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Problems marked with a star* are meant to challenge you beyond the regular course. As
with any problem, it is up to you to decide if you want to try them. I suggest that you give
them a try and think about these problems as a way to gain a deeper understanding of the
material and have questions during classes.

Problems marked with a double star** have been given in the finals. So it may be a good
idea to make sure you understand them.

Suggestion of problems

Unlike most courses, you are not required to do any problem (yes, you read this correctly!).
It is up to you to decide the problems you turn in and which problems you try. The following
is a list of suggested problems for you to make sure you understand the concepts covered
in class. If you think the list is too long, don’t do them all. If you think it is too short, there
are extra problems in the same section.
Most of the solutions to the problems are given at the end of these notes. You are free to
ignore them, look at them, use them to check your own work, or to use them as hints if you
are stuck. For your own benefit, it may be good to work out all the details for the solutions
and write them as neatly as possible.

• SHEET 1: Problems for first class:
Section 2: 2.1, 2.3. Section 3: 3.1, 3.4, 3.5, 3.8, 3.9.

• SHEET 2: Problems for second class:
Section 5: 5.1, 5.4, 5.5
Section 6: 6.1, 6.3, 6.4 (bdf), 6.5, 6.7, 6.8, 6.12(bdf), 6.11*.

• SHEET 3: Problems for third class:
Section 7: 7.1, 7.2
Section 8: 8.2 (to be done as a single problem with 10.1)
Section 9: 9.2, 9.3.
Section 10: 10.1 (to be done as a single problem with 8.2)

• SHEET 4: Problems for fourth class
Section 10: 10.2, 10.3, 10.5, 10.9
Section 11: 11.2, 11.3
Section 12: 12.3, 12.5
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0 Useful definitions

0.1 Einstein Summation Convention

Throughout this course, we will make use of (a simplified version of) the Einstein summation
convention. While it takes a bit of getting used to, it greatly simplifies the expression of
tensor quantities.

Mostly, we will write out the components of tensors and vectors using indices written
as subscripts. According to Einstein’s convention, there are two types of indices, free and
dummy. Unless otherwise stated, if an index is repeated exactly once, it is a dummy index,
and is summed over (the summation sign is implied.)

For example, if v and w are two vectors, and {ei} is a Cartesian basis in RN , we have

v = viei, w = wiei, (1)

v ·w = viwi ≡
N∑
i=1

viwi ≡ v1w1 + v2w2 + . . .+ vNwN , (2)

v ⊗w = viwjei ⊗ ej ≡
N∑
i=1

N∑
j=1

viwjei ⊗ ej . (3)

(Do not yet worry about the meaning of ei ⊗ ej).
Often, we represent objects by their components alone and omit writing down the basis.

This highlights the difference between free and dummy indices. The number of free indices
appearing in a tensor expression indicates the order of the tensor. Additionally, in an equa-
tion, the free indices appearing on either side need to match in order for the equation to make
sense. For example, if A, and B are second order tensors, C is a fourth order tensor, and v
and w are first order tensors (vectors), we can write things like:

• Av as Aijvj ,

• AB as AijBjk,

• v ⊗w as viwj ,

and even very complex expressions like

• (C [A]) v as CijklAklvj .

It’s important to note that these expressions are only valid for Cartesian components.
There is a more general index notation that works for arbitrary coordinates, but the techni-
calities are beyond the scope of this course. The beauty of indices is that they can be used
to make sure our equations make sense. For example Aijvj = CiklmBlm does not make sense,
because the number of free indices on either side of the equation is different. This amounts to
equating tensors of different orders, which is nonsense. Also, something like AijBjk = Cijkk
does not make sense, because the free indices don’t match; on the left, i and k are free, and
on the right i and j are free. Note that the particular choice of dummy indices does not affect
our results.

We can write v = Aw as vi = Aijwj = Aikwk; the expression is valid because the free
indices match, even though the dummy indices don’t.

We can also use the Kronecker delta (defined in the next section) to reduce dummy
indices. If a dummy index appears in a Kronecker delta, we can simply eliminate that index
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from the expression by changing it to the other index, and removing the Kronecker delta.
For example, the dot product v ·w becomes

v ·w = viei · wjej = viwjei · ej = viwjδij = viwi = vjwj .

The only time this does not apply is if the index is repeated within the same Kronecker
delta, in which case that delta can be replaced with the dimension of the vector space we are
working in (usually 3). So δii is the trace of the Identity matrix δii = N .

Finally, to add a bit of difficulty, we sometimes have tensors involving multiple vector
spaces. In these cases, it is sometimes convenient (but not necessary) to use indices from
different alphabets for each of the vector spaces to separate the inner products. For instance,
the deformation gradient can be written F = FiAei⊗EA, or simply FiA to highlight the fact
that it’s a two-point tensor, i.e. one that maps from one space to another.
A final note: you may see in the notes the notations Txx or Txy appearing. This is a particular
case where the indices rule does not apply and simply mean the 11 and 12 component oif the
tensor 2 in the x− y− z components. It may be a slight abuse of the notation but it is useful
to provide some physical insight. So if you see a traditional variables as an index (say x, y, z
or r, θ, φ, it is understood that they are the components of that tensor in the base associated
with that notation (e.g. Trr is the radial component of the tensor T expressed in spherical
or cylindrical coordinates). If you have any doubt, ask us!

0.2 Basic identities

Tensor Algebra Here φ, v, T are, respectively, scalar, vector and 2nd-order tensor fields
defined on a moving body. The vectors {ei, i = 1, 2, 3} form is a Cartesian basis in a 3-
dimensional Euclidean space.

[v1,v2,v3] = v1 · v2 × v3 = v1 × v2 · v3 The scalar triple product (A1)

ei · ej = δij =

{
1 if i = j
0 if i 6= j

The Kronecker delta (A2)

[ei, ej , ek] = εijk =

{ 1 if {i,j,k}= {1,2,3}, {2,3,1}, or {3,1,2}
−1 if {i,j,k}= {2,1,3}, {1,3,2}, or {3,2,1}
0 otherwise

The Levi-Civita symbol (A3)

εijkεimn = δjmδkn − δjnδkm The epsilon-delta identity (A4)

Tensor Calculus Here φ, v, T are, respectively, scalar, vector and 2nd-order tensor fields
defined on a moving body. The vectors {ei, i = 1, 2, 3} form is a Cartesian basis. Upper case
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refers to the reference configuration, lower case to the current configuration.

F = Grad x = ∂xi
∂Xj

ei ⊗Ej Deformation Gradient (T1)

J = detF Determinant of F (T2)

grad v = ∂v
∂xi
⊗ ei The gradient of a vector (T3)

grad T = ∂T
∂xi
⊗ ei The gradient of a tensor (T4)

div T =
∂Tij
∂xi

ej The divergence of a tensor (T5)

Gradφ = FTgradφ Gradients of a scalar (T6)
Grad v = (grad v)F Gradients of a vector (T7)
Div v = J div (J−1Fv) Divergences of a vector (T8)
Div T = J div (J−1FT) Divergences of a tensor (T9)
div(J−1F) = 0 An important identity (T10)
∂
∂λ(detT) = (detT)tr

(
T−1 ∂T

∂λ

)
A useful identity. λ is a scalar (T11)

Kinematics

F = Grad x(X, t) The deformation gradient (K1)
J = detF Determinant of F (K2)
dx = FdX Transformation of line element (K3)
da = JF-TdA Transformation of area element (K4)
dv = JdV Transformation of volume element (K5)
C = FTF The right Cauchy-Green tensor (K6)
B = FFT The left Cauchy-Green tensor (K7)
E = 1

2

(
FTF− 1

)
Euler strain tensor (K8)

L = grad v Velocity gradient (K9)

Ḟ = LF Evolution of the deformation gradient(v : velocity) (K10)

J̇ = Jdiv v Evolution of the volume element (K11)
D = 1

2

(
L + LT

)
Eulerian strain rate tensor (K12)

W = 1
2

(
(L− LT

)
Rate of rotation tensor (K13)

Mechanics Here ρ is the mass density, T , the Cauchy stress tensor, v the velocity, W = JΨ,
where Ψ is the internal energy density.

ρ̇+ ρdivv = 0 Conservation of mass (Eulerian form) (M1)
divT + ρb = ρv̇ Conservation of linear momentum (Eulerian form) (M2)
TT = T Conservation of angular momentum (Eulerian form) (M3)

Ẇ = Jtr(TD) Conservation of energy (Eulerian form) (M4)
Tn = t Surface traction associated with T(n: normal outward unit) (M5)

Material frame indifference Consider two different frame, connected by a rigid body
motion x∗ = Qx + c. Let φ, v, T be, respectively, scalar, vector and 2nd-order tensor fields,
and F the deformation gradient. Then

F∗ = QF
φ is objective if φ∗ = φ
v is objective if v∗ = Qv
T is objective if T∗ = QTQt
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0.3 Taking derivatives

Tensors have the wonderful property that they are invariant under a change of basis. This
means that when changing coordinates, and hence the basis on which you are representing
a tensor, the components of the tensor change accordingly in order to preserve the tensor
itself. This captures the idea that the universe does not know or care what set of coordinates
we choose, and so the result of any theory to describe the universe should not either. This
is the generalisation of the well-known fact that a vector v can be expressed in different
bases with different components in each basis. In case you are ever in need of a particular
tensor calculus identity in some set of curvilinear coordinates, you can often derive it using
Cartesian coordinates, and then convert the result back into whatever coordinates you are
using. While this works in Euclidean space, it is often tedious or difficult to do, especially
with rather complicated sets of curvilinear coordinates. In non-Euclidean spaces, you cannot
do this, since there is no set of Cartesian coordinates to make use of.

It is also important to note that it is not correct to replace partial derivatives in one set of
coordinates with partial derivatives in another. Therefore, it is useful to develop techniques
for calculating things like gradients and more general derivatives of tensors without having
to explicitly express things in components.

Derivatives as Linear Maps Between Tangent Spaces

We begin with a soon-to-be familiar example, the deformation gradient F. It is a central
object for the course, so make sure you get familiar with it. We can think about this object
in a number of ways. First, we can consider it as the first term in the multivariate Taylor
expansion of the deformation

x = χ (X) , (4)

about a point X0. Expanding this out, we have

x− χ (X0) = F (X0) (X−X0) + h.o.t.. (5)

We can then take the limit as X approaches X0. (We assume this limit exists and is
independent of X and the path taken from X to X0) Notice that F depends on X0, which
becomes equal to X in this limit. Hence in one sense, F is the linear function that best
approximates the nonlinear function χ at each point.

More generally, we can also consider a map between two manifolds, i.e.

f : M1 →M2. (6)

Then, this map induces a linear map at each point between the tangent spaces of each
manifold.

df : TXM1 → Tf(X)M2. (7)

This map is given by the gradient of this function.
In the context of our example, we have

dx = FdX, (8)

where here M1 is the reference configuration, and M2 is the current configuration, and hence,
F is a map from the tangent space of the reference configuration at the point X to the tangent
space in the current configuration at the point x = χ (X), i.e. the image of X. More generally,
the manifolds M1 and M2 do not have to be physical spaces.
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Considering the map F (X) at all points, we obtain a map from the tangent bundle of M1

to the tangent bundle of M2.
(The tangent bundle of a manifold M is the disjoint union of it’s tangent spaces, stitched

together smoothly and parameterised by the coordinates on M and the coordinates of the
tangent space at each point, informally the set of all possible positions together with all
possible velocities. When you rewrite a second order ODE as two coupled first order ODEs
for independent variables x, and v = dx/dt, you are actually taking advantage of the tangent
bundle of the configuration manifold of a system.)
This may sound complicated in the general case. Let’s look at a few examples to clarify this
notion:

Example 1: Cartesian Coordinates

If we write our deformation as

X = XjEj ; x = xi(Xj)ei, (9)

where the basis vectors appearing here are constant and orthonormal. Then, we can write
via the chain rule

dx =
∂xi
∂Xj

dXjei =
∂xi
∂Xj

ei (dX ·Ej) =
∂xi
∂Xj

(ei ⊗Ej) dX, (10)

and hence we get the familiar expression

F =
∂xi
∂Xj

ei ⊗Ej . (11)

Example 2: Polar Coordinates

The previous example used a constant basis, but in some cases, the most convenient basis is
not constant, and therefore more care must be taken. For deformations of the form

X = RER + ZEZ x = r(R)er + z(Z)ez θ = Θ, (12)

i.e. cylindrically symmetric radial deformations. You can calculate

dX = dRER +RdΘEΘ + dZEZ , (13)

and

dx =
dr

dR
dRer + r(R)dΘeθ + dzez. (14)

To obtain the deformation gradient, we want to express dR, dΘ and dz in terms of dX. Take
the first one, for instance. Taking inner products of dX with ER, we can write

ER · dX = dRER.ER = dR. (15)

Similarly

dΘ = EΘ · dX, dZ = EZ · dX. (16)

Inserting this into (14), we have

dx =
dr

dR
(ER · dX)er + r(R)(EΘ · dX)eθ + (EZ · dX)ez. (17)
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Next, using the definition of the tensor product ((u⊗ v)a = (v · a)u), we can write

(ER · dX)er = (er ⊗ER)dX (18)

(EΘ · dX)eθ = (eθ ⊗EΘ)dX (19)

(EZ · dX)ez = (ez ⊗EZ)dX (20)

and so, after factoring dX, we obtain

dx =

(
dr

dR
er ⊗ER +

r

R
eθ ⊗EΘ +

dz

dZ
ez ⊗EZ

)
dX, (21)

and hence

F =
dr

dR
er ⊗ER +

r

R
eθ ⊗EΘ +

dz

dZ
ez ⊗EZ . (22)

Example 3: Invariants

We often have to compute the derivative of something with respect to a tensor. We can do
the exact same thing that we did with the deformation gradient, but now, the manifolds M1

and M2 are not physical spaces, but rather the vector spaces that these tensors live in. The
convention we use in this course involves a transposition in these definitions, which makes
these equations look nicer when using the trace as an inner product.(

∂W

∂F

)
ij

=
∂W

∂Fji
. (23)

Hence, we have

dW =
∂W

∂Fij
dFij = tr

(
∂W

∂F
dF

)
=
∂W

∂F
: dF. (24)

Then, we can calculate the derivatives of the invariants of C in terms of F

I1 = FT : F⇒ dI1 = dFT : F + FT : dF = 2FT : dF, (25)

and hence by the above definition, we have

∂I1

∂F
= 2FT . (26)

Doing this for a more complicated example,

I2 =
1

2

(
tr (C)2 −

(
tr C2

))
. (27)

Therefore, we have
dI2 = I1dI1 −C : dC. (28)

Then
C : dC = C :

(
dFTF + FTdF

)
= 2CFT : dF, (29)

so we have
dI2 =

(
2I1F

T − 2CFT
)

: dF, (30)

hence,
∂I2

∂F
= 2

(
I1F

T −CFT
)
. (31)

Sometimes it is useful to consider an arbitrary one parameter family of values to compute
these derivatives.

dI3

ds
= 2I3tr

(
F−1 dF

ds

)
= tr

(
∂I3

∂F

dF

ds

)
⇒ dI3

dF
= 2I3F

−1. (32)
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Example 4: Tensor of Elastic Moduli

We consider the 4th order tensor given by

M =
∂2W

∂F2
=
∂S

∂F
. (33)

This tensor has components MAiBj .
Consider the case where W (I1). Then we have

dSAi =MAiBjdFjB =
∂SAi
∂FjB

dFjB . (34)

This then gives us the components

MAiBjdFjB = 4W11FiAFjB dFjB + 2W1δijδABdFjB , (35)

and hence
MAiBj = 4W11FiAFjB + 2W1δijδAB . (36)

This highlights the usefulness of index notation. We could attempt to write this in index free
notation as

M = 4W11F
T ⊗ FT + 2W1T , (37)

where T is the transpose operator (a fourth order tensor), but to define the transpose operator
explicitly would require us to list out the components anyways, or to define it implicitly via

T [A] = AT ∀A. (38)
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1 Tensor Algebra and Calculus

� These exercises are designed to remind you of basic linear algebra and to get you more
comfortable with working with tensors, and with the Einstein summation convention.

1.1 Using the ε-δ Identity. Verify identity (A4) (Convince yourself it is true, e.g. by
direct calculation). Prove the identity for the vector triple product

a× (b× c) = b (a · c)− c (a · b)

*Prove the following vector calculus identity

curl curl v = grad div v − div grad v

1.2 Divergence of a Product. Prove the product rule for divergence in the following
cases:

A tensor times a vector

div (Av) = (div A) · v + tr (A grad v) where A is a 2nd order tensor and v a vector.

*A tensor times a tensor

div (AB) = div (A) B +Aij
∂Bjk
∂xi

ek where A and B are 2nd order tensors.

1.3 Invariants of a Tensor. The invariants Ii of an n× n matrix A are the coefficients of
its characteristic polynomial as:

det (A− λ1) =
n∑
k=0

(−1)kIn−kλ
k.

Now, consider the case n = 3. Then the invariants are the well-known quantities:

I1 (A) = tr (A) , I2 (A) =
1

2

(
tr (A)2 − tr

(
A2
))
, I3 (A) = det (A) .

A matrix Q is an orthogonal matrix if QQT = QTQ = 1. Prove that Ii
(
QAQT

)
= Ii (A)

for all orthogonal Q ∈ O (3). This property expresses the fact that if a linear map is rep-
resented by a matrix, the determinant is an intrinsic property of the map and not of the
particular coordinates in which the map is written (hence the name “invariant”). This no-
tion of invariants will be importantin solid mechanics when discussing the properties of a
deformation. In particular we will see that the determinant of the deformation gradient is
associated with the change of volume of a deformation.

*Prove that the following definitions are equivalent for all linearly independent vectors a,b, c:

I1 (A) =
[Aa,b, c] + [a,Ab, c] + [a,b,Ac]

[a,b, c]

I2 (A) =
[Aa,Ab, c] + [a,Ab,Ac] + [Aa,b,Ac]

[a,b, c]

I3 =
[Aa,Ab,Ac]

[a,b, c]
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1.4 The Cofactor Tensor. Define the cofactor A∗ of the tensor A via the relationship

A∗ (a× b) = Aa×Ab ∀a,b.

