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1. 2011 Question 1. Consider the equation for a uniform planar elastica subject to a body force
f = fex + gey. In this equation primes : ( )′ denote derivatives with respect to the arc length
and dots : (˙) denote time-derivative.

F ′ + f = ρAẍ (1)

G′ + g = ρAÿ (2)

EIθ′′ +G cos θ − F sin θ = ρIθ̈ (3)

1. Define all the parameters {E, I, ρ, A} (assumed to be constant) entering the equation and
give their dimensions.

2. Define the dependent variables {F,G, x, y, θ} and give explicitly the tangent vector to the
elastica and the curvature at a given point on the curve.

3. By assuming small deflections, derive a beam equation for the vertical deflection y = w(x)
as a function of the horizontal position x.

4. Consider the case of a simply supported beam of length 2π and for which EI = ρA = 1,
subject to both a point force q in the vertical direction applied at the middle of the beam
and a compressive force P > 0 in the horizontal direction applied at both ends. Find the
maximal deflection of the beam as a function of q and P .

5. Show that there are values of P for which the beam deflection becomes arbitrarily large
for arbitrarily small point force. Explain this result.
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2. 2011 Question 2. Starting from the general static Cauchy equation for a hyperelastic ma-
terial in the reference configuration the problem is to derive the linear equations for small
displacements.

1. Write the general equilibrium static equations for a compressible hyperelastic solid in the
absence of body forces in the reference configuration. Define all your variables.

2. Define the infinitesimal strain tensor e in terms of the deformation gradient.

3. Assuming that there is no residual stress, show that the nominal stress tensor S and the
Cauchy stress tensor T are identical.

4. For small displacements, the constitutive relationship is

T = C : e (4)

where C is a fourth-order tensor. Use major and minor symmetries to prove that this
tensor contains at most 21 independent material constants.

5. If the material is isotropic, the constitutive relationship becomes

T = µe + λTr(e)1. (5)

Derive the Navier equations for the displacements u.

6. Let u ∈ C4 be a solution of the Navier equations. Show that both Div u and Curl u are
harmonic functions, that is

∆ Div u = 0, (6)

∆ Curl u = 0. (7)

Furthermore, use these identities to prove that u is a biharmonic functions, that is
∆∆u = 0.

Hint: You may use without proof the following identities:

∆u = Grad Div u− Curl Curl u, (8)

Div Curl u = 0. (9)
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3. 2012 Question 1. Consider an hyperelastic isotropic material characterised by a strain-energy
density function W = W (F) where F is the deformation gradient.

1. Show that as a result of isotropy, the strain-energy function can be written in terms of
the left Cauchy-Green tensor B = V2 = FFT, that is W = Ψ(B).

2. From isotropy and objectivity, it can be shown that the Cauchy stress tensor T is given
by

T = a01 + a1B + a−1B
−1,

where ai are scalar functions of the invariants of the left Cauchy-Green tensor B. Use
this representation to show that TB = BT.

3. Since T and B commute, they are coaxial, that is the Cauchy stress tensor can be written
in terms of the Eulerian principal axes as

T = tiv
(i) ⊗ v(i), B = λ2

iv
(i) ⊗ v(i),

where summation on repeated indices is assumed. Next, consider, for the same isotropic
hyperelastic material, a simple shear, given by x(X) = (X1 + γX2, X2, X3), γ > 0. and
for which the Eulerian axes v(1) of V are

v(1) = cos θ e(1) + sin θ e(2)

v(2) = − sin θ e(1) + cos θ e(2)

v(3) = e(3)

where tan(2θ) = 2/γ and e(i) are the usual Cartesian canonical basis vectors. Using this
representation, find the components Tij of T = Tije

(i) ⊗ e(j), the Cauchy stress tensor.
Show that T11 − T22 = γT12.

4. Show that det(F) = 1, λ3 = 1, λ1 = 1/λ2 and that γ = λ1 − 1/λ1. Is the material
incompressible?

5. Compute explicitly the stresses Tij as a function of γ, µ,K developed in simple shear for
a neo-Hookean material with strain energy function

W =
µ

2
(I1 − 3− 2lnJ) +K(J − 1)2.

