ = 2µE + λ����(tr E)1− p1 (413)

but

µ =
E

2(1 + ν)
=
E

3
. (414)

Therefore

ρü = −Grad p+ µ∆u (415)

and

µ =
E

3
(416)

N.B. Boundary conditions

u = u∗(t), on ∂1B displacements (417)

τn = T∗(t), on ∂2B traction (418)

10.5.1 General principles

1) Linear superposition

2) Stresses, strains and displacements are proportional to the loads (or displacements)
applied to the solid.

3) If ∂2B = ∅ then there exists one unique solution, only displacements.
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no displacement

no stretching

but stresses

4) If only traction and tractions are in equilibrium, then stresses and strains are unique.
For initial conditions, there exists one unique u(t).

Some nomenclature about loading

1) Plain strain

u = (u(X,Y ), v(X,Y ), 0) =⇒ e13 = e23 = e33 = 0, τ13 = τ23 = τ31 = τ32 = 0.(419)

2) Plane stress

τ13 = τ23 = τ33 = 0, τ =

 ∗ ∗ 0
∗ ∗ 0
0 0 0

 (420)

3) Antiplane strain

u = (0, 0, w(X,Y )) (421)

4) Pure torsion

u = (−ΩY Z,ΩXZ,Ωϕ(X,Y )) (422)

(see problem sheet 6)

10.6 Plane/Strain/Stress Solutions

10.6.1 Plane solutions

(stress or strains)
In cartesian coordinates,

eij =
1

2
(ui,j + uj,i =

1 + ν

E
τij −

ν

E
τkkδij (423)

∂τij
∂xi

+ bj = 0 (424)

Assume that b derives from a potential,

bi =
∂V

∂Xi
, i = 1, 2, b3 = 0. (425)

Plane stresses or strain τ13 = τ23 = 0.

10.6.2 Idea

Let

τ11 =
∂φ

∂X2
− V, τ22 =

∂φ

∂X1
− V, τ12 = − ∂2φ

∂X1∂X2
, τ33 = βν(τ11 + τ22), (426)

β = 0 is plane stress and β = 1 is plane strain.
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10.6.3 Equations

∂τ11

∂X1
+
∂τ12

∂X2
+ b1 = 0,

∂τ12

∂X1
+
∂τ22

∂X2
+ b2 = 0. (427)

Therefore

∂

∂X1

(
∂2φ

∂X2
2

−��V

)
+

∂

∂X2

(
− ∂2φ

∂X1∂X2

)
+��b1 = 0, (428)

∂

∂X1

(
− ∂2φ

∂X1∂X2

)
+

∂

∂X2

(
∂2φ

∂X2
2

−��V

)
+��b2 = 0, (429)

and the equations of motion are satisfied. But we do not have an equation for φ. We have
equations for τij or eij , that is, 6 fields but ui is 3 components.

10.6.4 Compatibility conditions

Recall: conditions for F: Curl F = 0. For

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(430)

Compatibility conditions:

Curl Curl E = 0, (431)

⇐⇒ εipmεjqn
∂2emn
∂Xp∂Xq

= 0 (432)

⇐⇒ ∂2eij
∂Xk∂X`

+
∂2ek`
∂Xi∂Xj

− ∂2ei`
∂Xj∂Xk

−
∂2ejk
∂Xi∂X`

= 0 (433)

These are 6 relations (but only 3 are independent). For planar problems: e13 = e23 = 0,
∂eij/∂X3 = 0,

=⇒ ∂2e11

∂X2
2

+
∂2e22

∂X2
1

− 2
∂2e12

∂X1∂X2
= 0. (434)

Now for plane stress we have τ33 = 0 and from plane strain we have τ33 = ν(τ11 + τ22),

⇐⇒ τ33 = βν(τ11 + τ22), (435)

which implies

e11 =
1 + ν

E
τ11 −

ν

E
(1 + βν)(τ11 + τ22) (436)

e22 =
1 + ν

E
τ22 −

ν

E
(1 + βν)(τ11 + τ22) (437)

e12 =
1 + ν

E
τ12 (438)

Insert these into (∗) and use τ11 = ∂2φ
∂X2

1
− V ,

=⇒ ∂4φ

∂x4
1

+ 2
∂4φ

∂x2
1∂

2
2

+
∂4φ

∂x4
2

=
1− βν2

1− ν − 2βν2

(
∂2V

∂x2
1

+
∂2V

∂x2
2

)
(439)



10 LINEAR ELASTICITY 92

⇐⇒ ∇4φ = Cν∆V , Cν =
1− βν2

1− ν − 2βν2
. (440)

Here ∇4 is the biharmonic operator and φ is the Airy potential. If β = 0, we have plane
stress and β = 1 is plane strain.

10.6.5 Application

10.7 Elasto-dynamics

µ∆u + (λ+ µ)Grad Div u = ρü (∗)

10.7.1 Planar waves

u(x, t) = a sin(k · x− ct) (441)

Here a is the amplitude, k is the direction and c is the velocity. We normalize such that
|k| = 1.
2 interesting cases:

a ‖ k longitudinal – primary, pressure, P-waves.
a ⊥ k transverse – shear, secondary, S-waves.

P−waves S−waves

direction of wave

Let ϕ(x, t) = k · x− ct.

Note that Div u = a · k cosϕ (442)

Curl u = −a× k cosϕ (443)

Div u = 0 is transverse, Curl u = 0 is longitudinal.
Substitute u = a sinϕ in (∗). Then

∆u = −a sinϕ (444)

Grad Div u = Grad(a · k cosϕ) = (a · k)k(− sinϕ) (445)

Therefore ü = −c2a sinϕ and

µa + (λ+ µ)(a · k)k = ρc2a (446)

This is a linear operator on a. Define A the acoustic tensor,

A =
1

ρ
(µ1 + (λ+ µ)k⊗ k) [A]ij =

1

ρ
(µδij + (λ+ µ)kikj) (447)

so that we have the eigenvalue problem

Aa = c2a (448)
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1) a = αk

αAijkj =
1

ρ
(µki + (λ+ µ)kjkj︸︷︷︸

1

ki) = c2αki (449)

=⇒ λ+ 2µ

ρ
= c2, cL =

√
λ+ 2µ

ρ
(450)

2) a ⊥ k, aiki = 0.

Aijaj =
1

ρ
(µai + (λ+ µ)kikjaj) = c2ai (451)

=⇒ c2 =
µ

ρ
, cT =

√
µ

ρ
<

√
λ+ 2µ

ρ
, (452)

i.e. slower than cL.

Note also

cL =

√
E(1− ν)

(1 + ν)(1− 2ν)ρ
, (453)

where 1− 2ν = 0 for an incompressible material. Therefore cL →∞ as ν → 1/2.

Also note

c2
T = µ/ρ =⇒ µ = c2

Tρ (454)

c2
L =

λ

ρ
+ 2c2

T , =⇒ ρc2
L − 2ρc2

T (455)

=⇒ ü = c2
T∆u + (c2

L − c2
T )Grad Div u (456)
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