Prove ATA∗ = det (A) 1

(Hint: consider ATA∗ acting on the set basis vectors, and dot the results with the set of
basis vectors.)

1.5 Gradient in Spherical Coordinates. Derive the expression for grad (f(R)eR (Θ,Φ))
where {R,Θ,Φ} are the standard spherical coordinates, and eR (Θ,Φ) is the radial unit
vector.

*Derive the expression for the gradient of a general vector field in spherical coordinates.
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2 Basic elasticity

� The goal of this section is to familiarise yourself with the basic notion of elasticity such as
the Young’s modulus, the bulk modulus, and the Poisson ratio.

Figure 1: The cross-section shape of the metre bar is an X-shape. Why? What is BIPM?

2.1 The metre bar. In 1875, representatives of 17 nations (including the UK) met in Paris
to sign the Treaty of the Metre. The treaty established the metric system. The convention
for the metre was that the circumference of the Earth should be forty million metres and a
prototype bar of one metre was created (unfortunately, the measurement of the Earth was not
accurate enough at the time and the circumference going through the poles is 40,007,863m).
Eventually, in 1889 a convention was established for the metre as the length of one prototype
bar (No 6) made of 90% platinum and 10% irridium measured at the melting point of ice.
This bar remained the official definition of the metre until 1960 (when it was replaced by a
multiple of a wavelength of Krypton-86 emission, then by a fraction of the distance travelled
by light in vacuum in one second). As an exercise, assume that the bar is, in the absence of
external loads, a cuboid of platinum of length 1m (obviously) and of section 10cm by 10cm.
To obtain an estimate of its deformation due to its own weight, compute the shortening of the
bar when held vertically by replacing its self-weight (which would vary along the length) by
a single load on the top face of the same weight and assuming an homogeneous deformation.
Now, compute the lengthening of the bar when held horizontally (again by replacing its own
self-weight by a weight acting on top of it). *The actual bar is not a cuboid but has a X-shape
section (See Fig. 1). *Why? *Why was it made of the combination platinum/irridium? and
*why should it be measured at the melting point of ice? **How much longer would it be at
ambient temperature (in Paris, say 300K)?

2.2 Rubber. Rubber is a material that can support large elastic deformation while re-
maining elastic. Compare the stress necessary to double the size of a piece of rubber in
uniaxial tension according to both the linear Hookean theory and the nonlinear neo-Hookean
response given in the Lecture notes (find reasonable values of the shear modulus). What do
you conclude?

2.3 *The metre bar again. If you model the metre bar as a one-dimensional elastic
medium, you can use the theory developed in the Lecture Notes (Chapter 1) to obtain a
better estimate of the shortening. Compute the deformation of the bar under its own-weight.
Is the Hookean model sufficient?

2.4 The bulk modulus In small displacements, consider the uniform compression of a
rectangular block (loaded on each side by a pressure P ). Let V be the initial volume and
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∆V the change of volume. Show that

P = −K∆V

V
(39)

where K is the bulk modulus. Express K in terms of the Young’s modulus E and Poisson’s
ratio σ?

2.5 Of spheres. What is the volume of different unit spheres each uniformly made out of
rubber, wood, brass, steel, diamond, brain tissues, cartilage, when dropped either in a 20
meter deep sea or at the deepest point of the ocean?
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3 Basic kinematics

� The first step in the development of a continuum theory is the geometric description of the
motion. We explore here the traditional notion of Lagrangian and Eulerian configurations.

3.1 A simple motion. Consider the motion given in component form by x = χ(X, t) where

x1 = X1e
−t, x2 = X2e

t, x3 = X3 +X2(e−t − 1). (40)

(a) Determine the velocity in material form: V = V(X, t).

(b) Invert (40) to express X in terms of x and to find the velocity in spatial form v = v(x, t).

(c) Check that divv = 0 and interpret this equality.

(d) Check that the acceleration a can be computed in the two following ways,

a =
∂V

∂t
=
Dv

dt
= v·gradv +

∂v

∂t
.

3.2 A steady helical flow. The velocity in a steady helical flow of a fluid is given by

v = −Ux2e1 + Ux1e2 + V e3,

where U and V are constants. Show that divv = 0 and find the acceleration of the particle
at x.

3.3 A steady flow. The velocity at a point x in space in a body of fluid in steady flow is
given by

v = U
a2(x2

1 − x2
2)

(x2
1 + x2

2)2
e1 + 2U

a2x1x2

(x2
1 + x2

2)2
e2 + V e3,

where U , V and a are constants. Show that divv = 0 and find the acceleration of the particle
at x.

3.4 Simple gradients. Consider the scalar field φ(x) = (x1)2x3 + x2(x3)2 and the vector
field v(x) = x3e1 + x2 sin(x1)e3. Find the components of gradφ and gradv.

3.5 Rigid motion. Show that u ·Mv = v ·MTu where u and v are vectors and M is a
second-order tensor. Use this relation to prove that the following motion is a rigid motion,

x(t) = c(t) + Q(t)X,

i.e. the distance between any two points remains unchanged during the motion. Here x is
the current position of a point which was initially at X, c is a vector and Q is a proper
orthogonal second-order tensor.

3.6 A bug walking on a rubber band. Take a rubber band and hold it fixed at one end,
say X = 0. Now stretch the other end (along the positive X-axis) with constant speed v. At
time t = 0, the length is L. At time t = 0 a bug jumps on the band and starts crawling at
constant speed u with respect to the material point of the deforming band.

(a) Determine the motion of each material point on the rubber band, that is

x = x(X, t). (41)

Compute the material (Lagrangian) velocity, the spatial velocity and the acceleration.
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(b) Compute the position y = y(X, t) of the bug. Compute the time it takes the bug to
reach the end of the rubber band.

3.7 A rolling cylinder. A circular cylinder rolls without slipping on a horizontal plane.
Determine the deformation mapping, the Eulerian and Lagrangian velocities, and the accel-
eration field. (Note: take (X1, X2, X3) in the undeformed configuration and (x1, x2, x3) in
the current configuration).

3.8 Motion in space. The motion of a body is given for t ≥ 0 by

x(X, t) = (X1 + ktX3, X2 + ktX3, X3 − kt(X1 +X2)),

where k > 0 is a constant. Show that the path of an arbitrary material point with reference
position X 6= 0 is a straight line orthogonal to X.

Show that a material plane initially at X1 = h is mapped to another plane and compute
its normal unit vector. Conclude that asymptotically as t → ∞, all planes X1 = h become
parallel.

3.9 The eversion of a cylinder.* Consider a cylindrical tube and invert it by turning it
inside out (so that the inner surface is now the outer surface - think of it as a sock). Assuming
that radial and axial fibres do not deform and that the everted shape is a cylinder, write the
deformation mapping. Show that if you do it twice, you will recover the initial shape.
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4 One-dimensional elasticity

� The simplest non-trivial theory for a continuum is the theory of one-dimensional elastic
structures. This theory already leads to interesting problems and applications as described
by these problems.

4.1 A rope A flexible but inextensible string is pulled away from a wall (see figure) with a
force of 40 Newtons. Find the tension in the string, the weight of the string and the location
of its centre of gravity

30 deg 40 N

Figure 2: A rope is pulled from a wall. Find its mass.

4.2 Helices and helical rods. Helices are curves of constant curvature and torsion. Helical
rods are rods whose centerline is an helix. Write down the equations for the centerline, the
Frenet frame, and general director basis of a uniformly twisted helical rod (pay attention
to the two limiting cases of a straight rod and a ring). Find the relationship between the
pair (curvature,torsion) and the pair (helical radius,helical pitch). The helical pitch p = 2πP
is the axial distance between two helical repeats (see Figure) and the helical radius is the
distance between the axis and the centerline of the rod. I

2    P/  

2 R

a x

Figure 3: Left:A helical rod of radius R and helical pitch 2πP and twist γ. Right: An ideal
helical rod
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4.3 Ideal rods. If the helical rod is made of material that cannot self-penetrate, not all
helical rod configurations are possible. What is the maximal curvature that a rod of radius
r can bent without self-penetrating? For ambitious students, you can also compute the
condition on the curvature and torsion so that two helical repeats touch. For more ambitious
students, you can show that there is a unique right-handed helix (ideal) that, for a given
radius, has both maximal curvature and touches itself (see figure). Remarkably, this helix is
close to the shape of α-helices found in proteins.

4.4 Helices. Show that the basic Kirchhoff equations (inextensible, unshearable, circular
cross section, uniform, quadratic energy, initially straight) supports static helical solutions.
Find the wrench (the axial force and axial moment) necessary to maintain a given helical
shape with curvature κ and torsion Au. What is the twist of these solutions?

4.5 Obtaining a structure of a desired shape under loads. A problem in design and
architecture is that if one clamps a straight beam on one side horizontally, it will bent by
under its own weight. To look pleasing to the eye, it would be better if it was straight in
its deformed position. To do so, one can design a beam that is not naturally straight but
would be straight under the action of gravity. This problem was considered by both Bernoulli
and Eluer (1744!). Find the unstressed shape of a rod such that it becomes straight under a
point load at the end of the beam. If you are more ambitious, consider the general problem
of finding the desired unstressed shape if the force is a body load due to gravity along the
beam.

Figure 4: Galileo’s beam problem (1638).

4.6 Classical buckling, post-bifurcation analysis. Consider a rod of length L along the
x-axis clamped on one side and pinned on the other side under a compressive force F along
the x-direction. Use the method in the Lecture Notes to find the critical force.

4.7 Classical buckling, linear analysis. Consider a rod of length L along the x-axis
pinned on both side (as done in the Lecture Notes) under a compressive force F along the x-
direction. Show that the bifurcation to a buckled state is a pitchfork bifurcation by computing
the amplitude as a function to the distance to the bifurcation λ = F − Fc.

4.8 Not-so classical buckling.* Consider the same problem as before but with a load
that remains in the tangential direction at the end of the rod after bifurcation. Show that
there is no value of the load such that the static planar elastica exhibits a bifurcation (if
you are ambitious, you can prove that the only static solution is the straight solution!). It
seems strange that this rod would remain stable for all loads. Show that the method of
stability used in the previous problem is not suitable to explain this instability and compute
the correct stability criterion for this problem.
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4.9 Of mice and elephants. Use the buckling criterion to explain the difference in aspect
ratio (length over radius) of animal legs by assuming that legs sizes are dictated by elastic
buckling. Derive the scaling between length and radius. Clearly state your assumptions.
Find examples of this scaling laws in nature and engineering.

Figure 5: An elephant and a mouse.

4.10 Travelling loop. Starting from the dynamical elastica, find the travelling wave solutions
given in the Lecture Notes by explicitly solving the dynamical system obtained by a travelling
wave reduction. Show that this solution is a homoclinic orbit (in the sense of dynamical
systems) in the phase-plane θ − θξ. Show that the material velocity of points on top of the
loop travels twice as fast as the loop itself.

4.11 Inhomogeneous loaded beam. Derive a beam equation for a beam of varying rigidity
EI = α(x) subject to a distributed load q(x).

Figure 6: Three-point bending test on a cortical bone (Jui-Ting Hsu, China Medical univer-
sity).

4.12 Three-point bending. This is a test to measure the elasticity of a material. Consider
a simply supported beam of length L with a central load F (at L/2). Using beam theory
with a Dirac delta loading of magnitude F at x = L/2, find the maximal deflection at the
middle of the beam and show how to compute the bending rigidity EI.

4.13 Finals** Consider the equation for a uniform planar elastica subject to a body force
f = fex+gey. In this equation primes : ( )′ denote derivatives with respect to the arc length
and dots : (˙) denote time-derivative.

F ′ + f = ρAẍ (42)

G′ + g = ρAÿ (43)

EIθ′′ +G cos θ − F sin θ = ρIθ̈ (44)

(a) Define all the parameters {E, I, ρ, A} (assumed to be constant) entering the equation
and give their dimensions.

18



(b) Define the dependent variables {F,G, x, y, θ} and give explicitly the tangent vector to
the elastica and the curvature at a given point on the curve.

(c) By assuming small deflections, derive a beam equation for the vertical deflection y =
w(x) as a function of the horizontal position x.

(d) Consider the case of a simply supported beam of length 2π and for which EI = ρA = 1,
subject to both a point force q in the vertical direction applied at the middle of the
beam and a compressive force P > 0 in the horizontal direction applied at both ends.
Find the maximal deflection of the beam as a function of q and P .

(e) Show that there are values of P for which the beam deflection becomes arbitrarily large
for arbitrarily small point force. Explain this result.
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5 Tensor calculus

� In 2D or 3D, all key descriptors of continuum deformations and stresses are tensors. A
number of problems to illustrate the key tools of tensor calculus are given in this section.

5.1 The identity. Let r, s, t be three mutually orthogonal unit vectors. Consider the
second-order tensor A with components

Aij = rirj + sisj + titj .

Now, any vector u can be written as u = αr + βs + γt for some scalars α, β and γ. Show
that Au = u and hence, that A is the identity.

5.2 Let C be a second-order tensor. Show that

det(C− λI) = −λ3 + I1λ
2 − I2λ+ I3,

where
I1 = trC, I2 = 1

2

[
(trC)2 − tr

(
C2
)]
, I3 = det C.

5.3 The Cayley-Hamilton theorem. Write the Cayley-Hamilton theorem for a second-
order tensor C and multiply it across by C−1 to express C2 in terms of C, I and C−1. Then,
taking the trace, deduce the following identity:

I2 = I3tr
(
C−1

)
,

where I2, I3 are the second and third principal invariants of C.

5.4 The polar decomposition theorem. This is a central theorem in mechanics. To
prove it we will use the square root theorem (without proof).

Thm*: If S is a positive definite, symmetric second-order tensor, then there exists a unique
positive definite symmetric second-order tensor U such that U2 = S.

Equipped with this result, the problem is to prove the following theorem.

Thm: (Polar decomposition). If F is a second order tensor such that detF > 0, then there
exist unique, positive definite, symmetric tensors, U and V, and a unique proper or-
thogonal tensor R such that

F = RU = VR. (45)

5.5 Examples of polar decomposition. Find the left and right polar decompositions of
the matrices

(i)

(
2 −3
1 6

)
(ii)

 1 −1 3
1 1 0
−1 1 3

 .

Steps: The key is to first compute U as the square root of FTF. Once U is known, compute
R = FU−1. Once R is known, compute V as FRT. Once you have done the small one by
hand, you may try a symbolic program (Mathematica or Maple).
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5.6 Jacobi’s formula. Prove that

∂

∂λ
(detA) = (detA)tr

(
A−1∂A

∂λ

)
, (46)

valid for any non-singular tensor A.

5.7 Derivative by a tensor.

In the following, let A,B,C be second-order tensors with cartesian components Aij , Bij , Cij
and F = F (A) a scalar function of A. We denote by (:) a contraction on two repeated
indices. The derivative of the scalar function F with respect to the tensor A is a tensor
whose cartesian components are: (

∂F (A)

∂A

)
ij

=
∂F (A)

∂Aji
. (47)

(a) Prove that
∂

∂A
(tr(A)) = 1. (48)

(b) Prove that if A = BC, then
∂F

∂B
(A) = C

∂F

∂A
(A). (49)

(c) Prove that the derivative of the inverse of a tensor is(
∂

∂A
A−1

)
: B = −A−1BA−1. (50)

(d) Jacobi’s second formula. Prove the Jacobi’s relation for the derivative of a nonvan-
ishing determinant,

∂

∂A
(det(A)) = det(A)A−1. (51)

(e) Jacobi’s third formula. Prove the Jacobi’s relation for the second derivative of a
nonvanishing determinant,

∂

∂A

∂

∂A
(det(A)) : B = det(A)

[(
A−1 : B

)
A−1 −A−1BA−1

]
. (52)

(f) Prove that if C is a symmetric tensor of the form C = ATA then

∂F (C)

∂A
= 2A

∂F (C)

∂A
. (53)

Hint: You may need for some of these problems the definition of the directional tensor deriva-
tive, defined in terms of arbitrary tensor by B

∂F

∂A
: B =

d

dλ
F (A + αB)

∣∣∣∣
λ=0

. (54)
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6 The deformation gradient

� The central object describing the deformation and strain in nonlinear elasticity is the de-
formation gradient. We explore here a number of key relationships between similar quantities
defined in the reference and current configurations.

6.1 The simple shear. Consider the simple shear (See Fig. 7)

x(X) = (X1 + γX2, X2, X3), γ ≥ 0.

Calculate the principal stretches, and show that the right polar decomposition of the defor-
mation gradient is given by

F =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 cos θ sin θ 0

sin θ 1+sin2 θ
cos θ 0

0 0 1

 ,

where tan θ = γ
2 . Determine also the left polar decomposition. What are the Eulerian and

Lagrangian axes?

Figure 7: Eulerian and Lagrangian axes of the simple shear

6.2 Change of area in a simple shear. Recall Nanson’s formula, relating an area element
NdA in the reference configuration to its counterpart nda in the current configuration. Use
it to show that

(da)2

(dA)2
= J2N · F−1

(
F−1

)T
N,

where F is the deformation gradient and J = det F. For the simple shear

x1 = X1 +KX2, x2 = X2, x3 = X3,

where the constant K is the amount of shear, find F, J , F−1 and F−1
(
F−1

)T
. For a unit

vector in the plane of shear, N = (cos θ, sin θ, 0) say, express (da/dA)2 in terms of cos 2θ and
sin 2θ. Show that the maximum value of (da/dA)2 occurs when tan 2θ = −2/K.

6.3 More simple shear. For the simple shear

x1 = X1 +KX2, x2 = X2, x3 = X3,

where the constant K is the amount of shear, find the deformation gradient F and the right
Cauchy-Green tensor C. Show that λ2

1, λ2
2, λ2

3, the eigenvalues of C satisfy:

λ2
1 + λ2

2 = 2 +K2, λ2
1λ

2
2 = 1, λ2

3 = 1.