(Here µ and K are constant, define I1 and J). Can a simple shear be maintained by shear
stress alone?
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4. 2012 Question 2. An equibiaxial tension consists in pulling a square sample with equal
tension by the four edges. Viewed as a three-dimensional material, it consists in applying
to a cuboid equal distributed tensile normal Cauchy stress T > 0 on two pairs of opposite
faces, while leaving the remaining two faces stress-free. It is assumed that the cuboid remains
a cuboid during the deformation. Consider an incompressible Mooney-Rivlin material with
strain-energy density function of the form

W =
1

2
µ

[(
1

2
+ α

)
(I1 − 3) +

(
1

2
− α

)
(I2 − 3)

]
1. From the Cauchy stress tensor and the deformation gradient, define the principal stresses

(t1, t2, t3) and the principal stretches (λ1, λ2, λ3) and write down the constitutive rela-
tionship between them [take the direction e3 to be normal to the stress-free faces]. Also
write down the incompressibility condition in terms of the principal stretches.

2. The Baker-Ericksen inequalities state that (λi − λj)(ti − tj) > 0 for λi 6= λj). Show that
these inequalities imply that −1/2 6 α 6 1/2 and µ > 0.

3. Define the boundary conditions and compute the applied load T as a function of the
stretches only.

4. Derive a relationship between λ1 and λ2 independent of T .

5. Show that there is always a trivial solution for which λ1 = λ2 and that this solution is
the only solution in the neo-Hookean case (α = 1/2).

6. Show that there is only one possible homogeneous deformation for the Mooney-Rivlin
material in equibiaxial tension and that T is a strictly increasing function of λ1.
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5. 2012 Question 3. Consider a homogeneous hyperelastic material with strain-energy function
W in the absence of body forces.

1. Define the displacements and displacement gradient and the infinitesimal strain tensor e
used in linear elasticity.

2. Derive the conditions under which the linearised nominal stress tensor S and the linearised
Cauchy stress tensor T are identical.

3. Under the conditions derived in part 2, the constitutive relationship between the linearised
Cauchy stress and the infinitesimal strain tensor is

T = C : e (10)

where C is a fourth-order tensor. Use minor symmetries to prove that this tensor contains
at most 36 independent material constants. Then prove the existence of a quadratic form
in the infinitesimal strain tensor from which stresses are derived. Show that the major
symmetries follow from the existence of this quadratic form and that C contains at most
21 independent constants.

4. If the material is isotropic, the constitutive relationship becomes

T = Ciso : e = 2µe + λTr(e)1, (11)

where λ and µ are the classical Lamé parameters. Derive the static Navier equations for
the displacements u.

5. Show that the positive definiteness of Ciso implies both 2µ+ 3λ > 0 and µ > 0.
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6. 2013 Question 1. Consider a hyperelastic incompressible spherical shell of radii A and B
respectively in the absence of body forces. Assume that the shell cavity has been filled with
explosives. At time t = 0 the explosives are detonated and the explosion deforms the body so
that it remains a spherical shell for all time. Therefore, the motion of the body can be written
in the form

x =
r

R
X, r = f(R, t),

where R = |X| and r = |x|.

• (a) Prove the following lemma: let φ and u be differentiable scalar and vector fields,
respectively. Then,

grad(φu) = u⊗ gradφ+ φ gradu.

• (b) Use part (a) to show that the deformation gradient can be written

F =
1

R2

(
f ′(R, t)− f(R, t)

R

)
X⊗X +

f(R, t)

R
1,

where f ′(R, t) = df(R,t)
dR .

• (c) Write the deformation gradient in the standard orthonormal spherical basis {eR, eΘ, eΦ}.
• (d) Show that

f(R, t)2f ′(R, t) = R2,

and find an explicit expression for f based on the initial and boundary conditions.

• (e) Using the fact that for this problem the Cauchy stress is diagonal in spherical coordi-
nates and that divergence of the Cauchy stress is given by

divT =

[
∂tr
∂r

+
2

r
(tr − tθ)

]
er,

write the Cauchy equation for the problem.