From the second equality deduce that λ2 = λ−1
1 and substitute into the first equality to find

K = λ1 − λ−1
1 ,

and eventually, λ1 in terms of K.
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6.4 Derivatives of tensors. Let φ, v, T be scalar, vector and 2nd-order tensor fields
respectively on a moving body. Prove the following identities:

(a) Gradφ = FT gradφ,

(b) Grad v = (grad v)F,

(c) Div v = J div (J−1Fv),

(d) Div T = J div (J−1FT),

(e) div (Tv) = v · divT + tr(Tgradv),

(f) div(φT) = TT gradφ+ φ divT.

where

grad v =
∂v

∂xi
⊗ ei, grad T =

∂T

∂xi
⊗ ei, div T =

∂Tij
∂xi

ej ,

F = Grad x =
∂xi
∂Xj

ei ⊗Ej , J = det F,

where Ei and ei are unit vectors in cartesian coordinates in the reference and current config-
urations respectively. You will need identity (46).

6.5 Isochoric deformations. An isochoric deformation is a volume-preserving deforma-
tion. Define the invariants Ii, i = 1, 2, 3 and show that for all such deformations I1 ≥ 3.

6.6 Nanson’s theorem. By considering how a linear mapping transforms planes, prove the
formulae

n =
F−TN

|F−TN|
, n da = JF−TN dA,

relating deformed and undeformed normals and surface area elements, directly (without using
the Piola identity).

6.7 Change of length. Show that the change in the squared distance between two neigh-
boring particles can be written as

|dx|2 − |dX|2 = 2dX ·EdX,

where E is the Eulerian strain tensor.

6.8 Piola identity. Use the divergence theorem to show that∫
St

nda = 0.

Then deduce that
Div

(
JF−1

)
= 0,

where F is the deformation gradient and J = det F.

Similarly, prove the following identity:

div
(
J−1F

)
= 0.

23



6.9 Decomposition of the gradient. For a certain motion the deformation gradient

F(X, t) = λ(X)A(t)

where λ is a scalar positive function and det A(t) > 0 for all t. Prove that λ is constant.

6.10 Cauchy-Green tensor. Show that two deformations χ, χ′ lead to the same Right
Cauchy-Green strain tensor C = C′ if they are related by a rigid body motion (that is,
χ′ = c + Qχ where Q is a constant proper orthogonal tensor). *Can you prove the converse
(If C = C′, then they are necessarily related by a rigid body motion)?

6.11 Compatibility*. Given a deformation mapping χ(X, t), it is easy to compute the
deformation gradient F = Gradχ. Now, consider the inverse problem. You are given F and
you need to compute χ. The first question to answer is, given F, is there a deformation
mapping χ? This is the problem of compatibility.

In a simple connected domain (no hole), if F is a deformation gradient then Curl(F) = 0.
Here we have defined the curl of a tensor as Curl(F)c = Curl(cF) for any constant vector c.

For a Cartesian tensor, it follows that (CurlF)ij = εkli
∂Fjl
∂Xk

.

The condition Curl(F) = 0 is also sufficient (that is, it guarantees the existence of a defor-
mation mapping). (* The two proofs are optional but if you try, you may want to use Stokes’
theorem for tensors on an arbitrary closed path.)

Now the problem. Consider the Cartesian tensor

[F] =

 1 0 0
0 1 0
α β 1


where α, β are functions of (X1, X2) only.

Find the compatibility conditions on α, β so that F is a deformation gradient on a simply
connected domain. Then determine the deformation gradient assuming χ(0) = 0. Show that
the deformation gradient is indeed independent of the path chosen*.

6.12 Transport formulas Let Ct, St and Rt denote curves, surfaces and regions in Bt, the
current configuration of the body. Prove the following identities

(a) d
dt

∫
Ct
φdx =

∫
Ct

(φ̇dx + φLdx),

(b) d
dt

∫
St
φnda =

∫
St
{[φ̇+ φtr (L)]n− φLTn}da,

(c) d
dt

∫
Rt
φdv =

∫
Rt

[φ̇+ φtr (L)]dv,

(d) d
dt

∫
Ct

u · dx =
∫
Ct

(u̇ + LTu) · dx,

(e) d
dt

∫
St

u · nda =
∫
St

[u̇ + utr (L)− Lu] · nda,

(f) d
dt

∫
Rt

udv =
∫
Rt

[u̇ + tr (L)u]dv.
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7 The stress tensors

� The central object describing the force acting at a point is the stress tensor (which has the
unit of a pressure, that is force per area).

7.1 The Cauchy Stress. In appropriate units, a certain measure of stress T has compo-
nents

T =

1 0 2
0 1 0
2 0 −2

 , (55)

in a rectangular coordinate system (x1, x2, x3).

(a) Compute the principal invariants of T:

I1 = trT, I2 = 1
2 [I2

1 − tr(T2)], I3 = det T.

(b) Show that two of the principal stresses are tensile and one is compressive.

(c) Show that the greatest and the least principal stresses take place in directions orthogonal
to x2.

7.2 A cantilever beam A cantilever beam with rectangular cross-section occupies the
region −a ≤ x1 ≤ a, −h ≤ x2 ≤ h, 0 ≤ x3 ≤ l. The end at x3 = l is built-in and the beam is
bent by a force P applied at the free end x3 = 0 and acting in the x2-direction. The Cauchy
stress tensor has components

σ =

0 0 0
0 0 A+Bx2

2

0 A+Bx2
2 Cx2x3

 , (56)

where A, B and C are constants.

(a) Show that this stress satisfies the equations of equilibrium with no body forces, provided
2B + C = 0;

(b) Determine the relation between A and B if no traction acts on the sides x2 = ±h;

(c) Express the resultant force on the free end at x3 = 0 in terms of A, B and C and hence,
with (a) and (b), show that C = −3P/(4ah3).
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8 The equations of motion

� We are now in a position to write the equations of equilibrium for the Cauchy stress
based on the balance of linear and angular momenta. For homogeneous deformations, these
equations are trivial but in other geometries they take an interesting form. Here, we will treat
the problem of the deformation of a cylindrical shell to another cylindrical shell, a classical
problem of fundamental importance.

8.1 Cauchy equation in the reference configuration. Consider the balance of linear
momentum ∫

Ω
ρbdv +

∫
∂Ω

Tnda =

∫
Ω
ρv̇dv

where ρ is the density, b the body force, v the velocity, n the normal to ∂Ω, and T the
Cauchy stress tensor.

Starting from this balance law, obtain the equation of motion in the reference configuration
in terms of the nominal stress tensor. To do so, map all integrals in the current configuration,
use the divergence theorem, and localise all integrals.

8.2 Extension and Inflation of a tube. Consider a tube defined in the initial
configuration by

A ≤R ≤ B, A,B > 0

0 ≤Θ < 2π,

0 ≤Z ≤ L. L > 0

Here, (R,Θ, Z) are cylindrical coordinates with vectors
(ER,EΘ,EZ) in the reference coordinates. The tube is deformed
through the combined effects of inflation (pressure) and exten-
sion, but remains cylindrical after deformation so that x =
r er + zez, with r = f(R, λ), θ = Θ, z = λZ, where λ is the
uniform (constant) axial stretch.

(a) Compute the deformation gradient F in cylindrical coordinates.

(b) Assuming that the material is incompressible than all deformations must be isochoric
(det F = 1), find the explicit form of f(R) in terms of R, λ, and a, the internal radius
of the deformed tube.

(c) Compute the principal stretches λr, λθ, λz in the radial, azimuthal and axial directions.

(d) If we assume that the material is isotropic, the radial and axial extension of the tube
will lead to a Cauchy stress tensor of the form

T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez.

Assuming no body force and steady state, write the equilibrium equations for T.

(e) Write the boundary conditions on the faces of the tube assuming an internal pressure
P and no external pressure.

(f) * Similarly, write the boundary condition on the ends of the tube assuming an axial load
N on the ends of the tube (consider the case where the tube is either open or closed).
Note that this boundary condition requires a little bit of care since N has the dimensions
of a force and the stress has the dimensions of a pressure. Therefore to relate N to the
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axial stress, one needs to average the stress on the upper and lower face of the tube over
its section. Formulate such a condition.

8.3 Finals 2014** The Cauchy stress tensor T for an unconstrained hyperelastic material
with strain-energy density W (F) is given by the following constitutive law

T = J−1F
∂W

∂F
,

where F is the deformation gradient and J = det(F). If we consider a materialwhere the
possible deformations are constrained during all motions, an extra condition must be satisfied:
C(F) = 0 where C(F) is a smooth scalar function of the deformation gradient. For instance, in
the case of an incompressible material, we have det(F)−1 = 0. Accordingly, the constitutive
law must be changed and an extra reaction stress N must be added to the system to enforce
that the constraint is satisfied during all deformations, so that we have now

T = J−1F
∂W

∂F
+ N.

(a) Give the reaction stress for an incompressible material and show that this stress does
not produce any work by computing the rate of work given by w = tr(N D) where
D = (L + LT)/2 and L is the velocity gradient tensor.

(b) The constitutive law for a linear isotropic elastic material is given by T = 2µe+λ(tr e)1
where e is the infinitesimal strain tensor. Explain how this law is modified for an
incompressible linear isotropic material and give the explicit form of the incompressibility
condition in terms of both the displacement vector and the infinitesimal strain tensor.

(c) Next, consider a hyperelastic material that is constrained such that for all possible
motions I1 − 3 = 0 where I1 = tr(FFT). Give the corresponding reaction stress and
show again that it produces no work.

(d) Give the general form of the reaction stress as a function of C(F) and prove that, in
general, reaction stresses do not produce work.

8.4 Finals 2017** For a hyperelastic material with strain-energy density W = W (F), where
F is the deformation gradient, the constitutive equation for the nominal stress tensor S is

S =
∂W

∂F
.

(a) Give Nanson’s formula relating the change in an area element from the reference config-
uration to the current configuration. Use Nanson’s formula to relate the nominal stress
tensor to the Cauchy stress tensor and give the constitutive equation for the Cauchy
stress tensor in terms of W and its derivatives.

(b) Express the constraint of incompressibility in terms of the deformation gradient F. In
this case show how to modify the constitutive equations for the nominal stress tensor
and the Cauchy stress tensor to enforce the incompressibility constraint. Define the in-
finitesimal strain tensor of linear elasticity e and express the incompressibility constraint
in terms of this tensor for small deformations.

(c) Now, assume that instead of the incompressibility constraint, the material is constrained
by Ericksen’s constraint :

I1 = 3,

27



where I1 = tr(B) and B = FFT is the left Cauchy-Green tensor. The materials that
satisfy this constraint in all deformations are called Ericksen materials. In this case
show how to modify the constitutive equations for the nominal stress tensor and the
Cauchy stress tensor to enforce Ericksen’s constraint.

(d) For an unconstrained isotropic elastic material, the constitutive equation for the Cauchy
stress tensor can be written

T = w01 + w1B + w2B
2, (57)

where the coefficients w0, w1, w2, are functions of the invariants (I1, I2, I3) of B (with
I2 = (I2

1 − tr(B2)/2) and I3 = det(B)).
Find a similar representation for Ericksen materials.

(e) Show that for small deformations Ericksen’s constraint is equivalent to the incompress-
ibility constraint. Despite the fact that incompressible materials and Ericksen materials
satisfy the same constraint in linear elasticity, an incompressible Ericksen material can-
not be deformed in nonlinear elasticity. To illustrate this result, consider plane-strain
deformations and show that the only possible deformations in materials that satisfy both
constraints are rigid-body motions.
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9 Homogeneous deformations

� Homogeneous deformations have constant deformation gradient. For a given material and
geometry of deformation, the elastic problem (finding the deformation as a function of the
applied load) can be fully solved.

9.1 The uniaxial extension. A good model for uniaxial extension is to consider a ho-
mogeneous deformation along one axis where the material is being pulled. In Cartesian
coordinates, we have simply

T = diag(N, 0, 0)

Therefore, since the strain is co-axial with the stress, we must have

F = diag(λ1, λ2, λ2).

We consider a material characterised by the following strain-energy function

W =
µ1

2
(I1 − 3)− µ2 log(I

1/2
3 )

where I1 = λ2
1 + λ2

2 + λ2
3, I3 = J2 = λ2

1λ
2
2λ

2
3.

(a) Find the conditions on µ1, µ2 so that in the absence of strain, there is no stress.

(b) From the null boundary conditions, find a relationship between λ2 and λ1.

(c) Define the Poisson function as

ν(λ1) = −λ2(λ1)− 1

λ1 − 1

and find the Poisson ratio as ν0 = limλ1→1 ν(λ1). Describe in physical terms both the
Poisson function and its limit.

(d) With the remaining boundary condition, compute N(λ1) and plot its graph.

(e) Find the slope of the tangent of N(λ1) as λ1 = 1. Describe physically. Show on the
graph.

9.2 The uniaxial extension again. Same geometry, same loading as in the previous
problem but now the material is incompressible with a Mooney-Rivlin energy density

W =
µ1

2
(I1 − 3)− µ2

2
(I2 − 3).

(a) Is there a conditions on µ1, µ2 so that in the absence of strain, there is no stress?

(b) Find again the Poisson function νλ1 and define the Poisson ratio as ν0. Is this value of
the Poisson ratio as expected? Why?

(c) With the remaining boundary condition, compute N(λ1).

(d) Find set of realistic values of µ1 and µ2 for rubber in the literature. Make sure to specify
the units, and plot the graph of N(λ1) for these values.

(e) Find the slope of the tangent of N(λ1) as λ1 = 1. Describe physically. Show on the
graph. What is the name of the combination µ1 + µ2?

(f) Compare the tangent approximation with the actual graph of N(λ1). For what value of
stretch does the approximation breaks down?
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9.3 The Poynting effect. One of the property of nonlinear elastic materials is that normal
forces are coupled with shear forces. This effect can be used to explain why a isotropic
cylinder extends under tension. A simple way to see the coupling is to consider the simple
shear (see Lecture notes) for a hyperelastic isotropic material (compressible)

x1 = X1 + γX2

x2 = X2

x3 = X3.

Show that
T11 − T22 = γT12, T13 = T23 = 0.

Discuss this result. What is so special about it? Think of an experiment that would create a
simple shear. What happens if you just try to shear the material on its top layer. This is an
example of a so-called universal property in elasticity, that is a relation that is independent
of the particular form of the strain-energy density function. These results are particularly
important and beautiful as they transcend the (controversial) choice of a strain-energy density.
They can also be used as test of the material properties. In our case, we could devise an
experiment to test if our sample is indeed isotropic. Devise such an experiment. What would
you measure?

9.4 Finals 2013**. Consider an hyperelastic isotropic material characterised by a strain-
energy density function W = W (F) where F is the deformation gradient.

(a) Show that as a result of isotropy, the strain-energy function can be written in terms of
the left Cauchy-Green tensor B = V2 = FFT, that is W = Ψ(B).

(b) From isotropy and objectivity, it can be shown that the Cauchy stress tensor T is given
by

T = a01 + a1B + a−1B
−1,

where ai are scalar functions of the invariants of the left Cauchy-Green tensor B. Use
this representation to show that TB = BT.

(c) Since T and B commute, they are coaxial, that is the Cauchy stress tensor can be
written in terms of the Eulerian principal axes as

T = tiv
(i) ⊗ v(i), B = λ2

iv
(i) ⊗ v(i),

where summation on repeated indices is assumed. Next, consider, for the same isotropic
hyperelastic material, a simple shear, given by x(X) = (X1 + γX2, X2, X3), γ ≥ 0. and
for which the Eulerian axes v(1) of V are

v(1) = cos θ e(1) + sin θ e(2)

v(2) = − sin θ e(1) + cos θ e(2)

v(3) = e(3)

where tan(2θ) = 2/γ and e(i) are the usual Cartesian canonical basis vectors. Using this
representation, find the components Tij of T = Tije

(i) ⊗ e(j), the Cauchy stress tensor.
Show that T11 − T22 = γT12.

(d) Show that det(F) = 1, λ3 = 1, λ1 = 1/λ2 and that γ = λ1 − 1/λ1. Is the material
incompressible?
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(e) Compute explicitly the stresses Tij as a function of γ, µ,K developed in simple shear for
a neo-Hookean material with strain energy function

W =
µ

2
(I1 − 3− 2lnJ) +K(J − 1)2.

(Here µ and K are constant, define I1 and J). Can a simple shear be maintained by
shear stress alone?

9.5 The Rivlin cube**. Consider an incompressible, neo-Hookean elastic cube of unit side
subject to a distributed force f on each face. For f > 0 the force is tensile and points outward
(each face is pulled out) and for f < 0 the force is compressive and points inward (each face
is pushed in). Assuming that the cube is allowed to deform into a cuboid, the problem is to
determine the possible number of solutions as a function of f .

(a) From the Cauchy stress tensor and the deformation gradient, define the principal stresses
(t1, t2, t3) and principal stretches (λ1, λ2, λ3) and write down the constitutive relationship
between them.

(b) Write explicitly the incompressibility condition in terms of the principal stretches.

(c) Define the boundary conditions in terms of the stresses and stretches (be careful as the
force and NOT the pressure is prescribed at the boundary).

(d) Show that there is no solution for which all stretches are different.

(e) Determine the number of solutions as a function of f . Show that there can be up to 7
distinct solutions.

Hint: You may need to use the fact that the discriminant of the cubic polynomial
P (x) = a+ bx2 + cx3 is ∆ = −a(4b3 + 27ac2). The number of real solutions of this cubic
depends on the sign of the ∆

31



10 Elastic deformations of cylinders and spheres

� Semi-inverse problems such as the deformation of a spherical shell to another spherical
shell, lead to a set of ODEs that can also be solved. We explore this type of problem in this
section.