• (f) Assuming that the material is neo-Hookean and that the pressure P (t) exerted by
the explosives on the inner wall of the cavity is known as a function of time, write the
pressure P (t) as an integral of the form

P (t) =

∫ B

A
g(r, ṙ, r̈)dR (12)

and give g(r, ṙ, r̈) explicitly. Explain how the inner radius position can be determined as
a function of time and the pressure (without computing explicitly the integral).
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7. 2013 Question 2. The Cauchy stress tensor T for an unconstrained hyperelastic material
with strain-energy density W (F) is given by the following constitutive law

T = J−1F
∂W

∂F
,

where F is the deformation gradient and J = det(F). If we consider a material where the
possible deformations are constrained during all motions, an extra condition must be satisfied
C(F) = 0 where C(F) is a smooth scalar function of the deformation gradient. For instance, in
the case of an incompressible material, we have det(F)− 1 = 0. Accordingly, the constitutive
law must be changed and an extra reaction stress N must be added to the system to enforce
that the constraint is satisfied during all deformations, so that we have now

T = J−1F
∂W

∂F
+ N.

1. Give the reaction stress for an incompressible material and show that this stress does
not produce any work by computing the rate of work given by w = tr(N D) where
D = (L + LT)/2 and L is the velocity gradient tensor.

2. The constitutive law for a linear isotropic elastic material is given by T = 2µe+λ(tr e)1
where e is the infinitesimal strain tensor. Explain how this law is modified for an in-
compressible linear isotropic material and give the explicit form of the incompressibility
condition in terms of both the displacement vector and the infinitesimal strain tensor.

3. Next, consider a hyperelastic material that is constrained such that for all possible motions
I1 − 3 = 0 where I1 = tr(FFT). Give the corresponding reaction stress and show again
that it produces no work.

4. Give the general form of the reaction stress as a function of C(F) and prove that, in
general, reaction stresses do not produce work.
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8. 2013 Question 3. A cylinder of radius A and length L in its natural state is rotated about
its axis with constant angular speed ω, the motion being given by x = x(X, t), where the
components in referential and spatial Cartesian coordinates read

x1 =
1√
λ

[X1 cos(ωt)−X2 sinωt)]

x2 =
1√
λ

[X1 sin(ωt) +X2 cosωt)]

x3 = λX3

where λ is a positive constant.

1. Show that the motion is isochoric and compute the principal stretches. Write the motion,
the deformation gradient, and the acceleration in cylindrical coordinates.

2. Assume that the cylinder is an incompressible neo-Hookean material characterised by the
strain-energy density function W = µ

2 (I1 − 3). Write the Cauchy equations in cylindrical
coordinates and compute the components of the Cauchy stress tensor as a function of λ
assuming no body forces and no traction at the curved boundaries.

3. Assuming further that the resultant forces on the end-faces of the cylinder are zero, show
that λ satisfies

µλ3 − (µ− 1

4
ρω2A2) = 0,

and that the cylinder becomes shorter and fatter by the rotation.

4. Show that the neo-Hookean material is not a suitable choice for large rotational velocities.
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9. 2014 Question 1. Consider a hyperelastic incompressible material described by an elastic
strain-energy function of the form W = w(I1) with I1 = tr(B) and B = FFT is the left
Cauchy-Green strain tensor.

1. Starting from the relationship between the Cauchy stress tensor and the strain-energy
function, T = F∂FW (F)− p1, show that the Cauchy stress tensor can be written in the
form

T = 2
∂w

∂I1
B− p1.

2. Consider a cylinder of radius A and height L composed of this material and apply a pure
torsion defined by the deformation X = RER + ZEZ ,x = rer + zez and {r = R, θ =
Θ + τZ, z = Z} where τ is constant. Show that the deformation gradient in cylindrical
coordinates (R,Θ, Z) and (r, θ, z) is

F = Grad x =

 1 0 0
0 1 τr
0 0 1

 .
(Hint: you may use the fact that the gradient of a tensor v in cylindrical coordinates is:
gradv = (∂rv)⊗ er + 1

r (∂θv)⊗ eθ + (∂zv)⊗ ez).

3. Compute the stress tensor for this deformation and elastic strain-energy function W (F ) =
ŵ(I1) with

ŵ = µ1(I1 − 3) +
µ2

2
(I2

1 − 9),

for two material constants µ1, µ2.

4. The torsion of the cylinder is maintained by applying a moment M on the ends related
to the stresses by ∫ a

0
TθZr

2dr = M.

Compute the moment as a function of the torsion for ŵ. For small torsion τ , M ≈ ατ
where α is the torsional stiffness of the cylinder. Find α as a function of µ1, µ2, and A.

Page 10 of 27



10. 2014 Question 2. Consider a compressible, isotropic hyperelastic material in the absence of
body forces and subjected to the antiplane shear deformation

x1 = X1, x2 = X2, x3 = X3 + u(X1, X2), (13)

where the function u is at least 3 times differentiable and where (x1, x2, x3) and (X1, X2, X3)
are the Cartesian coordinates of a material point in the current and reference configurations,
respectively.

1. Compute the deformation gradient F and the left Cauchy-Green strain tensor B = FFT .

2. In the case u(X1, X2) = γX2, use the coaxiality of the stress tensor and the left Cauchy-
Green strain tensor (that is, TB = BT) to prove that the following universal relations
hold

T33 − T22 = γT23, T13 = T12 = 0.

3. For a general function u = u(X1, X2), show that the choice of the strain-energy function
W1 = I1 − 3 with I1 = tr(B) implies that u(X1, X2) must satisfy Laplace’s equation.
[Hint: compute DivS = 0, where S is the nominal stress tensor.]

4. We want to show that up to a rigid-body motion, the only antiplane shear deformations
that can be supported regardless of the choice of strain-energy function are such that
u(X1, X2) = aX1+bX2. First, show that the equilibrium equations are identically satisfied
when u(X1, X2) = aX1 + bX2. Second, compute the equations of equilibrium for two
particular strain-energy functions W1 = I1 − 3 and W2 = I2

1 − 9 and show that these
equations can only be satisfied simultaneously when u is linear in X1 and X2.
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11. 2014 Question 3. The year is 1979 and the members of the Oxford University Dangerous
Sports Club have decided to try the first bungee cord jump off the Clifton Suspension bridge in
Bristol. Two members of the club Augustus L. and Clifford T. sat in Albert Green’s course in
solid mechanics and have been instructed to provide some basic computations to ensure safety.
They decide to model the motion of the bungee cord as the uniaxial extension of a rectangular
slab

x = X− u(X3, t)e3,

where x = (x1, x2, x3) and X = (X1, X2, X3) are the Cartesian coordinates of a material point
in the current and reference configurations, respectively. We denote s as the arc length along
e3 in the reference configuration and introduce the strain λ = ∂su. The cord is attached at
one end (corresponding to s = 0) and a weight of mass M is attached at the other end (taken
to be s = L where L is the length of the cord in the reference configuration).

1. Determine the deformation gradient F as a function of λ and compute det(F). Find a
restriction on the strain λ that ensures that the deformation is well defined. Using Cauchy
equation in the reference configuration DivS+ρ0b = ρ0∂tv, write the equation of motion
in the reference configuration for the normal stress component n(s) = S33 assuming
that the cord has uniform density ρ0 in the reference configuration and is subject to a
gravitational body force b0 = −ge3.

2. Clifford and Augustus decide to determine the maximal extension of the cord under the
mass M at equilibrium. Specify the boundary condition and compute the stress as a
function of the reference arc length s for a cord of reference cross-section A0.

3. Augustus believes that the material can be modeled as Hookean so that n = Eλ, where
E is Young’s modulus. Using this law, what is the maximal equilibrium extension of a
cord of initial length L attached on the bridge under the effect of a mass M .

4. Clifford disagrees with Augustus and believes that in large deformations, nonlinearities
could be important. He suggests the following law n = E arctan(λ). Compute again the
extension. Is this value smaller or larger than the one computed by Ausgustus? Explain
why? Would you trust Augutus or Clifford?
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12. 2015 Question 1. Consider the deformation χ : B0 → B of a solid from a stress-free reference
configuration B0 to the current configuration B, and define the deformation gradient

F = Gradχ,

where the gradient is taken with respect to the reference configuration. We define J = det(F)
and the velocity gradient tensor,

L = gradv.

where v is the velocity of a material point and the gradient is taken with respect to the current
configuration. These two tensors are related by

Ḟ = LF,

where the upper dot ˙( ) stands for the time derivative.