10.1 Inflation-Extension of the cylinder–again. Consider again a hyperleastic incom-
pressible isotropic elastic tube defined in the initial

configuration by

A ≤R ≤ B, A,B > 0

0 ≤Θ < 2π,

0 ≤Z ≤ L. L > 0

Here, (R,Θ, Z) are cylindrical coordinates with vectors (ER,EΘ,EZ) in
the reference coordinates. The tube is deformed through the combined
effects of inflation (pressure) and extension, but remains cylindrical after
deformation so that x = r er + zez, with r = f(R, ζ), θ = Θ, z = ζZ,
where

ζ is the uniform (constant) axial stretch. In the previous sheet, we computed the deforma-
tion gradient F = diag(λr, λθ, λz) . Let λ = λθ and ζ = λz. From incompressibility, we have
λr = 1/(λζ). Now that we have fully characterise the deformation, we need to relate the
deformation to the external loads. The material response is characterised by a strain-density
energy function W = W (λr, λθ, λz). Since the material is isotropic, we have

T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez (58)

(a) Show that

r
dλ

dr
= −λ(λ2ζ − 1) (59)

(b) Write the Cauchy equations for the equilibrium of stress in cylindrical coordinates. Show
that it reduces to a single equation.

(c) Write the stresses Trr, Tθθ, Tzz as a function of W .

(d) To further simplify the problem, we introduce an auxiliary stress function

Ŵ (λ, ζ) = W (1/(λζ), λ, ζ). (60)

Show that the constitutive equations can be written

Tθθ − Trr = λŴλ, Tzz − Trr = ζŴζ , (61)

where the subscripts denote partial derivatives.

(e) Use these relations and the Cauchy equation write a single differential equation for Trr.
Integrate this equation up to a quadrature.

(f) Match the boundary equations Trr(r = a) = −P , Trr(r = b) = 0 derived in the last
problem sheet.

(g) Rewrite the last integral in terms of λ rather than r to obtain

P =

∫ λb

λa

1

λ2ζ − 1
Ŵλdλ. (62)

(Note that λb is a function of λa due to incompressibility.
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(h) *Use a Mooney-Rivlin material and plot the pressure as a function of the inner stretch
λa for a given axial stretch (take ζ = 1.2 for instance).

(i) * Vary the constants µ1, µ2 to show that non-monotonous behaviors are possible (P as
a function of the strectch reaches a maximum). What is the physical behavior of such
a system.

10.2 The incompressible spherical shell. Following the description in the lectures, we
consider the symmetric deformation of an incompressible spherical shell. Assume that the
material is characterised by a strain-energy density W = W (λ1, λ2, λ3). Let λ = r/R and
h(λ) = W (λ−2, λ, λ).

(a) Show that for a given internal pressure P , the deformation is determined by the solution
of

P =

∫ β

α

h′(λ)

1− λ3
dλ (63)

where α = λa = a/A and β = λb = b/B.

(b) Express β as a function of α.

(c) Integrate P as a function of α and plot the pressure-stretch curves P − α for a neo-
Hookean and a Mooney-Rivlin strain-energy (take e.g. A = 1, B = 2, µ1 = 1, µ2 = 0.03).
How is the behaviour of P different for these two functions for large values of α?

10.3 The thin incompressible spherical shell. Let us explore the thin-shell limit of the
previous problem.

(a) To start, show that P viewed as a function of α satisfies the equation

(α− α−2)
dP

dα
=
h′(α)

α2
− h′(β)

β2
. (64)

(b) Now, if the shell is thin, we can write B − A = εA where ε � 1. Let λ = α(1 + O(ε))
and show that

P = ε
h′(λ)

λ2
(65)

(c) Let T be the surface tension, a force per unit current length along the surface, that is
(b− a)Tθθ. Show that

T = εA
h′(λ)

λ
. (66)

(d) Show how the two last equalities are related to the Young-Laplace law for a spherical
membrane. Is this a universal result (independent of the particular choice of the strain-
energy)?

10.4 The limit-point instability. The classical theory of rubber materials predicts that
for particular choices of strain-energy functions and parameters, a limit-point instability may
occur in spherical shell as the internal pressure is increased. This effect is triggered by the
loss of monotonicity of the function P as a function of α, that is the pressure-stretch curve
has a local maximum and the resulting instability is known as a limit-point instability.

(a) In the thin shell limit, find the critical stretch λ at which a neo-Hookean membrane be-
comes unstable. (Past this critical value, the membrane continues stretching for reduced
pressure, this is more or less what happens when you try to blow up a balloon).
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(b) For other materials such as the ones described by Mooney-Rivlin functions, the pres-
sure stretch curve may present a maximum followed by a minimum at finite stretch.
Therefore, under controlled pressure, the stretch may jump for increasing pressure and
present a hysterisis when the pressure is reduced leading to an inflation jump. Consider
the Fung model, typically used for modelling soft tissues,

Wfu = (1/γ)[exp γ(I1 − 3)− 1]. (67)

Find the critical value γcr (and the corresponding αcr) above which the limit-point
instability disappears. Plot the pressure-stretch curves for γ = 0, γ < γcr/2 and for
γ = γcr, γ = 2γcr.

(c) Find realistic values for γ in the literature and reach a conclusion about the existence
of limit-point instability for soft-tissues (note: the limit-point instability was proposed
in the 60’s as a model for aneurysm rupture. Is this realistic?).

10.5 The compressible spherical shell*. Consider the symmetric deformation of a com-
pressible spherical shell

x = f(R)X.

Assume that the material is characterised by a strain-energy density W = W (λ1, λ2, λ3).

(a) Find a second-order equation for f(R) with coefficients functions of W and its derivatives
with respect to λ1, λ2.

(b) Give the explicit relationship between λ1, λ2 and f(R).

(c) Write explicitly (only as a function of R and f(R)) this equation for

W =
µ1

2
(I1 − 3)− µ2

2
(I2 − 3).

(d) Can you solve this equation? Analytically? Numerically? What would the boundary
conditions be?

10.6 Elastic cavitation*. Consider an incompressible neo-Hookean sphere of radius one.
Now apply a uniform (tensile) hydrostatic pressure to the outer boundary.

(a) Compute the deformation and the radial stress as a function of the external pressure P
assuming that only spherical deformations are possible (yes the answer is trivial).

(b) Show that there is a critical value of P for which another solution can emerge. This
solution is a spherical shell of inner radius a(P ) such that limP→Pcr a(P ) = 0 and
a(P ) > 0 for P > Pcr (hint: you could use the previous problems and take the limit of
A→ 0 for instance.)

(c) Plot the graph of a as a function of P . Observe that in principle, the sphere can bifurcate
to a spherical shell, creating a cavity in the material under proper load.

10.7 Finals 2014** Consider a hyperelastic incompressible spherical shell of radii A and B
respectively in the absence of body forces. Assume that the shell cavity has been filled with
explosives. At time t = 0 the explosives are detonated and the explosion deforms the body
so that it remains a spherical shell for all time. Therefore, the motion of the body can be
written in the form

x =
r

R
X, r = f(R, t),

where R = |X| and r = |x|.
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• (a) Prove the following lemma: let φ and u be differentiable scalar and vector fields,
respectively. Then,

grad(φu) = u⊗ gradφ+ φ grad u.

• (b) Use part (a) to show that the deformation gradient can be written

F =
1

R2

(
f ′(R, t)− f(R, t)

R

)
X⊗X +

f(R, t)

R
1,

where f ′(R, t) = df(R,t)
dR .

• (c) Write the deformation gradient in the standard orthonormal spherical basis {eR, eΘ, eΦ}.
• (d) Show that

f(R, t)2f ′(R, t) = R2,

and find an explicit expression for f based on the initial and boundary conditions.

• (e) Using the fact that for this problem the Cauchy stress is diagonal in spherical coor-
dinates and that divergence of the Cauchy stress is given by

divT =

[
∂tr
∂r

+
2

r
(tr − tθ)

]
er,

write the Cauchy equation for the problem.

• (f) Assuming that the material is neo-Hookean and that the pressure P (t) exerted by
the explosives on the inner wall of the cavity is known as a function of time, write the
pressure P (t) as an integral of the form

P (t) =

∫ B

A
g(r, ṙ, r̈)dR (68)

and give g(r, ṙ, r̈) explicitly. Explain how the inner radius position can be determined
as a function of time and the pressure (without computing explicitly the integral).

10.8 Finals 2014** A cylinder of radius A and length L in its natural state is rotated about
its axis with constant angular speed ω, the motion being given by x = x(X, t), where the
components in referential and spatial Cartesian coordinates read

x1 =
1√
λ

[X1 cos(ωt)−X2 sinωt)]

x2 =
1√
λ

[X1 sin(ωt) +X2 cosωt)]

x3 = λX3

where λ is a positive constant.

(a) Show that the motion is isochoric and compute the principal stretches. Write the motion,
the deformation gradient, and the acceleration in cylindrical coordinates.

(b) Assume that the cylinder is an incompressible neo-Hookean material characterised by
the strain-energy density function W = µ

2 (I1 − 3). Write the Cauchy equations in
cylindrical coordinates and compute the components of the Cauchy stress tensor as a
function of λ assuming no body forces and no traction at the curved boundaries.
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(c) Assuming further that the resultant forces on the end-faces of the cylinder are zero,
show that λ satisfies

µλ3 − (µ− 1

4
ρω2A2) = 0,

and that the cylinder becomes shorter and fatter by the rotation.

(d) Show that the neo-Hookean material is not a suitable choice for large rotational veloci-
ties.

10.9 Finals 2017** Consider the planar axisymmetric static deformations of an isotropic
compressible hyperelastic annulus in which points with plane polar coordinates (R,Θ) ∈
[A,B]× [0, 2π] are mapped to points (r(R),Θ).

(a) Show that the deformation gradient F in polar coordinates is diagonal and find the
principal stretches λ1 and λ2. Give the Cauchy stress in terms of the strain-energy
density W = W (λ1, λ2).

(b) Give the general form of Cauchy’s equilibrium equation and explain all terms appearing
in the equation. For the particular class of deformations considered and in the absence
of body forces, show that the Cauchy equation can be reduced to the single equation

d

dR

(
R
∂W

∂λ1

)
− ∂W

∂λ2
= 0. (69)

(c) For the remainder of this question, consider the following strain-energy density

W = f(i1) + c1(i2 − 1),

where i1 = λ1 + λ2, i2 = λ1λ2, and c1 > 0 is a constant.
Find the values of the constants α1 and α2 for which

r(R) = α1R+
α2

R
.

is a solution of (69).
Find restrictions on the function f ensuring that the reference configuration is stress
free.

(d) Consider the limit case of a cavity in the plane described by a ring for which the inner
radius in the reference configuration A is strictly positive and the outer radius is infinite.
Assume that this cavity is subject to a negative internal pressure P with P > −c1 and
is traction-free at infinity. Write the boundary conditions for the Cauchy stress and
determine the deformation and the Cauchy stress at all points as a function of P .
Starting at P = 0 and for decreasing values of P , find the critical value of the pressure
at which the hoop stress first diverges.
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11 Inequalities and bifurcations

� One of the key problem of nonlinear elasticity is that the strain-energy density function is
not known apart from basic inequalities. We explore here these relationships and how they
inform us on the choice of constants appearing in a material model.

11.1 Strong ellipticity. The strong ellipticity condition on a stored-energy function W
requires that

d2

dt2
W (F + t a⊗ n)|t=0 > 0

for all deformation gradient F and all nonzero a, n ∈ R3 and a ⊗ n = 0. Here, the tensor
a ⊗ n is defined in component as (a ⊗ n)iα = ainα. Assume that W (F) = Φ(λ1, λ2, λ3) is
isotropic.

(a) Show that strong ellipticity implies the tension-extension inequalities,

(b) Show that strong ellipticity also implies the Baker-Ericksen inequalities.

Hint. Choose a diagonal matrix F and for (i) choose a = n = e1. For (ii) choose a = e1,
n = e2 and use the fact that d

dtW (F + ta⊗ n) is strictly increasing in t

11.2 Finals 2013: The Rivlin square**. An equibiaxial tension consists in pulling a
square sample with equal tension by the four edges. Viewed as a three-dimensional material,
it consists in applying to a cuboid equal distributed tensile normal Cauchy stress T > 0 on two
pairs of opposite faces, while leaving the remaining two faces stress-free. It is assumed that the
cuboid remains a cuboid during the deformation. Consider an incompressible Mooney-Rivlin
material with strain-energy density function of the form

W =
1

2
µ

[(
1

2
+ α

)
(I1 − 3) +

(
1

2
− α

)
(I2 − 3)

]
(a) From the Cauchy stress tensor and the deformation gradient, define the principal stresses

(t1, t2, t3) and the principal stretches (λ1, λ2, λ3) and write down the constitutive rela-
tionship between them [take the direction e3 to be normal to the stress-free faces]. Also
write down the incompressibility condition in terms of the principal stretches.

(b) The Baker-Ericksen inequalities state that (λi−λj)(ti− tj) > 0 for λi 6= λj). Show that
these inequalities imply that −1/2 ≤ α ≤ 1/2 and µ > 0.

(c) Define the boundary conditions and compute the applied load T as a function of the
stretches only.

(d) Derive a relationship between λ1 and λ2 independent of T .

(e) Show that there is always a trivial solution for which λ1 = λ2 and that this solution is
the only solution in the neo-Hookean case (α = 1/2).

(f) Show that there is only one possible homogeneous deformation for the Mooney-Rivlin
material in equibiaxial tension and that T is a strictly increasing function of λ1.

11.3 Finals 2017**. Consider an uniaxial extension in which an isotropic hyperelastic
cuboid is subject to a constant tension T > 0 on a face perpendicular to one of its axes and
producing a stretch λ along the same axis (the tension on the face of a cuboid is the ampli-
tude of the component of the Cauchy stress tensor along the face’s outer normal). Assume
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that there is no traction on the faces normal to the other two axes and that the two stretches
along these axes are equal.

(a) Consider the particular case where the material is incompressible with a neo-Hookean
strain-energy function W = µ(I1 − 3)/2. Find the relationship between the tension T
and the stretch λ. Express the Young’s modulus as a function of µ.

[Note: For this deformation, you can use without proof that if the deformation gradient
tensor is diagonal in a well-chosen basis, then the Cauchy stress tensor is diagonal in
the same basis.]

(b) Consider the general case where the material is isotropic hyperelastic and incompressible.
Find the relationship between the tension T and the stretch λ. Express the Young’s
modulus as a function of the strain-energy density W and its derivatives.

[Note: For this deformation, you can use again that if the deformation gradient tensor
is diagonal in a well-chosen basis, then the Cauchy stress tensor is diagonal in the same
basis.]

(c) An elastic material satisfies the Baker-Ericksen inequalities, if

λi 6= λj ⇒ (ti − tj)(λi − λj) > 0, i, j = 1, 2, 3, (70)

where {t1, t2, t3} and {λ1, λ2, λ3} are the principal stresses and principal stretches, re-
spectively.
For an isotropic compressible elastic material, consider a stress field of simple tension in
the direction e3:

T = Te3 ⊗ e3, T > 0. (71)

We are interested in the corresponding deformation. Show that the following proposi-
tions are equivalent:

(i) The material satisfies the Baker-Ericksen inequalities for this deformation;

(ii) The left Cauchy-Green tensor has the representation

B = b1e1 ⊗ e1 + b2e2 ⊗ e2 + b3e3 ⊗ e3,

where the coefficients b1, b2, b3, are such that b1 = b2 and b3 > b1 > 0.

Note: When proving that (i) implies (ii), you will need to prove that the tensor B is
diagonal.
[̇Hint: You can use without proof the following representation of the Cauchy stress tensor

T = ω01 + ω1B + ω−1B
−1,

where the coefficients ω0, ω1, ω−1, are functions of the principal stretches.]
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12 Linear elasticity

� When the strains are sufficiently small, the equations of nonlinear elasticity can be linearised
and the resulting equations solve exactly for many problems.

12.1 The torsion of a bar. Assume that the stress and strain tensors in a linear isotropic
solid are related by

Auij = 2µeij + λ(ekk)δij ,

where λ and µ are constants (called the Lamé constants). Then, if the body is in equilibrium
with no body force, we have

(λ+ µ)Grad(Div(u)) + µ∇2u = 0 (72)

where u = (ui), X ≈ x = (xi).

Now, consider the torsion of a bar subject to a moment M .

y

z

x

M

M

(a) Show that a displacement of the form

u =
(
−Ωyz,Ωxz,w(x, y)

)T
satisfies (72) provided ∇2w = 0. (The case with Ω = 0 is called
antiplane strain.) Show also that the traction on the curved
boundary of the bar is zero if

∂w

∂n
=

Ω

2

d

ds

(
x2 + y2

)
,

where s is arc-length along this boundary.

(b) Show that, near any point x0, the displacement locally takes the form

u(x) ∼ u(x0) + (∇u)T(x− x0) + · · · , where (∇u) = (
∂uj
∂xi

) is the displacement gradient
tensor. Show also that (∇u) differs from the strain tensor e by a skew-symmetric matrix.

(c) Explain why local axes may always be chosen such that e is diagonal. (These are called
principal axes.)

(d) Suppose now that the bar has flat ends at z = 0, z = L. Show that the torque exerted
on each end is given by

M =

∫∫
D

(xAuyz − yAuxz) dx dy,

where D ⊂ R2 is the cross-section of the bar. By writing w(x, y) = Ωψ(x, y), show that
M = RΩ, where the torsional rigidity R is given by

R = µ

∫∫
D

{
x
∂ψ

y
− y∂ψ

x
+
(
x2 + y2

)}
dxdy.

(e) Write down the boundary-value problem satisfied by ψ. For the case of a circular bar
of radius a, evaluate ψ and hence show that

R =
πa4µ

2
. (73)
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(f) Explain why there exists a stress function φ(x, y) such that

Auxz = µΩ
∂φ

∂y
, Auyz = −µΩ

∂φ

∂x
.

(g) Show that φ satisfies Poisson’s equation ∇2φ = −2 in D and that φ is constant on ∂D.
Explain why this constant may be set to zero without loss of generality (this is called
choosing a gauge), and show that, in this case,

R = 2µ

∫∫
D
φdxdy.

For a circular bar, evaluate φ and hence reproduce (73).

(h) Suppose now that the bar is hollow (as usually happens in practice) with inner and outer
boundaries given by ∂Di and ∂Do respectively. Explain why in this case the boundary
conditions for φ are φ = 0 on ∂Do and φ = k on ∂Di, where k is constant, and show
that the torsional rigidity is now given by

R = 2µ

∫∫
D
φdxdy + 2µkA,

where A is the area of the hole.

(i) Show also that k must be chosen so that φ satisfies∮
∂Di

∂φ

n
ds = −2A.

(j) Hence evaluate φ when D is the circular annulus a < r < b and show that the corre-
sponding torsional rigidity is R = π

(
b4 − a4

)
/2.

(k) Reproduce this result using ψ instead of φ.

12.2 Wave reflections Suppose that an elastic medium occupies the half-space x < 0 and
that the face x = 0 is held fixed. A plane S-wave is incident from x→ −∞ with

uinc =

(
sinβ
− cosβ

)
exp {iks(x cosβ + y sinβ)− iωt} ,

where ks = ω/cs. Show that the reflected wave takes the form

uref = r1

(
sinβ
cosβ

)
exp {iks(−x cosβ + y sinβ)− iωt}

+ r2

(
− cosα
sinα

)
exp {ikp(−x cosα+ y sinα)− iωt} ,

where kp = ω/cp and the reflection angle α of the P-wave satisfies

sinα

cp
=

sinβ

cs
.

Find expressions for the reflection coefficients r1 and r2.

What do you think happens if the angle of incidence satisfies β > sin−1 (cs/cp)?
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12.3 Airy stress function in polar coordinates In the absence of a body force, the
steady Navier equation takes the form

1

r
∂r (rAurr) +

1

r

∂Aurθ
∂θ

− Auθθ
r

= 0,
1

r
∂r (rAurθ) +

1

r

∂Auθθ
∂θ

+
Aurθ
r

= 0,

in plane polar coordinates. Show that these are satisfied identically by introducing an Airy
stress function U such that

Aurr =
1

r2

∂2U

∂θ2
+

1

r

∂U

∂r
. Aurθ =− ∂

∂r

(
1

r

∂U

∂θ

)
, Auθθ =

∂2U

∂r2
.

12.4 The gun barrel. A gun barrel occupies the region a < r < b in plane polar coordinates.
A uniform pressure P is applied to the inner surface r = a while the outer surface r = b is
traction-free.

(a) Assuming that the displacement is purely radial, so that u = ur(r)er, show that the
Navier equation in polar coordinates reduces to

∂Aurr
∂r

+
Aurr −Auθθ

r
= 0,

where

Aurr = (λ+ 2µ)
∂ur
∂r

+
λur
r
, Auθθ = λ

∂ur
∂r

+
(λ+ 2µ)ur

r

and Aurθ = 0.

(b) Obtain the solution

ur =
Pa2

2 (b2 − a2)

(
r

λ+ µ
+
b2

µr

)
,

(c) Show that the maximum shear stress S = Auθθ−Aurr
2 is given by

S =
Pa2b2

(b2 − a2) r2
.

(d) *Deduce that the barrel will explode if

P > Y

(
1− a2

b2

)
,

where Y is the Tresca yield stress.

12.5 Rayleigh surface waves**. These elastic waves travel on a half-space. We take a
half-space modelled as a linear isotropic elastic material (described by the Navier equations)
defined for y ≥ 0 and we consider a displacement represented by

u = <(Ae−bY exp[ik(X − ct)], Be−bY exp[ik(X − ct)], 0)

where A,B are complex numbers, b, k, c are positive constants, and <() gives the real part
of its argument. The waves propagate along the x-axis and decay exponentially in the y-
direction.
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(a) By substituting the particular form of the displacement into the Navier equations, show
that there are two possible values of b (say b1 and b2) as a function of k and the Lamé
coefficients. Conclude that, if a Rayleigh wave exists, it must be slower than transverse
and longitudinal waves.

(b) Express the amplitude B1 as a function of A1 and b1, and similarily for B2. The general
solution foru is then a linear combination of these two particular solutions.

(c) The surface y = 0 is free. Write the boundary conditions in terms of the Cauchy stress
tensor T.

(d) Rewrite these conditions in terms of the displacement by using the constitutive equation

T = 2µe + λTr(e)1, (74)

where e is the infinitesimal strain tensor.

(e) Write an equation for the amplitude A1 and A2 and derive a condition for the velocity
c.

12.6 Navier equations**. Starting from the general static Cauchy equation for a hypere-
lastic material in the reference configuration the problem is to derive the linear equations for
small displacements.

(a) Write the general equilibrium static equations for a compressible hyperelastic solid in
the absence of body forces in the reference configuration. Define all your variables.

(b) Define the infinitesimal strain tensor e in terms of the deformation gradient.

(c) Assuming that there is no residual stress, show that the nominal stress tensor S and the
Cauchy stress tensor T are identical.

(d) For small displacements, the constitutive relationship is

T = C : e (75)

where C is a fourth-order tensor. Use minor symmetries to prove that this tensor
contains at most 36 independent material constants. Then prove the existence of a
quadratic form in the infinitesimal strain tensor from which stresses are derived. Show
that the major symmetries follow from the existence of this quadratic form and that C
contains at most 21 independent constants.

(e) If the material is isotropic, the constitutive relationship becomes

T = 2µe + λTr(e)1. (76)

where λ and µ are the classical Lamé parameters. Derive the static Navier equations
for the displacements u.

(f) Show that the positive definiteness of Ciso implies both 2µ+ 3λ > 0 and µ > 0.

(g) Let u ∈ C4 be a solution of the Navier equations. Show that both Div u and Curl u
are harmonic functions, that is

∆ Div u = 0, (77)

∆ Curl u = 0. (78)

Furthermore, use these identities to prove that u is a biharmonic functions, that is
∆∆u = 0.

Hint: You may use without proof the following identities:

∆u = Grad Div u− Curl Curl u, (79)

Div Curl u = 0. (80)
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13 SOLUTIONS

2.1 The metre bar

In 1875, representatives of 17 nations (including the UK) met in Paris to sign the Treaty of
the Metre. The treaty established the metric system. The convention for the metre was that
the circumference of the Earth should be forty million metres and a prototype bar of one
metre was created (unfortunately, the measurement of the Earth was not accurate enough
at the time and the circumference going through the poles is 40,007,863m). Eventually, in
1889 a convention was established for the metre as the length of one prototype bar (No 6)
made of 90% platinum and 10% irridium measured at the melting point of ice. This bar
remained the official definition of the metre until 1960 (when it was replaced by a multiple
of a wavelength of Krypton-86 emission, then by a fraction of the distance travelled by light
in vacuum in one second). As an exercise, assume that the bar is, in the absence of external
loads, a cuboid of platinum of length 1m (obviously) and of section 10cm by 10cm. To obtain
an estimate of its deformation due to its own weight, compute the shortening of the bar when
held vertically by replacing its self-weight (which would vary along the length) by a single
load on the top face of the same weight and assuming an homogeneous deformation. Now,
compute the lengthening of the bar when held horizontally (again by replacing its own self-
weight by a weight acting on top of it). *The actual bar is not a cuboid but has a X-shape
section (See Fig. 1). *Why? *Why was it made of the combination platinum/irridium? and
*why should it be measured at the melting point of ice? **How much longer would it be at
ambient temperature (in Paris, say 300K)?

For the vertical bar, assume a compressive force of magnitude F is applied at the cross-section
of area A = a× a of a bar of length L. The bar has density ρ and the gravitational constant
is g. The Cauchy stress is due to the weight of the bar is σ = F/A = −ρLg where σ is the
only nonzero component of the Cauchy stress tensor (the zz or 33 component). The Hookean
constitutive law is σ = E (λV − 1) where E is Young’s Modulus and λV is the dimensionless
stretch in vertical direction. We compute the latter as

λV = 1− ρLg

E
(81)

Integrating the expression λV = dz
dZ from Z = 0 to Z = L yields the deformed length of

l = (1− ρLg

E
)L (82)

In the horizontal case, the force F is no longer acting on a cross section of area a × a but
instead on a× L. Then σ = F/A = −ρag and the vertical stretch of the now horizontal bar
is

λx = 1− aρg

E
(83)

In order to calculate the resulting lengthening of the bar, it is convenient to work with the
principle strains rather than the stretches.

Here, we use λ− 1 = ε to obtain the infinitesimal strains, and using Poisson’s ratio, we find
the strain along the axis of the bar to be

εa = −νεx =
νaρg

E
(84)
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or in terms of the stretches

λa = 1− ν(λx − 1) = 1 +
νaρg

E
(85)

We choose the values

ρ = 21.43g cm−3 = 21.43 · 103kg m−3 (86)

E = 168GPa = 168 · 109N m−2 (87)

a = 0.1m (88)

L = 1m (89)

ν = .39 (90)

and the results for the axial stretches of the bar in the vertical and horizontal cases are
respectively (note that stretches λ are dimensionless!)

λV = 1− 1.25 · 10−6 λa = 1 + 4.88 · 10−8 (91)

Notice that for the vertical case, λV < 1, which is to be expected as the bar is being held
in compression. In the horizontal case, the compression orthogonal to the axis of the bar
induces a resultant lengthening described by the Poisson’s ratio. Hence λa > 1, reflecting
this overall lengthening.

Both of these equations can be integrated to obtain the final deformed lengths of the metre
bar

lV =

∫ L

0
λV dX = (1− 1.25 · 10−6)(L− 0) = 1− 1.25 · 10−6m (92)

la =

∫ L

0
λadX = (1 + 4.88 · 10−8)(L− 0) = 1 + 4.88 · 10−8m (93)

For problem 2.3, for the case of the vertical bar, we introduce the average strain [z (L)− L] /L
where z (L) is the top of the bar in the current configuration. Since the vertical stretch is
simply λV = ∂z/∂Z = const., we have z = λV L. The strain is

z (L)− L
L

= −ρLg
E

(94)

Answers to starred questions:

• BIPM: Bureau International des Poids et Mesures

• Cross-section is X shaped to resist bending while using little material (which reduces
the gravitational force, and hence the bending stress, as well as cost)

• Material is Pt-Ir because Pt is chemically stable (does not oxidise) while Ir has high
stiffness.

• To find the length at ambient temperature, we use the coefficient of linear thermal
expansion. For platinum, this value is α = 9 × 10−6K−1. Therefore, the strain caused
by thermal expansion is

εT = α∆T = 9× 10−6 ∗ (300− 273) = 0.000243 (95)

The total length is then

l = L+

∫ L

0
εTdx = (1.000243)L = 1.000243m (96)
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2.3 The metre bar again

If you model the metre bar as a one-dimensional elastic medium, you can use the theory
developed in the Lecture Notes (Chapter 1) to obtain a better estimate of the shortening.
Compute the deformation of the bar under its own-weight. Is the Hookean model sufficient?

Let us once again assume the bar is aligned with the Z direction and gravity acts in −Z
direction. The bar starts at Z = 0 and reaches up until Z = L in reference configuration.
First, we need to find how the force n acting on a cross-section of area A is distributed as a
function of Z, i.e. n (Z). To do this, we write the force balance

dn

dZ
+ f = 0 (97)

where (in this case) f is a force per length due to gravity. we have f = −ρAg where ρ is the
mass density in reference configuration and g is the gravitational constant. We demand that
there is no force at Z = L (at the top of the bar), i.e. n (L) = 0. Solving this ODE, we find

n (Z) = ρAg (Z − L) (98)

We assume that the material is Hookean,

n (Z) = EA (λ− 1) (99)

where E is Young’s modulus and λ = ∂z/∂Z is the elastic stretch in Z direction. As an
initial condition, we choose z (0) = 0 as the bottom point of the bar is not moving during
deformation. Combining (98), (99) and z (0) = 0 we obtain

z (Z) = Z +
ρg

E

(
Z2

2
− LZ

)
(100)

The strain of the bar is
z(L)− L

L
= −ρgL

2E
(101)

This is half the shortening which the bar undergoes in problem 2.1, see eq. (94).

If we want to compare this result with a neo-Hookean model, we must substitute (99) with
n (Z) = EA

(
λ2 − λ−1

)
and compute (z (L)− L) /L. For values of ρ, E and g as in problem

2.1, we should find that the Hookean and the neo-Hookean model are in good agreement.
Additionally, experiments reveal that metals have a relatively large region of linear elastic
stress response, and so a linear model fits experimental data well for small strains.
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3.1 A simple motion

Consider the motion given in component form by x = χ(X, t) where

x1 = X1e
−t x2 = X2e

t x3 = X3 +X2

(
e−t − 1

)
(102)

(a) Determine the velocity in material form: V = V(X, t).
(b) Invert (102) to express X in terms of x and to find the velocity in spatial form v = v(x, t).
(c) Check that div v = 0 and interpret this equality.
(d) Check that the acceleration a can be computed in the two following ways,

a =
∂V

∂t
=
Dv

dt
= v·grad v +

∂v

∂t
. (103)

(a) The deformation map and the velocity are

x = χ (X, t) =

x1

x2

x3

 =

 X1e
−t

X2e
t

X3 +X2

(
e−t − 1

)
 V (X, t) =

∂χ (X, t)

∂t
=

−X1e
−t

X2e
t

−X2e
−t


(104)

(b) We need v = v (x, t) = [V (X, t)]X=χ−1(x,t). First invert χ, then compute v:

X =

X1

X2

X3

 =

 x1e
t

x2e
−t

x3 − x2e
−t (e−t − 1

)
 v (x, t) =

 −x1

x2

−x2e
−2t

 (105)

(c) The motion is isochoric (locall volume preserving) since div v = ∂vi/∂xi = −1+1+0 = 0.
(d) The left hand side of the expression given in the problem is

a =
∂V (X, t)

∂t
=

X1e
−t

X2e
t

X2e
−t

 (106)

For the right hand side we can verify in a cartesian basis v ·grad v = (grad v) v and compute

a = (grad v) v +
∂v

∂t
=

−1 0 0
0 1 0
0 −e−2t 0


︸ ︷︷ ︸

gradv

 −x1

x2

−x2e
−2t


︸ ︷︷ ︸

v

+

 0
0

2x2e
−2t


︸ ︷︷ ︸

∂v/∂t

=

 x1

x2

x2e
−2t

 (107)

Considering X1 = x1e
t and X2 = x2e

−t in (105), we see that the last expression for a matches
(106).
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3.4 Simple gradients

Consider the scalar field φ(x) = (x1)2x3 + x2(x3)2 and the vector field v(x) = x3e1 +
x2 sin(x1)e3. Find the components of gradφ and grad v.

We have φ (x) = x2
1x3 + x2x

2
3. Then

gradφ (x) =
∂φ (x)

∂xi
ei = 2x1x3e1 + x2

3e2 +
(
x2

1 + 2x2x3

)
e3 (108)

Also, we have v (x) = x3e1 + x2 sinx1e3. Then

grad v (x) =
∂vi
∂xj

ei ⊗ ej = e1 ⊗ e3 + (x2 cosx1) e3 ⊗ e1 + (sinx1) e3 ⊗ e2 . (109)
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3.5 Rigid motion

Show that u ·Mv = v ·MTu where u and v are vectors and M is a second-order tensor.
Use this relation to prove that the following motion is a rigid motion,

x(t) = c(t) + Q(t)X, (110)

i.e. the distance between any two points remains unchanged during the motion. Here x is
the current position of a point which was initially at X, c is a vector and Q is a proper
orthogonal second-order tensor.

In a cartesian basis, u = uiei, v = viei and M = Mij = ei ⊗ ej . In components,

u ·Mv = uiMijvj = vjM
T
jiui = v ·MTu (111)

We want so show that |y − x| = |Y −X| where y (t) = c (t) + Q (t) Y and x (t) = c (t) +
Q (t) X for proper orthogonal Q, i.e. QTQ = 1.

|x− y|2 = (x− y) · (x− y) (112)

= Q (X−Y)︸ ︷︷ ︸
u

· Q︸︷︷︸
M

(X−Y)︸ ︷︷ ︸
v

(113)

= (X−Y) ·QTQ︸ ︷︷ ︸
1

(X−Y) (114)

= (X−Y) · (X−Y) (115)

= |X−Y|2 (116)

i.e. lengths are preserved, Q.E.D.
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3.8 Motion in space

The motion of a body is given for t ≥ 0 by

x(X, t) = (X1 + ktX3, X2 + ktX3, X3 − kt(X1 +X2)), (117)

where k > 0 is a constant. Show that the path of an arbitrary material point with reference
position X 6= 0 is a straight line orthogonal to X.

Show that a material plane initially at X1 = h is mapped to another plane and compute
its normal unit vector. Conclude that asymptotically as t → ∞, all planes X1 = h become
parallel.

We can write the deformation map as x (X, t) = X + tV (X) where V (X) = ∂x (X, t) /∂t =
(kX3, kX3,−k (X1, X2)) is the material velocity. This parametrises a straight line. Comput-
ing X ·V (X) = 0 shows that x (X) is a straight line orthogonal to X for all t.

In the material configuration, consider the plane P parameterised by scalars R, U : P (R,U) =
hE1 +RE2 + UE3 where E1, E2, E3 are cartesian basis. We now map P to

p (R,U, t) = x (P (R,U) , t) = h

 1
0
−kt

+R

 0
1
−kt

+ U

ktkt
1

 (118)

which is the parameterisation of a plane. Its normal vector is

n =
1√

(kt)−4 + 2 + 3 (kt)−2

1 + 1
(kt)2

−1
− 1
kt

 (119)

You can compute the limit

lim
t→∞

n =
1√
2

 1
−1
0

 (120)

showing that all planes have the same normal vector for t → ∞, meaning they are parallel.
In fact, n has no dependence on h (∂n∂h = 0), and hence no dependence on the specific initial
plane chosen, meaning that all planes given by X1 = h have the same normal vector for all
t ∈ [0,∞), and hence are parallel throughout the entire motion.