The physical balance laws for a hyperelastic solid are given by:

ρ̇+ ρdivv = 0, (14)

div (T) + ρb = ρ v̇, (15)

TT = T, (16)

Ẇ = Jtr(TL). (17)

(a) Define the different quantities entering Equations (14–17). Explain briefly the physical
principles that these equations express and the assumptions used to derive them.

(b) Let u and A denote arbitrary vector and tensorial fields on B0, respectively. Prove the
identities

Divu = J div (J−1Fu),

DivA = J div (J−1FA).

Hint: You can use without proof that if F is a function of λ, then: ∂J
∂λ = J tr

(
F−1 ∂F

∂λ

)
.

(c) Use these identities to write the balance laws (14-17) in the reference configuration in
terms of the referential density ρ0 = Jρ and the nominal stress tensor S = JF−1T.

(d) Use Equation (17) to obtain a constitutive equation for the nominal stress tensor as a
function of F.

(e) Derive the constitutive equation in the case of an incompressible hyperelastic material.
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13. 2015 Question 2. We consider the symmetric deformation of a spherical shell with radii
A > 0 and B > A in the reference configuration into a spherical shell of radii a > 0 and b > a
in the current configuration. The deformation of the body can be written in the form

x =
r

R
X, r = f(R),

where R = |X| and r = |x|. The corresponding deformation gradient is

F =
1

R2

(
f ′(R)− f(R)

R

)
X⊗X +

f(R)

R
1.

The spherical shell is composed of an incompressible isotropic hyperelastic material char-
acterised by a strain-energy density function W = W (λr, λθ, λφ) where (λr, λθ, λφ) are the
principal stretches. The shell is subjected to a uniform hydrostatic loading with pressure P
(P > 0 corresponds to an external compressive loading).

(a) Write the deformation gradient in the standard orthonormal spherical basis {eR, eΘ, eΦ}
and use the incompressibility condition to find an explicit expression for f as a function
of R.

(b) Using the fact that for this problem the Cauchy stress is diagonal in spherical coordinates
(T = diag(tr, tθ, tφ)) and that

divT =

[
∂tr
∂r

+
2

r
(tr − tθ)

]
er,

write the Cauchy equation for the static problem in the absence of a body force. Obtain
a differential equation for tr as a function of λ = r/R, in terms of the auxiliary function
h(λ) = W (1/λ2, λ, λ). By applying the boundary conditions, derive an integral expression
for the pressure P in terms of the inner stretch λa = a/A.
Hint: You may use the following identity without proof: ∂λ/∂r = (1− λ3)/R.

(c) We consider a sphere (A = 0) and the problem of cavitation. That is, the opening of a
cavity a > 0 inside a sphere under external loading. Find an expression for the critical
pressure Pcrit necessary for cavitation.
Hint: use the limit A→ 0 in the expression for P from the previous question.

(d) Consider a strain-energy density function of the form W = µ(λαr + λαθ + λαφ) with α > 0.
Find Pcrit for the particular case α = 2. Find the values of α for which there exists a
finite pressure for cavitation.
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14. 2015 Question 3. Consider a unit cube composed of an incompressible hyperelastic material
described with an elastic strain-energy density function of the form W = w(I1) with I1 = tr(B)
and B = FFT is the left Cauchy-Green strain tensor. The cube is deformed by a combined
stretch and shear of the form

x =
1√
a
X + kaY, y = aY, z =

1√
a
Z, (18)

where (x, y, z) and (X,Y, Z) are the Cartesian coordinates for the deformed and the reference
configurations, respectively. Here, a and k are positive constants representing the axial stretch
and the shear parameter, respectively (see Figure 1). In the deformation, the cube is free of
traction in the Z–direction.

ka

1

1

a t

nY

X

Figure 1: Schematic representation of the cross-section of a unit cube (solid line) deformed by
combined stretch and shear (dashed line).

(a) Show that the Cauchy stress tensor can be written in the form

T = 2
∂w

∂I1
B− p1.

(b) Compute the deformation gradient F and the left Cauchy-Green strain tensor B. De-
termine the pressure p and the Cauchy stress tensor for this deformation in terms of
β1 = 2w′(I1).