You can practice your Mathematica skills by experimenting with these commands:

n = {1 + (k t)^2, -(k t)^2, -k t}
temp = Limit[n/Norm[n], t -> \[Infinity]]
FullSimplify[temp, Assumptions -> {k \[Element] Reals}]
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3.9 The eversion of a cylinder

Consider a cylindrical tube and invert it by turning it inside out (so that the inner surface is
now the outer surface - think of it as a sock). Assuming that radial and axial fibres do not
deform and that the everted shape is a cylinder, write the deformation mapping. Show that
if you do it twice, you will recover the initial shape.

The position of a material point in reference and current configuration for a cylinder is

X = RER(Θ) + ZEZ x = rer(θ) + zez. (121)

where A ≤ R ≤ B and A ≤ r ≤ B for positive constants A and B, and −L
2 ≤ Z ≤ L

2 , and
−L

2 ≤ z ≤
L
2

We will assume the deformation is of the form

r = f(R), θ = Θ, z = g(Z) (122)

and hence ER(Θ) = er(θ = Θ), EΘ(Θ) = eθ(θ = Θ), and EZ = ez.

Eversion of the cylinder corresponds to the conditions f(A) = B, f(B) = A, g(L2 ) = −L
2 , and

g(−L
2 ) = L

2 . We need to find f (R) and g(Z). To do this, let us first calculate the deformation
gradient of this map:

dx = drer(θ) + r
der
dθ

dθ + dzez

=
df

dR
dRer(θ) + f(R)

der
dθ

dθ

dΘ
dΘ +

dg

dZ
dZez

= [
df

dR
er(θ)⊗ER(Θ) +

f(R)

R
eθ(θ)⊗EΘ(Θ) +

dg

dZ
ez ⊗EZ ]dX

Using the identity dx = FdX, it is clear from the above expression that

F =
df

dR
er(θ)⊗ER(Θ) +

f(R)

R
eθ(θ)⊗EΘ(Θ) +

dg

dZ
ez ⊗EZ . (123)

In order for the deformation to be physical and hence invertible, the determinant of this
gradient must be strictly positive.

J = det(F) =
df

dR

dg

dZ

f(R)

R
> 0 (124)

Because f(R) > 0 and R > 0, this inequality simplifies to be

df

dR

dg

dZ
> 0 (125)

This implies that f(R) and g(Z) are both monotonic, and their derivatives have the same
sign, i.e. f(R) and g(Z) are both either increasing or decreasing. We are interested in the
later case, as it is the one consistent with our boundary conditions on f(R) and g(Z).
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We have the condition that radial material fibres do not deform. Specifically, the stretch of
a radial fibre is such that

ER ·CER = (
df

dR
)2 = 1 (126)

Using our previous condition on the sign of df
dR , we know that

df

dR
= −1 (127)

Enforcing the given boundary conditions gives us the required result

f(R) = A+B −R (128)

Determining g(Z) follows in a similar way. Using the condition that axial fibres don’t deform,
we have

EZ ·CEZ = (
dg

dZ
)2 = 1. (129)

Using the known sign of dg
dZ gives us

dg

dZ
= −1. (130)

Integrating this equation and enforcing boundary conditions yields g(Z)

g(Z) = −Z. (131)

This makes the full deformation

x(R,Θ, Z) = (A+B −R)er(Θ)− Zez (132)

One can easily check that applying this deformation twice yields the identity transformation.
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5.1 The identity

Let r, s, t be three mutually orthogonal unit vectors. Consider the second-order tensor A
with components

Aij = rirj + sisj + titj . (133)

Now, any vector u can be written as u = αr + βs + γt for some scalars α, β and γ. Show
that Au = u and hence, that A is the identity.

We assume a cartesian basis throughout. We want to show that ui = Aijuj . Since r, s, t are
orthogonal, r · s = 0, r·t = 0 and s · t = 0 which in components reads

risi = 0 riti = 0 siti = 0 (134)

Similarly, since r, s, t are normalised, we have

riri = 1 sisi = 1 titi = 1 (135)

We now proof that Aij are the components of the identity.

Aijuj = (rirj + sisj + titj) (αrj + βsj + γtj) (136)

= αrirjrj + βsisjsj + γtitjtj (137)

= ui (138)

From the first to the second line, we made use of the orthogonality (134), and from the second
to the third line, we used the normalisation (135). Q.E.D.

So A = Aijei ⊗ ej is the identity. This is particularly simple if r = e1, s = e2, t = e3 in
which case Aij = δij is the Kronecker delta.
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5.4 The polar decomposition theorem

The polar decomposition theorem. This is a central theorem in mechanics. To prove it
we will use the square root theorem (without proof).

Thm*: If S is a positive definite, symmetric second-order tensor, then there exists a unique
positive definite symmetric second-order tensor U such that U2 = S.

Equipped with this result, the problem is to prove the following theorem.

Thm: (Polar decomposition). If F is a second order tensor such that detF > 0, then there
exist unique, positive definite, symmetric tensors, U and V, and a unique proper or-
thogonal tensor R such that

F = RU = VR. (139)

First, we wish to show that FTF is symmetric and positive definite.

The first can be explicitly checked by taking (FTF)T .

(FTF)T = FTFTT = FTF (140)

FTF is positive definite iff for any nonzero a, a·FTFa > 0. We can show this by acknowledging
that we can use the transpose operation to move tensors across terms in an inner product.

a · FTFa = Fa · Fa = |Fa|2 > 0 ∀a 6= 0 (141)

Now we can apply the square root theorem U2 = FTF. Then define R = FU−1 (U is
positive definite and symmetric, which assures that U−1 exists). We show that R is proper
orthogonal by multiplying U2 = FTF by U−1 twice, and taking advantage of the fact that
U−1 is symmetric, establishing R as a rotation.

I = U−1U2U−1 = U−TFTFU−1 = RTR (142)

This establishes R as orthogonal, and requiring the determinant of F and U to each both be
positive shows that R is proper orthogonal as required. The uniqueness of R follows from
the uniqueness of U, and hence the uniqueness of its inverse.

To establish the left polar decomposition, let Q = V−1F. Then by arguments similar to
those above deduce that Q is also a rotation. We then have F = RU = VQ.

Now we write
F = (I = QQT )VQ = Q(QTVQ) = QŨ (143)

Now
FTF = Ũ2 = U2 (144)

However, the square root U is unique, and hence

Ũ = U (145)

We now have
FU−1 = RUU−1 = QUU−1 = R = Q (146)

Thus proving the claim.
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5.5 Examples of polar decomposition

Find the left and right polar decompositions of the matrices

(i)

(
2 −3
1 6

)
(ii)

 1 −1 3
1 1 0
−1 1 3

 . (147)

Steps: The key is to first compute U as the square root of FTF. Once U is known, compute
R = FU−1. Once R is known, compute V as FRT. Once you have done the small one by
hand, you may try a symbolic program (Mathematica or Maple).

The steps are already outlined in the solution so we only give the results. Note that to
compute U =

√
C, you have to compute the eigenvalues of C which we call λ2

i and the
normalised eigenvectors of C. The you obtain U =

∑
i λiei ⊗ ei. For (i),

For (i) C = FTF =

(
5 0
0 45

)
U =

√
C =

(√
5 0

0 3
√

5

)
(148)

R = FU−1 =

(
2√
5
− 1√

5
1√
5

2√
5

)
V = FRT =

(
7√
5
− 4√

5

− 4√
5

13√
5

)
(149)

For (ii) C = FTF =

 3 −1 0
−1 3 0
0 0 18

 U =
√

C =

 1 + 1√
2

1√
2
− 1 0

1√
2
− 1 1 + 1√

2
0

0 0 3
√

2

 (150)

R = FU−1 =


1
2 −

1
2

1√
2

1√
2

1√
2

0

−1
2

1
2

1√
2

 V = FRT =

 1 + 3√
2

0 3√
2
− 1

0
√

2 0
3√
2
− 1 0 1 + 3√

2


(151)

If you want to practise your Mathematica skills, experiment with this program

F = {{1, -1, 3}, {1, 1, 0}, {-1, 1, 3}}
(* right Cauchy-Green strain tensor *)

CG = Transpose[F].F; CG // MatrixForm

λsq = Eigenvalues[CG]; v = Eigenvectors[CG];

(* normalise Eigenvectors *)

v[[1]] = Normalize[v[[1]]]; v[[2]] = Normalize[v[[2]]]; v[[3]] = Normalize[v[[3]]];

(* now evaluate U =
∑

i λiei ⊗ ei *)

U = Sum[Sqrt[λsq[[i]]] TensorProduct[v[[i]], v[[i]]], {i, 1, 3}]; U // MatrixForm

R = F.Inverse[U] // FullSimplify; R // MatrixForm

V = F.Transpose[R] // FullSimplify; V // MatrixForm
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6.1 The simple shear

Consider the simple shear

x(X) = (X1 + γX2, X2, X3), γ ≥ 0. (152)

Calculate the principal stretches, and show that the right polar decomposition of the defor-
mation gradient is given by

F =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 cos θ sin θ 0

sin θ 1+sin2 θ
cos θ 0

0 0 1

 , (153)

where tan θ = γ
2 . Determine also the left polar decomposition. What are the Eulerian and

Lagrangian axes?

From the deformation map we can compute the deformation gradient F and right Cauchy-
Green strain tensor C

F =

1 γ 0
0 1 0
0 0 1

 C = F
T
F =

1 γ 0

γ 1 + γ
2

0
0 0 1


Taking the square U in (153) and comparing with C (in which we substitute γ = 2 tan θ)
shows that (153) is indeed the polar decomposition. This determines R uniquely. The
principal stretches are

λ2
1 = 1 λ2

2 = 2 tan θ (tan θ − sec θ) + 1 λ2
3 = 2 tan θ (tan θ + sec θ) + 1 (154)

The left polar decomposition is

F = VR =

 1+sin2 θ
cos θ sin θ 0
sin θ cos θ 0

0 0 1

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (155)

You can confirm these results quite easily with Mathematica. Experiment with this:

F := {{1, γ, 0}, {0, 1, 0}, {0, 0, 1}}
CG = Transpose[F].F;

λsq = Eigenvalues[CG] /. γ -> 2 Tan[θ];

v = Eigenvectors[CG] /. γ -> 2 Tan[θ];

v[[1]] = v[[1]] // Normalize;

v[[2]] = v[[2]] // Normalize;

v[[3]] = v[[3]] // Normalize;

U = FullSimplify[ Sum[Sqrt[λsq[[i]]] TensorProduct[v[[i]], v[[i]]],

{i, 1, 3}], Assumptions -> 0 < θ < Pi/2];

F = F /. γ -> 2 Tan[θ];
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R = FullSimplify[F.Inverse[U], Assumptions -> 0 < θ < Pi/2];

V = F.Transpose[R] // FullSimplify;

The normalised eigenvectors êi of the right Cauchy-Green strain tensor U are the Lagrangian
axes. They are the directions of the principal stretches in the reference configuration. The
vectors Rêi are the Eulerian axes, the eigenvectors of the left Cauchy-Green strain tensor V.
They are the directions of principal stretches in the current configuration.
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6.3 More simple shear

For the simple shear

x1 = X1 +KX2, x2 = X2, x3 = X3, (156)

where the constant K is the amount of shear, find the deformation gradient F and the right
Cauchy-Green tensor C. Show that λ2

1, λ2
2, λ2

3, the eigenvalues of C satisfy:

λ2
1 + λ2

2 = 2 +K2, λ2
1λ

2
2 = 1, λ2

3 = 1. (157)

From the second equality deduce that λ2 = λ−1
1 and substitute into the first equality to find

K = λ1 − λ−1
1 , (158)

and eventually, λ1 in terms of K.

Using our knowledge of principal eigenvalues

λ2
1λ

2
2 = det

(
1 K
K 1 +K2

)
= 1 λ2

1 + λ2
2 = tr

(
1 K
K 1 +K2

)
= 2 +K2 λ2

3 = 1

Because stretches are positive, λ2
1λ

2
2 = 1 implies λ2 = λ−1

1 . Using this result in λ2
1 + λ2

2 =

2 +K2, we get
(
λ1 − λ−1

1

)2 −K2 = 0 and K = λ1 − λ−1
1 . Solving for λ1,

λ1 =
K +

√
K2 + 4

2
λ−1

1 =
K −

√
K2 + 4

2
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6.4 Derivatives of tensors

Let φ, v, T be scalar, vector and 2nd-order tensor fields respectively on a moving body. Prove
the following identities:

(b) Grad v = (grad v)F,

(d) Div T = J div (J−1FT),

(f) div (φT) = TT gradφ+ φ div T.

where

grad v =
∂v

∂xi
⊗ ei, gradT =

∂T

∂xi
⊗ ei, divT =

∂Tij
∂xi

ej , (159)

F = Grad x =
∂xi
∂Xj

ei ⊗Ej , J = detF, (160)

where Ei and ei are unit vectors in cartesian coordinates in the reference and current config-
urations respectively. You will need identity

∂

∂λ
(detA) = (detA)tr

(
A−1∂A

∂λ

)
(161)

which is valid for any non-singular tensor A.

For (b),

(grad v) F =

(
∂vi
∂xj

ei ⊗ ej

)(
∂xp
∂Xq

ep ⊗Eq

)
=
∂vi
∂xj

∂xp
∂Xq

ep · ej (ei ⊗Eq) (162)

=
∂vi
∂xj

∂xj
∂Xq

ei ⊗Eq =
∂vi
∂Xq

ei ⊗Eq = Grad v (163)

(d) [
Jdiv

(
J−1FT

)]
j

= J
∂

∂xi

(
J−1FikTkj

)
= JTkj

∂

∂xi

(
J−1Fik

)
+ Fik

∂Tkj
∂xi

(164)

The first summand is zero as ∂
∂xi

(
J−1Fik

)
=
[
div
(
J−1F

)]
k

= 0, which is known as the
Piola identity and is proved in problem 6.8. The remaining summand, after recalling that
Fik = ∂xi/∂Xk, is

∂xi
∂Xk

∂Tkj
∂xi

= [Div T]j (165)

(f)

[div (φT)]
j

=
∂ (φTkj)

∂xk
= φ

∂Tkj
∂xk

+ T Tjk
∂φ

∂xk
=
[
φdiv T + TT gradφ

]
j

(166)
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6.5 Isochoric deformations

An isochoric deformation is a volume-preserving deformation. Define the invariants Ii, i =
1, 2, 3 and show that for all such deformations I1 ≥ 3.

Ihe principal invariants are I1 = tr C = λ2
1 +λ2

2 +λ2
3, I2 = 1

2

[
(tr C)2 − tr

(
C2
)]

, I3 = det C =

λ2
1λ

2
2λ

2
3. The inequality between arithmetic and geometric means of positive real numbers αk

is
α1 + · · ·+ αn

n
≥ n
√
α1 · · ·αn (167)

Applying this to λ2
k we obtain I1 = λ2

1 + λ2
2 + λ2

3 ≥ 3 3
√
λ2

1λ
2
2λ

2
3 = 3 3

√
I3, but I3 = 1 as the

deformation in question is isochoric. Therefore, I1 ≥ 3.
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6.7 Change of length

Show that the change in the squared distance between two neighboring particles can be
written as

|dx|2 − |dX|2 = 2dX ·EdX, (168)

where E is the Eulerian strain tensor.

The Green strain tensor is E = 1
2

(
FTF− 1

)
. We evaluate

|dx|2 − |dX|2 = dx · dx− dX · dX = FdX · FdX− dX · dX (169)

= dX · FTFdX− dX · 1dX = dX ·
(
FTF− 1

)
dX = 2dX ·EdX (170)
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6.8 Piola identity

Use the divergence theorem to show that∫
St

nda = 0. (171)

Then deduce that
Div

(
JF−1

)
= 0, (172)

where F is the deformation gradient and J = det F.

Similarly, prove the following identity:

div
(
J−1F

)
= 0. (173)

Divergence theorem ∮
∂Ω

AT · nda =

∫
Ω

divAdv.

Let St = ∂Ωt, then ∫
∂Ωt

n da =

∫
∂Ωt

1T · n da =

∫
Ωt

div1dv = 0,

as 1 is constant. At the same time, using Nanson’s formula nda = JF−TNdA and then the
divergence theorem again, we obtain∫

∂Ωt

n da =

∫
∂Ω
JF−TNdA =

∫
∂Ω

DivJF−1dv,

therefore,
∫
∂Ω DivJF−1dv = 0. Since this holds for an arbitrary closed surface St, the result

can be localized
DivJF−1 = 0.

Similarly, starting with
∫
∂Ω N dA and applying inverse Nanson’s formula NdA = J−1FTnda,

we obtain
divJ−1F = 0.
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6.11 Compatibility*

Given a deformation mapping χ(X, t), it is easy to compute the deformation gradient F =
Gradχ. Now, consider the inverse problem. You are given F and you need to compute χ.
The first question to answer is, given F, is there a deformation mapping χ? This is the
problem of compatibility.

In a simple connected domain (no hole), if F is a deformation gradient then Curl(F) = 0.
Here we have defined the curl of a tensor as Curl(F)c = Curl(cF) for any constant vector c.

For a Cartesian tensor, it follows that (CurlF)ij = εkli
∂Fjl
∂Xk

.

The condition Curl(F) = 0 is also sufficient (that is, it guarantees the existence of a defor-
mation mapping). (* The two proofs are optional but if you try, you may want to use Stokes’
theorem for tensors on an arbitrary closed path.)

Now the problem. Consider the Cartesian tensor

[F] =

 1 0 0
0 1 0
α β 1

 (174)

where α, β are functions of (X1, X2) only.

Find the compatibility conditions on α, β so that F is a deformation gradient on a simply
connected domain. Then determine the deformation gradient assuming χ(0) = 0. Show that
the deformation gradient is indeed independent of the path chosen*.

Using the expression for curl in a Cartesian basis, we obtain

(CurlF)33 =
∂β

∂X1
− ∂α

∂X2
(CurlF)ij = 0 for all other i, j (175)

For compatibility, we require (CurlF)33 = 0.