(c) The nonlinear shear modulus µ and the nonlinear elastic modulus N are defined as

µ =
Tt

ln(Bt + 1)
, N =

Tyy

ln
(
B

1/2
yy

) , (19)

where Bt = t · Bn is the shear strain and Tt = t · Tn is the shear stress (t and n are
the unit tangent and normal vectors to the inclined face – see Figure 1). Compute N and
µ for the deformation. Show how the nonlinear shear modulus µ provides a constitutive
constraint on the function w = w(I1).

(d) In the limit of small shear strains, define

N0 = lim
k→0

N, and µ0 = lim
k→0

µ, (20)

and show that the ratio N0/µ0 does not depend on the choice of the constitutive relation-
ship. In the limit of small extensions, Young’s modulus is given by E = lima→1N0. Show
that E/µ0 → α when a→ 1 and find the constant α.
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15. 2017 Question 1. For a hyperelastic material with strain-energy density W = W (F), where
F is the deformation gradient, the constitutive equation for the nominal stress tensor S is

S =
∂W

∂F
.

(a) Give Nanson’s formula relating the change in an area element from the reference config-
uration to the current configuration. Use Nanson’s formula to relate the nominal stress
tensor to the Cauchy stress tensor and give the constitutive equation for the Cauchy stress
tensor in terms of W and its derivatives.

(b) Express the constraint of incompressibility in terms of the deformation gradient F. In this
case show how to modify the constitutive equations for the nominal stress tensor and the
Cauchy stress tensor to enforce the incompressibility constraint. Define the infinitesimal
strain tensor of linear elasticity e and express the incompressibility constraint in terms of
this tensor for small deformations.

(c) Now, assume that instead of the incompressibility constraint, the material is constrained
by Ericksen’s constraint :

I1 = 3,

where I1 = tr(B) and B = FFT is the left Cauchy-Green tensor. The materials that
satisfy this constraint in all deformations are called Ericksen materials. In this case show
how to modify the constitutive equations for the nominal stress tensor and the Cauchy
stress tensor to enforce Ericksen’s constraint.

(d) For an unconstrained isotropic elastic material, the constitutive equation for the Cauchy
stress tensor can be written

T = w01 + w1B + w2B
2, (21)

where the coefficients w0, w1, w2, are functions of the invariants (I1, I2, I3) of B (with
I2 = (I2

1 − tr(B2))/2 and I3 = det(B)).
Find a similar representation for Ericksen materials.

(e) Show that for small deformations Ericksen’s constraint is equivalent to the incompress-
ibility constraint. Despite the fact that incompressible materials and Ericksen materials
satisfy the same constraint in linear elasticity, an incompressible Ericksen material can-
not be deformed in nonlinear elasticity. To illustrate this result, consider plane-strain
deformations and show that the only possible deformations in materials that satisfy both
constraints are rigid-body motions.
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16. 2017 Question 2. Consider the planar axisymmetric static deformations of an isotropic
compressible hyperelastic annulus in which points with plane polar coordinates (R,Θ) ∈
[A,B]× [0, 2π] are mapped to points (r(R),Θ).

(a) Show that the deformation gradient F in polar coordinates is diagonal and find the prin-
cipal stretches λ1 and λ2. Give the Cauchy stress in terms of the strain-energy density
W = W (λ1, λ2).

(b) Give the general form of Cauchy’s equilibrium equation and explain all terms appearing
in the equation. For the particular class of deformations considered and in the absence of
body forces, show that the Cauchy equation can be reduced to the single equation

d

dR

(
R
∂W

∂λ1

)
− ∂W

∂λ2
= 0. (22)

(c) For the remainder of this question, consider the following strain-energy density

W = f(i1) + c1(i2 − 1),

where i1 = λ1 + λ2, i2 = λ1λ2, and c1 > 0 is a constant.
Find the values of the constants α1 and α2 for which

r(R) = α1R+
α2

R
.

is a solution of (22).
Find restrictions on the function f ensuring that the reference configuration is stress free.