Now let P be a point in the reference configuration and integrate F along some path γ
connecting 0 and P:

χ1 (P) = χ1 (0) +

∫
γ

dS1

χ2 (P) = χ2 (0) +

∫
γ

dS2

χ3 (P) = χ3 (0) +

∫
γ
αdS1 + βdS2 + dS3

where Si are dummy variables. Now, χ (0) = 0, so

χ = X + f (X1, X2) E3 where X = XiEi .

where

∂f

∂X1
= α

∂f

∂X2
= β
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6.12 Transport formulas

Let Ct, St and Rt denote curves, surfaces and regions in Bt, the current configuration of the
body. Prove the following identities

(b) d
dt

∫
St
φnda =

∫
St
{[φ̇+ φtr (L)]n− φLTn}da,

(d) d
dt

∫
Ct

u · dx =
∫
Ct

(u̇ + LTu) · dx,

(f) d
dt

∫
Rt

udv =
∫
Rt

[u̇ + tr (L)u]dv.

For (b),

d

dt

∫
St

φnda =

∫
S0

∂

∂t

(
φJF−T

)
NdA =

∫
S0

(
φ̇JF−T + φJ (trL) F−T − φJLTF−T

)
NdA

=

∫
St

(
φ̇+ φtrL− φLT

)
nda

(d)

d

dt

∫
Ct

u · dx =

∫
C0

∂

∂t
(u · FdX) =

∫
C0

∂

∂t

(
FTu

)
· dX

=

∫
C0

(
FTLTu + FT u̇

)
· dX =

∫
C0

(
LTu + u̇

)
· FdX =

∫
Ct

(
LTu + u̇

)
· dx

(f)
d

dt

∫
Rt

udv =

∫
R0

∂

∂t
(uJ) dV =

∫
R0

(u̇ + utr L) JdV =

∫
Rt

(u̇ + utr L) dv

The line element dx, area element da and volume element dv transform as

dx = FdX nda = JF−TNdA dv = JdV

We have also used
Ḟ = LF J̇ = Jtr L

˙
F−1 = −F−1L

63



7.1 The Cauchy Stress

In appropriate units, a certain measure of stress T has components

T =

1 0 2
0 1 0
2 0 −2

 ,

in a rectangular coordinate system (x1, x2, x3).

1.

(a) Compute the principal invariants of T:

I1 = tr T, I2 = 1
2 [I2

1 − tr (T2)], I3 = det T.

(b) Show that two of the principal stresses are tensile and one is compressive.

(c) Show that the greatest and the least principal stresses take place in directions
orthogonal to x2.

1.

(a) The principal invariants of T are I1 = 0, I2 = −7 and I3 = −6.

(b) The eigenvalues of T are τ1 = −3, τ2 = 2 and τ3 = 1. Compressive stresses are
negative and tensile stresses are positive. Therefore, τ1 is a compressive principal
stress value and τ2, τ3 are tensile.

(c) The eigenvectors of T are ω1 = −e1 + 2e3, ω2 = 2e1 + e3 and ω3 = e2 where
e1, e2, e3 are Cartesian basis vectors. The lowst principal stress is τ1 and the
highest is τ2. is We find that e2 · ω1 = e2 · ω2 = 0.
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7.2 A cantilever beam

A cantilever beam with rectangular cross-section occupies the region −a ≤ x1 ≤ a, −h ≤
x2 ≤ h, 0 ≤ x3 ≤ l. The end at x3 = l is built-in and the beam is bent by a force P applied at
the free end x3 = 0 and acting in the x2-direction. The Cauchy stress tensor has components

σ =

0 0 0
0 0 A+Bx2

2

0 A+Bx2
2 Cx2x3

 ,

where A, B and C are constants.

1. Please hand in your solutions with a drawing!

(a) Show that this stress satisfies the equations of equilibrium with no body forces,
provided 2B + C = 0;

(b) Determine the relation between A and B if no traction acts on the sides x2 = ±h;

(c) Express the resultant force on the free end at x3 = 0 in terms of A, B and C and
hence, with (a) and (b), show that C = −3P/(4ah3).

1.

(a) The force equlibirum equation (for no body forces, no dynamics) is divσ = 0. In
components, [divσ]ij = ∂σij/∂xi = 0. From this it follows that

2B + C = 0 (176)

.

(b) There is no traction on the faces x2 = ±h, i.e. σ (e2) |x2=h·e2 = 0 and σ (−e2) |x2=−h·
(−e2) = 0. Evaluating this, we obtain

A+Bh2 = 0 (177)

(c) Let us consider the traction on the free end. The traction is given by σ(−e2). We
know that the traction on this face integrates to Pe2. Taking the inner product
of this equation with e2, we get

−2a

∫ h

−h
A+Bx2

2dx2 = P

(Notice the e1, and e3 component of this equation is trivially satisfied). Calculating
the integral, we get

− 4a

(
Ah+

B

3
h3

)
= P (178)

Solving (176), (177) and (178) for C, we get the desired result C = − 3P
4ah3

.
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The following Mathematica program may be instructive:

σ[x ] := {{0, 0, 0}, {0, 0, A + B x[[2]]^2}, {0, A + B x[[2]]^2, C x[[2]] x[[3]]}}
x = {x1, x2, x3}
(* part (a): evaluating the divergence *)

eqa = FullSimplify[ Sum[D[σ[x][[i, 3]], x[[i]]], {i, 1, 3, 1}] == 0, x2 != 0]

(* part (b): boundary conditions at x2 = +h, -h *)

eqb = σ[{0, h, 0}].{0, 1, 0} == 0

eqb = eqb[[1, 3]] == 0

(* part (C): integration at free end *)

eqc = 2 a Integrate[σ[{0, x2, 0}].{0, 0, -1}, {x2, -h, h}] == P {0, 1, 0} // FullSimplify;

eqc = eqc[[1, 2]] == eqc[[2, 2]]

(* solving for C *)

Solve[eqa && eqb && eqc, {A, B, C}]
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8.2 Extension and Inflation of a tube

Please hand in your solutions with a drawing of the tube in both reference and
current configuration!
Consider a tube defined in the initial configuration by

A ≤R ≤ B, A,B > 0

0 ≤Θ < 2π,

0 ≤Z ≤ L. L > 0

Here, (R,Θ, Z) are cylindrical coordinates with vectors (ER,EΘ,EZ) in the reference co-
ordinates. The tube is deformed through the combined effects of inflation (pressure) and
extension, but remains cylindrical after deformation so that x = r er +zez, with r = f(R, λ),
θ = Θ, z = λZ, where λ is the uniform (constant) axial stretch.

1. Compute the deformation gradient F in cylindrical coordinates.

(a) Assuming that the material is incompressible than all deformations must be iso-
choric (det F = 1), find the explicit form of f(R) in terms of R, λ, and a, the
internal radius of the deformed tube.

(b) Compute the principal stretches λr, λθ, λz in the radial, azimuthal and axial
directions.

(c) If we assume that the material is isotropic, the radial and axial extension of the
tube will lead to a Cauchy stress tensor of the form

T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez.

Assuming no body force and steady state, write the equilibrium equations for T.

(d) Write the boundary conditions on the faces of the tube assuming an internal
pressure P and no external pressure.

(e) * Similarly, write the boundary condition on the ends of the tube assuming an
axial load N on the ends of the tube (consider the case where the tube is either
open or closed). Note that this boundary condition requires a little bit of care since
N has the dimensions of a force and the stress has the dimensions of a pressure.
Therefore to relate N to the axial stress, one needs to average the stress on the
upper and lower face of the tube over its section. Formulate such a condition.
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1.

(a) The deformation gradient is

F = ∂x/∂X =
∂x

∂R
⊗ER +

1

R

∂x

∂Θ
⊗EΘ +

∂x

∂Z
⊗EZ (179)

=
∂f

∂R
er ⊗ER +

f

R
∂eθ ⊗EΘ + λez ⊗EZ (180)

If the material is incompressible, all deformations must be isochoric, i.e. det F = 1.
Let us denote the derivative with respect to the initial reference coordinate R with
a prime, df/dR = f ′. Then it follows λf ′f/R = 1. We can integrate this by
separation of variables, integrating from the inner tube wall (located at f(A) = a
to f (R). We obtain

f =

√
a2 +

R2 −A2

λ

(b) The principal stretches are the diagonal components of F, that is λr = f ′, λθ =
f/R, λz = λ.

(c) The equilibirum balance equations are div T = 0. Evaluating the divergence op-
erator in polar coordinates, we find

∂Trr
∂r

+
Trr − Tθθ

r
= 0

1

r

∂Tθθ
∂θ

= 0
∂Tzz
∂z

= 0 (181)

(d) For the internal boundary at r = a we have Tn = T (−er) = Per ⇒ Trr = −P .
For the external boundary at r = b, we have Ter = 0er ⇒ Trr = 0.

(e) On the flat ends, we have

N =

∫
Ω

[tzz]z=0, z=l da =

∫ 2π

0

∫ b

a
tzzrdrdθ = 2π

∫ b

a
tzzrdr
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10.1 Inflation-Extension of the cylinder–again

Consider again a hyperleastic incompressible isotropic elastic tube defined in the initial con-
figuration by

A ≤R ≤ B, A,B > 0

0 ≤Θ < 2π,

0 ≤Z ≤ L. L > 0

Here, (R,Θ, Z) are cylindrical coordinates with vectors (ER,EΘ,EZ) in the reference co-
ordinates. The tube is deformed through the combined effects of inflation (pressure) and
extension, but remains cylindrical after deformation so that x = r er + zez, with r = f(R, ζ),
θ = Θ, z = ζZ, where ζ is the uniform (constant) axial stretch. In the previous sheet, we
computed the deformation gradient F = diag(λr, λθ, λz) . Let λ = λθ and ζ = λz. From
incompressibility, we have λr = 1/(λζ). Now that we have fully characterise the deformation,
we need to relate the deformation to the external loads. The material response is charac-
terised by a strain-density energy function W = W (λr, λθ, λz). Since the material is isotropic,
we have

T = Trrer ⊗ er + Tθθeθ ⊗ eθ + Tzzez ⊗ ez (182)

1. Show that

r
dλ

dr
= −λ(λ2ζ − 1) (183)

(a) Write the Cauchy equations for the equilibrium of stress in cylindrical coordinates.
Show that it reduces to a single equation.

(b) Write the stresses Trr, Tθθ, Tzz as a function of W .

(c) To further simplify the problem, we introduce an auxiliary stress function

Ŵ (λ, ζ) = W (1/(λζ), λ, ζ). (184)

Show that the constitutive equations can be written

Tθθ − Trr = λŴλ, Tzz − Trr = ζŴζ , (185)

where the subscripts denote partial derivatives.

(d) Use these relations and the Cauchy equation write a single differential equation
for Trr. Integrate this equation up to a quadrature.

(e) Match the boundary equations Trr(r = a) = −P , Trr(r = b) = 0 derived in the
last problem sheet.

(f) Rewrite the last integral in terms of λ rather than r to obtain

P =

∫ λa

λb

1

λ2ζ − 1
Ŵλdλ. (186)

(Note that λb is a function of λa due to incompressibility.)

(g) *Use a Mooney-Rivlin material and plot the pressure as a function of the inner
stretch λa for a given axial stretch (take ζ = 1.2 for instance).

(h) * Vary the constants µ1, µ2 to show that non-monotonous behaviors are possible (P
as a function of the strectch reaches a maximum). What is the physical behavior
of such a system.
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1.

(a) Note that the notation here is different from problem 8.2. The deformation gradi-
ent is

F = diag(r′ (R)︸ ︷︷ ︸
λr

,
r (R)

R︸ ︷︷ ︸
λ

, ζ︸︷︷︸
λz

)

By chain rule, we get

r
dλ

dr
=
∂λ

∂r
+
∂λ

∂R

dR

dr
=

r

R
− r2

r′R2
= −λ

(
λ2ζ − 1

)
Here we took advantage of the isochoric deformation (which follows from the in-
compressibility constrain) λrλλz = 1.

(b) We established the equilibrium balance equations in (181). Since the deformation
in this problem only depends on the radial coordinate, the only nontrivial equation
is

∂Trr
∂r

+
Trr − Tθθ

r
= 0 (187)

(c) For incompressible hyperelastic materials, the Cauchy stress is derived from the
strain energy density W as follows:

Tii = λiWi − p i = 1, 2, 3 (no summation over i) Wi =
∂W

∂λi

(d) The shorthand strain energy density is defined as W (λr, λθ, λz) = Ŵ (λθ, λz) =

Ŵ (λ, ζ). Also note that ∂λr/∂λ = 1/
(
λ2ζ
)

and ∂λr/∂ζ = −1/
(
λζ2
)
. Then it

follws that

λ
∂Ŵ

∂λ
= λ

∂W

∂λ
− λr

∂W

∂λr
ζ
∂Ŵ

∂ζ
= ζ

∂W

∂ζ
− λr

∂W

∂λr

So we have Tθθ − Trr = λŴλ and Tzz − Trr = ζŴζ .

(e) The result (187) and Tθθ − Trr = λŴλ can be combined into

Trr =

∫
λŴλ

r
dr (188)

But we can also rewrite this expression in terms of λ. Going back to (187) , by
chain rule, we can express dTrr/dr as dTrr/dλ and then integrate in terms of λ
rather than r (as we have done in eq. (188)). We achieve this as follows:

∂Trr
∂λ

dλ

dr
=
λŴλ

r
Trr =

∫
Ŵλ

1− λ2ζ
dλ

(f) The boundary conditions become: Trr = 0 at λ = λb and Trr = −P at λ = λa
where λa = a/A and λb = b/B.

(g) We can then rewrite

P =

∫ λa

λb

Ŵλ

λ2ζ − 1
dλ

70



9.2 The uniaxial extension again.

Same geometry, same loading as in the previous problem but now the material is incompress-
ible with a Mooney-Rivlin energy density

W =
µ1

2
(I1 − 3)− µ2

2
(I2 − 3).

1.

(a) Is there a conditions on µ1, µ2 so that in the absence of strain, there is no stress?

(b) Find again the Poisson function νλ1 and define the Poisson ratio as ν0. Is this
value of the Poisson ratio as expected? Why?

(c) With the remaining boundary condition, compute N(λ1).

(d) Find set of realistic values of µ1 and µ2 for rubber in the literature. Make sure to
specify the units, and plot the graph of N(λ1) for these values.

(e) Find the slope of the tangent of N(λ1) as λ1 = 1. Describe physically. Show on
the graph. What is the name of the combination µ1 + µ2?

(f) Compare the tangent approximation with the actual graph of N(λ1). For what
value of stretch does the approximation breaks down?

1. The deformation gradient and the loading boundary conditions are

F = diag (λ1, λ2, λ3) T = diag (N, 0, 0)

Since all deformations and stresses are diagonal, the Cauchy stress components are

Tii = λi∂W/∂λi − p (no summation over i) (189)

where p is a Lagrange-multiplier enforcing incompressibility. Because of the symmetry
T22 = T33, it follows λ2 = λ3. Because of incompressibility, it follows that det F =
λ1λ

2
2 = 1. We define λ := λ1 and it follows that λ2 = λ−

1
2 and the deformation

gradient is F = diag
(
λ, λ−

1
2 , λ−

1
2

)
. The Mooney-Rivlin strain energy density is

W (λ1, λ2, λ3) =
µ1

2

(
λ2

1 + λ2
2 + λ2

3 − 3
)
− µ2

2

((
λ2

2 + λ2
3

)
λ2

1 + λ2
2λ

2
3 − 3

)
(a) Evaluating equation 189 for λ1 = λ2 = λ3 = 1 and using the value of p obtained

in part c gives the desired result.

(b) Consider the limit

ν0 = lim
λ→1

(
−

1√
λ
− 1

λ− 1

)
=

1

2

which is the expected Poisson ratio for an incompressible material.

(c) Consider T22 = T33 = 0 and solve for the Lagrange multiplier p. Then by T11 = N ,
solve for N (λ). The results are:

p = −µ2

λ2
+
µ1

λ
− λµ2 N (λ) =

(
λ3 − 1

)
µ1

λ
−
(
λ3 − 1

)
µ2

λ2
(190)
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Figure 8: Nonlinear model N (λ) according to (190) and linear model Nlin (λ) according to
(191). The linear model is assumed to be a valid approximation for 0.88 ≤ λ ≤ 1.15 which is
the shaded region.

(d) µ1 = 0.296 MPa and µ2 = −0.96 MPa. A plot of N (λ) according to (190) is shown
in figure 8.

(e) We can take a series expansion of N (λ) in (190) at λ = 1, obtaining

Nlin (λ) = 3 (µ1 − µ2) (λ− 1) +O
(
λ2
)

(191)

Comparing with the Hookean model N = E∆L/L = E (λ− 1), we notice that
E = 3 (µ1 − µ2).

(f) Let us say the breakdown occurs when the models differ by 10%, that is Nlin (λL) =
0.9N (λL) and Nlin (λR) 1.1N (λR). Solving these equations, we obtain λL = 0.88
and λR = 1.15. This means the linear model is valid for 0.88 ≤ λ ≤ 1.15 and
breaks down otherwise. This region is shaded in figure 8.
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9.3 The Poynting effect

One of the property of nonlinear elastic materials is that normal forces are coupled with shear
forces. This effect can be used to explain why a isotropic cylinder extends under tension.
A simple way to see the coupling is to consider the simple shear (see Lecture notes) for a
hyperelastic isotropic material (compressible)

x1 = X1 + γX2

x2 = X2

x3 = X3.

Show that
T11 − T22 = γT12, T13 = T23 = 0.

Discuss this result. What is so special about it? Think of an experiment that would create a
simple shear. What happens if you just try to shear the material on its top layer. This is an
example of a so-called universal property in elasticity, that is a relation that is independent
of the particular form of the strain-energy density function. These results are particularly
important and beautiful as they transcend the (controversial) choice of a strain-energy density.
They can also be used as test of the material properties. In our case, we could devise an
experiment to test if our sample is indeed isotropic. Devise such an experiment. What would
you measure?