(d) Consider the limit case of a cavity in the plane described by a ring for which the inner
radius in the reference configuration A is strictly positive and the outer radius is infinite.
Assume that this cavity is subject to a negative internal pressure P with P > −c1 and
is traction-free at infinity. Write the boundary conditions for the Cauchy stress and
determine the deformation and the Cauchy stress at all points as a function of P . Starting
at P = 0 and for decreasing values of P , find the critical value of the pressure at which
the hoop stress first diverges.
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17. 2017 Question 3. Consider an uniaxial extension in which an isotropic hyperelastic cuboid
is subject to a constant tension T > 0 on a face perpendicular to one of its axes and producing
a stretch λ along the same axis (the tension on the face of a cuboid is the amplitude of the
component of the Cauchy stress tensor along the face’s outer normal). Assume that there is
no traction on the faces normal to the other two axes and that the two stretches along these
axes are equal.

(a) Consider the particular case where the material is incompressible with a neo-Hookean
strain-energy function W = µ(I1−3)/2. Find the relationship between the tension T and
the stretch λ. Express the Young’s modulus as a function of µ.

[Note: For this deformation, you can use without proof that if the deformation gradient
tensor is diagonal in a well-chosen basis, then the Cauchy stress tensor is diagonal in the
same basis.]

(b) Consider the general case where the material is isotropic hyperelastic and incompressible.
Find the relationship between the tension T and the stretch λ. Express the Young’s
modulus as a function of the strain-energy density W and its derivatives.

[Note: For this deformation, you can use again that if the deformation gradient tensor
is diagonal in a well-chosen basis, then the Cauchy stress tensor is diagonal in the same
basis.]

(c) An elastic material satisfies the Baker-Ericksen inequalities, if

λi 6= λj ⇒ (ti − tj)(λi − λj) > 0, i, j = 1, 2, 3, (23)

where {t1, t2, t3} and {λ1, λ2, λ3} are the principal stresses and principal stretches, respec-
tively.
For an isotropic compressible elastic material, consider a stress field of simple tension in
the direction e3:

T = Te3 ⊗ e3, T > 0. (24)

We are interested in the corresponding deformation. Show that the following propositions
are equivalent:

(i) The material satisfies the Baker-Ericksen inequalities for this deformation;

(ii) The left Cauchy-Green tensor has the representation

B = b1e1 ⊗ e1 + b2e2 ⊗ e2 + b3e3 ⊗ e3,

where the coefficients b1, b2, b3, are such that b1 = b2 and b3 > b1 > 0.

Note: When proving that (i) implies (ii), you will need to prove that the tensor B is
diagonal.
[̇Hint: You can use without proof the following representation of the Cauchy stress tensor

T = ω01 + ω1B + ω−1B
−1,

where the coefficients ω0, ω1, ω−1, are functions of the principal stretches.]
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18. 2018 Question 1. The generalised shear deformation of a cuboid of hyperelastic material is
described by

x = X, y = Y, z = Z + u(X,Y ),

where (X,Y, Z) ∈ [0, A] × [0, B] × [0, C] and (x, y, z) ∈ R3 are the Cartesian coordinates for
the reference and current configuration respectively, and u = u(X,Y ) is a smooth function to
be determined (with the property: u(0, 0) = 0).

(a) Define the deformation gradient F and compute it for this deformation. Compute the
left Cauchy-Green tensor B = FFT and its invariants I1 = tr(B), I2 = (I2

1 − tr(B2)/2).
Assume that the material is incompressible with strain-energy density W = W (I1, I2).
You may assume in this case that the Cauchy stress tensor can be written

T = (−p− 4ψ)1 + 2(φ+ ψI1)B− 2ψB2,

where p is the pressure, φ = ∂W/∂I1, ψ = ∂W/∂I2. Express the Cauchy stress tensor for
the generalised shear motion in terms of u, φ, ψ and their derivatives.

(b) Give the general form of Cauchy’s equilibrium equation and explain all terms appearing
in the equation. For the particular class of deformations considered and in the absence of
body forces, express the Cauchy equation in terms of u, φ, ψ and their derivatives. Find
a necessary condition in terms of the derivatives of both the strain-energy density W and
the function u so that the material can support a generalised shear deformation. Show
that for the particular case of strain-energy density functions of the form W = W (I1),
this condition is automatically satisfied.

(c) Consider the particular case of a neo-Hookean energy with W = µ(I1 − 3)/2 and assume
null normal traction on the faces perpendicular to the X- and Y -axes. Express this
condition in terms of the Cauchy stress and show that it implies that the pressure is
constant across the body and that u must be a harmonic function.