The deformation gradient is

F =

 1 γ 0
0 1 0
0 0 1


The left Cauchy-Green tensor is defined as B = FFT . For an isotropic hyperelastic material,
we can write

T = α0I + α1B + α2B
2 αi = αi (I1, I2, I3)

The components are

T =

(γ2 + 1
)
α1 +

(
γ4 + 3γ2 + 1

)
α2 γ

(
α1 +

(
γ2 + 2

)
α2

)
0

γ
(
α1 +

(
γ2 + 2

)
α2

)
α1 +

(
γ2 + 1

)
α2 0

α0 α0 α0 + α1 + α2


From this we can see that

T11 − T22 = γT12 . (192)

You can take advantage of Mathematica to verify this problem easily:

F = {{1, γ, 0}, {0, 1, 0}, {0, 0, 1}}
B = F.Transpose[F]

T = α0 {0, 0, 1} + α1 B + α2 B.B // Simplify

T[[1, 1]] - T[[2, 2]] == γ T[[1, 2]] // FullSimplify

The result (192) is independent of the choice of the strain energy density W . Therefore,
any isotropic hyperelastic material must satisfy these equations. The result implies that shear
stresses can only exist if the normal forces are different.

A possible experimental test could be to clamp a cuboid on all faces except the two that
tilt with the shear. Measure the normal stresses and see if they obey (192).
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10.2 The incompressible spherical shell

Following the description in the lectures, we consider the symmetric deformation of an in-
compressible spherical shell. Assume that the material is characterised by a strain-energy
density W = W (λ1, λ2, λ3). Let λ = r/R and h(λ) = W (λ−2, λ, λ).

1.

(a) Show that for a given internal pressure P , the deformation is determined by the
solution of

P =

∫ β

α

h′(λ)

1− λ3
dλ (193)

where α = λa = a/A and β = λb = b/B.

(b) Express β as a function of α.

(c) Integrate P as a function of α and plot the pressure-stretch curves P − α for a
neo-Hookean and a Mooney-Rivlin strain-energy (take e.g. A = 1, B = 2, µ1 =
1, µ2 = 0.03). How is the behaviour of P different for these two functions for large
values of α?

1.

(a) The deformation map of a spherical shell is χ (X) = r (R) er where r (R) remains to
be determined. The deformation gradient can be determined similarly to problem
8.2:

F = diag
(
r′ (R) ,

r

R
,
r

R

)
= diag (λr, λθ, λφ)

(the prime always denotes derivatives with respect to R, overdots are for time
derivatives). For incompressible materials, the Cauchy stress T is derived from
the strain-energy density W (λ1, λ2, λ3) as

Tii = λiWi − p i = 1, 2, 3 (no summation over i) Wi =
∂W

∂λi
(194)

Like in problem 10.1, we introduce the auxiliary function Ŵ (λ) = W
(
λ−2, λ, λ

)
and by a similar approach we find that the equilibrium linear momentum balance
div T = 0 becomes in spherical polar coordinates

dTrr
dr

=
2

r
(Tθθ − Trr)

For the RHS, we find that λdŴ/dλ = 2 (Tθθ − Trr). For the LHS, we apply chain
rule dTrr/dr = (∂Trr/∂λ) (dλ/dr) where λ = r/R, finding

r
dλ

dr
= λ

(
1− λ3

)
Putting LHS and RHS together, we have ∂Trr/∂λ =

(
1− λ3

)−1
∂Ŵ/∂λ. We

integrate (193).
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Figure 9: Comparison between Mooney-Rivlin and neo-Hookean materials for parameters
A = 1, B = 2, µ1 = 1.

(b) The incompressibility condition is det F = 1 which is r′r2R−2 = 1. Integrating
this ODE by separation of variables over from r = a to r = b, we obtain r3 =
a3 +R3 − A3. Evaluating at r = b and R = B and using the definitions of α and
β, we obtain

β3 = 1 +
A3

B3

(
α3 − 1

)
(195)

over λ from the stretch at the inner wall α = a/A to the stretch at the outer
wall β = b/B. We define Trr (β) − Trr (α) = −P which is the pressure difference
between outer and inner wall. This gives the desired result

(c) The Mooney-Rivlin strain energy density isW (λ1, λ2, λ3) = µ1
2 (I1 − 3)+µ2

2 (I2 − 3)
where I1 = tr C and I2 = 1

2

[
I2

1 − tr
(
C2
)]

and C = FTF as usual. We obtain

Ŵ (λ) =
µ1

2

(
1

λ4
+ 2λ2 − 3

)
+
µ2

2

(
λ4 +

2

λ2
− 3

)
For µ2 = 0, we retrieve the neo-Hookean material. See figure 9.
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10.3 The thin incompressible spherical shell

1. Let us explore the thin-shell limit of the previous problem.

(a) To start, show that P viewed as a function of α satisfies the equation

(α− α−2)
dP

dα
=
h′(α)

α2
− h′(β)

β2
. (196)

(b) Now, if the shell is thin, we can write B−A = εA where ε� 1. Let λ = α(1+O(ε))
and show that

P = ε
h′(λ)

λ2
(197)

(c) Let T be the surface tension, a force per unit current length along the surface,
that is (b− a)Tθθ. Show that

T = εA
h′(λ)

2λ
. (198)

(d) Show how the two last equalities are related to the Young-Laplace law for a spher-
ical membrane. Is this a universal result (independent of the particular choice of
the strain-energy)?

1.

(a) Consider (193) and take the derivative dP/dα, using the Leibniz rule of integration.
The result is

dP

dα
=

h′ (β)

1− β3

dβ

dα
− h′ (α)

1− α3
(199)

Then take the derivative dβ/dα according to (195), resulting in dβ/dα = A3α2B−3β−2.
Substituting this result into (199) gives the desired result (196).

(b) Consider the expression (195), substituting B = (1 + ε)A, then do a series expan-
sion for ε� 1. The expression for β and the series expansion read

β =
[
1 + (1 + ε)−3 (α3 − 1

)] 1
3

= α+
(
α− α−2

)
ε+O

(
ε2
)

(200)

Next, insert this expression for β into (199), eliminating all terms of order ε and
higher. The result is

dP

dα
=

ε

α3

[
2h′(α)− αh′′(α)

]
+O

(
ε2
)

=
d

dα

[
εh′ (α)

α2

]
+O

(
ε2
)

from which we conclude P = εh′ (α) /α2. Taking into account λ = α(1 +O(ε)), it
follows P = εh′ (λ) /λ2.

(c) It holds that

Tθθ = Trr +
λ

2
h′ (λ) =

εh′ (λ)

λ2
+
λ

2
h′ (λ)

Also we have (b− a)Tθθ = (βB − αA)Tθθ = AεTθθ/α
2. In the last step, we used

β from (200) and kept terms linear in ε. So at O (ε),

(b− a)Tθθ =
ε

2
A
h′ (α)

α
=
ε

2
A
h′ (λ)

λ
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(d) The Young-Laplace law states that at the interface of two fluids the pressure jump
beys the following equation

∆p = T

(
1

R1
+

1

R2

)
where T is the surface tension and Ri are the principal curvatures. In this problem,
R1 = R2 = a = αA and ∆p = P . So P = 2T/ (αA). Substituting in the
expressions shows this is indeed satisfied to O (ε). The fact that we have not
specified a strain energy function shows that this result holds for arbitrary strain
energy functions.
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10.5 The compressible spherical shell

1. Consider the symmetric deformation of a compressible spherical shell

x = f(R)X. (201)

Assume that the material is characterised by a strain-energy densityW = W (λ1, λ2, λ3).

(a) Find a second-order equation for f(R) with coefficients functions of W and its
derivatives with respect to λ1, λ2.

(b) Give the explicit relationship between λ1, λ2 and f(R).

(c) Write explicitly (only as a function of R and f(R)) this equation for

W =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3). (202)

(d) Can you solve this equation? Analytically? Numerically? What would the bound-
ary conditions be?

1.

(a) We denote the derivative with respect to R with a prime, df/dR = f ′ (R). The
deformation gradient can be determined similarly to problem 8.2:

F = diag
(
f +Rf ′, f, f

)
= diag (λ1, λ2, λ3)

In this case, the nominal stress S (transpose of first Piola-Kirchhoff stress) stress is
derived from the strain-energy density W as SRR = W1, Sθθ = W2 and Sφφ = W3

where ∂W/∂λi = Wi. The linear momentum balance in the initial reference con-
figuration reads Div S = 0, which is S′RR (R) + 2 (SRR − Sθθ) /R = 0. Evaluating
this expression, we get

λ′1W11 + λ′2W12 + λ′3W13 +
2 (W1 −W2)

R
= 0

Substituting λ1, λ2 and λ3, we get

2

R
(W1 −W2) + 2f ′W12 +

(
2f ′ +Rf ′′

)
W11 = 0

(b) From above we immediately obtain the explicit relations λ1 = f+Ff ′, and λ2 = f

(c) With the Mooney-Rivlin strain energy density, this equation becomes(
µ1 + 2µ2f

2
) (
Rf ′′ + 4f ′

)
+ 2µ2Rff

′2 = 0

(d) This needs numerical solution. A typical boundary value problem for a spherical
shell is T (−er) = Per at the inner wall and Ter = 0er at the outer wall where T
is the Cauchy stress. Transforming these two equations into the initial reference
configuration by application of Nanson’s formula, we have STER = −Pf2er at
R = A and STER = 0er at R = B.
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11.2 The Rivlin square

1. An equibiaxial tension consists in pulling a square sample with equal tension by the
four edges. Viewed as a three-dimensional material, it consists in applying to a cuboid
equal distributed tensile normal Cauchy stress T > 0 on two pairs of opposite faces,
while leaving the remaining two faces stress-free. It is assumed that the cuboid remains
a cuboid during the deformation. Consider an incompressible Mooney-Rivlin material
with strain-energy density function of the form

W =
1

2
µ

[(
1

2
+ α

)
(I1 − 3) +

(
1

2
− α

)
(I2 − 3)

]
(203)

(a) From the Cauchy stress tensor and the deformation gradient, define the princi-
pal stresses (t1, t2, t3) and the principal stretches (λ1, λ2, λ3) and write down the
constitutive relationship between them [take the direction e3 to be normal to the
stress-free faces]. Also write down the incompressibility condition in terms of the
principal stretches.

(b) The Baker-Ericksen inequalities state that (λi−λj)(ti− tj) > 0 for λi 6= λj . Show
that these inequalities imply that −1/2 ≤ α ≤ 1/2 and µ > 0.

(c) Define the boundary conditions and compute the applied load T as a function of
the stretches only.

(d) Derive a relationship between λ1 and λ2 independent of T .

(e) Show that there is always a trivial solution for which λ1 = λ2 and that this solution
is the only solution in the neo-Hookean case (α = 1/2).

(f) Show that there is only one possible homogeneous deformation for the Mooney-
Rivlin material in equibiaxial tension and that T is a strictly increasing function
of λ1.

1.

(a) The deformation gradient is F = diag
(

dx
dX ,

dy
dY ,

dz
dZ

)
= diag (λ1, λ2, λ3) where λ are

the principal stretches. As the material is incompressible, it is isochoric (λ1λ2λ3 =
1) and the principal stresses follow from (194). For the strain-energy density given
in (203), we have

t1 = µλ2
1

[(
λ2

2 + λ2
3

)(1

2
− α

)
+

(
α+

1

2

)]
− p

and similarly for t2 and t3. Here, the Cauchy stress is T = diag (t1, t2, t3).

(b) WLOG choose i = 1, j = 2 and assume λ1 6= λ2. Then

(λ1 − λ2) (t1 − t2) = µ

[(
1

2
− α

)
λ2

3 +

(
1

2
+ α

)]
(λ1 − λ2)2(λ1 + λ2)︸ ︷︷ ︸

>0

> 0

Since this must hold for all stretches λ > 0, from λ3 = 1 we conclude µ > 0. So
we have (

1

2
− α

)
λ2

3 +

(
1

2
+ α

)
> 0 ∀λ3

In the limit λ3 → 0, this expression goes to 1
2 +α, so α > −1

2 . In the limit λ3 →∞,
the expression goes to

(
1
2 − α

)
λ2

3, so α < 1
2 .
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(c) The boundary conditions are t1 = T , t2 = T and t3 = 0. If we consider, for
instance, the last two equations, we can eliminate the two parameters p and T .
This way, we get

T = µ

[(
1

2
− α

)
λ2

1 +

(
α+

1

2

)] (
λ2

2 − λ2
3

)
(d) In the remaining equation, t1 = T , we use the condition for an isochoric deforma-

tion λ3 = 1/ (λ1λ2), obtaining(
1

2
+ α

)(
λ2

1 − λ2
2

)
+

(
1

2
− α

)(
1

λ2
2

− 1

λ2
1

)
= 0

(e) For α = 1
2 , the previous equation becomes λ2

1 = λ2
2 and since stretches are positive

it follows λ1 = λ2 as the only solution.

(f) For equibiaxial tension, λ1 = λ2 = λ and by incompressibility λ3 = λ−2. We
compute

dT

dλ
= µ

[(
1

2
+ α

)(
2λ+

4

λ5

)
+

(
1

2
− α

)(
4λ3 +

2

λ3

)]
which for µ > 0 and −1

2 < α < 1
2 and λ > 0 is a strictly increasing function.
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12.3 Airy stress function in polar coordinates

In the absence of a body force, the steady Navier equation takes the form

1

r
∂r (rAurr) +

1

r

∂Aurθ
∂θ

− Auθθ
r

= 0,
1

r
∂r (rAurθ) +

1

r

∂Auθθ
∂θ

+
Aurθ
r

= 0, (204)

in plane polar coordinates. Show that these are satisfied identically by introducing an Airy
stress function U such that

Aurr =
1

r2

∂2U

∂θ2
+

1

r

∂U

∂r
. Aurθ =− ∂

∂r

(
1

r

∂U

∂θ

)
, Auθθ =

∂2U

∂r2
. (205)

This problem is purely about substituting the expression as asked. In Mathematica, con-
firm the equality with these commands:

Aurr = 1/r^2 D[U[r, θ], {θ, 2}] + 1/r D[U[r, θ], r]

Aurθ = -D[1/r D[U[r, θ], θ], r]

Auθθ = D[U[r, θ], {r, 2}]
FullSimplify[ 1/r D[r Aurr, r] + 1/r D[Aurθ, θ] - Auθθ/ r == 0] (* output ’True’

*)

FullSimplify[ 1/r D[r Aurθ, r] + 1/r D[Auθθ, θ] + Aurθ/r == 0] (* output ’True’

*)
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12.5 Rayleigh surface waves

1. These elastic waves travel on a half-space. We take a half-space modelled as a linear
isotropic elastic material (described by the Navier equations) defined for y ≥ 0 and we
consider a displacement represented by

u = <(Ae−bY exp[ik(X − ct)], Be−bY exp[ik(X − ct)], 0) (206)

where A,B are complex numbers, b, k, c are positive constants, and <() gives the real
part of its argument. The waves propagate along the x-axis and decay exponentially in
the y-direction.

(a) By substituting the particular form of the displacement into the Navier equations,
show that there are two possible values of b (say b1 and b2) as a function of k and
the Lam coefficients. Conclude that, if a Rayleigh wave exists, it must be slower
than transverse and longitudinal waves.

(b) Express the amplitude B1 as a function of A1 and b1, and similarily for B2. The
general solution for u is then a linear combination of these two particular solutions.

(c) The surface y = 0 is free. Write the boundary conditions in terms of the Cauchy
stress tensor T.

(d) Rewrite these conditions in terms of the displacement by using the constitutive
equation

T = 2µe + λTr(e)1, (207)

where e is the infinitesimal strain tensor.

(e) Write an equation for the amplitude A1 and A2 and derive a condition for the
velocity c.

1.

(a) For convenience, we can rewrite u = <
(
d ei(κ·x−ckt)

)
where d = (A,B, 0) and

κ = (k, ib, 0) and x = (X,Y, Z). See also figure 10. Consider the Navier equation
ρ∂2u/∂t2 = (λ+ µ)∇ (∇ · u) +µ∇2u. Substituting the solution u into the Navier
equations gives

ρk2c2d = (λ+ µ) (d·κ)κ+ µ |κ|2 d

where |κ|2 = k2 − b2. Taking the dot product of this equation with κ, we obtain
k2 = (λ+ 2µ) |κ|2 /

(
ρc2
)

or d ·κ = 0. Similarly, taking the cross product with κ,

we get k2 = µ |κ|2 /
(
ρc2
)

or d× κ = 0. There are two non-trivial cases, of which
the first is

k2 =
(λ+ 2µ) |κ|2

ρc2
and d× κ = 0

From this case, we deduce c2 = c2
p

(
1− b21/k2

)
where c2

p = (λ+ 2µ) /ρ is the
longitudinal wave velocity and clearly c < cp. The second non-trivial case is

k2 =
µ |κ|2

ρc2
and d · κ = 0

From this case, we deduce c2 = c2
s

(
1− b22/k2

)
where c2

s = µ/ρ is the transverse
wave velocity and c < cs.
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Figure 10: Plots of ei(κ·x−ckt). The wave travels in ex direction at velocity c = 1. These
snapshots are taken at time t = 0. In the top left image, b = 0.3 and k = 1. In the top
right, b = 0.3 and k = 2. In the bottom left image, b = 0.15 and k = 1. In the bottom right,
b = 0.15 and k = 2.

(b) From d× κ = 0 in the first case we have B1 = A1ib1/k. Similarly, from d · κ = 0
we have B2 = A2ik/b2.

(c) The surface y = 0 is stress free, so Txy = 0, and Tyy = 0 on y = 0.

(d) In terms of strains,

Tyy = (λ+ 2µ)
∂u2

∂Y
+ λ

∂u1

∂X
= 0

Txy = µ

(
∂u1

∂Y
+
∂u2

∂X

)
= 0

(e) If we consider Tyy = 0 and Txy = 0 and substitute u as well as the expressions for
B1 and B2, we get [

λk2 − (λ+ 2µ) b21
]
A1 − 2µk2A2 = 0

−2µb1b2A1 − µ
(
b22 + k2

)
A2 = 0

Now let cp/cs = γ−1 and c/cs = K. Then set the determiannt of the coeffieiencts
to be zero to find the following polynomial for K:

K6 − 8K4 +
(
24− 16γ2

)
K2 + 16

(
γ2 − 1

)
= 0
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