(d) Show that for a neo-Hookean material a generalised shear deformation cannot be realised
by the application of shear stress alone but also requires normal stresses.
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19. 2018 Question 2. We are interested in obtaining dynamical solutions for incompressible
elastic materials. We will start with known static solutions of Cauchy’s equations and find
conditions under which they can be used to define dynamical solutions.

(a) Cauchy’s equations are given by

div T + ρb = ρẍ,

T = TT.

Define and explain briefly all the quantities entering these equations and specify their
dimensions. For the rest of the question, assume that ∂tb = 0.

(b) Assume that the Cauchy equations for an incompressible homogeneous elastic body admit
a one-parameter family of static solutions of the form x = x0(τ), with T = T0(τ), where
τ ∈ R is a parameter. Show that x0(t) is a dynamical solution of the Cauchy equation if
and only if there exists a scalar potential ξ = ξ(x, t) such that

ẍ0 = −grad ξ(x0(t), t).

Show that in this case, T has the form T = T0(t) + q1, where 1 is the identity tensor
and q is a pressure field to be determined. Show that a necessary condition for (b) to be
satisfied is

curl ẍ = 0.

(c) Consider a homogeneous motion of the form

x = F(t)X + c(t), detF(t) = 1,

where F(t) is a constant tensor at each time t, c(t) is a constant vector at each time t,
and X ∈ R3 is the position of a material point in the reference configuration. Find a
necessary condition on F and its derivatives so that this motion is a solution of Cauchy’s
equations. Find the corresponding potential ξ.
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20. 2018 Question 3. In an isotropic material, the material response does not depend on the
local orientation of the material. For a transversely isotropic material, the strain-energy density
depends on the local orientation relative to a unit vector field M that may vary with position.
The purpose of this question is to obtain the stress tensor of a transversely isotropic material
and explore some of its properties. We consider deformations from the reference to the current
configurations characterised by a deformation gradient F.

(a) For an incompressible elastic material with strain-energy density W = W (F), give the
nominal stress tensor and the Cauchy stress tensors in terms of W and its derivatives.

(b) We consider now a particular incompressible transversely isotropic material for which the
strain-energy density W = w(I1, I4) depends on both F and M though the two invariants:
I1 = tr(B) and I4 = M · (CM) where B = FFT and C = FTF. Show that

∂I4

∂F
= 2M⊗ FM.

Use this result to express the Cauchy stress tensor in terms of w and its derivatives. Find
necessary conditions on w so that the reference configuration is stress free.

(c) Consider the homogeneous tri-axial extension of a cuboid initially positioned along the
Cartesian axes into another cuboid aligned with the same axes. Assume that M lies in the
(X1, X2) plane with components M = (cosϕ, sinϕ, 0). Compute I1, I4, and the Cauchy
stress for this deformation as functions of the principal stretches λ1, λ2, and ϕ. Find
the values of ϕ for which this deformation can be maintained only by the application of
normal stresses on the cuboid faces.

(d) Assume that the body is a transversely isotropic incompressible elastic cuboid with strain-
energy density

w =
µ

2
(I1 − 3) +

ν

4
(I4 − 1)2.

Consider the simple shear deformation given by

x1 = X1 + kX2, x2 = X2, x3 = X3,

where x and X are the Cartesian coordinates for the deformed and the reference configu-
rations, respectively. Here, k is the shear parameter. Assume that M lies in the (X1, X2)
plane with components M = (cosϕ, sinϕ, 0). Compute I1, I4, and the Cauchy stress for
this deformation as functions of k and ϕ. Show that there are at most four values of k
for which the normal tractions on the faces perpendicular to the X1 and X3 axes vanish.
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21. 2019 Question 1. The generalised shear deformation of a cuboid of hyperelastic material is
described by

x = X, y = Y, z = Z + u(X,Y ),

where (X,Y, Z) ∈ [0, A] × [0, B] × [0, C] and (x, y, z) ∈ R3 are the Cartesian coordinates for
the reference and current configuration respectively, and u = u(X,Y ) is a smooth function to
be determined (with the property: u(0, 0) = 0).

(a) Define the deformation gradient F and compute it for this deformation. Compute the
left Cauchy-Green tensor B = FFT and its invariants I1 = tr(B), I2 = (I2

1 − tr(B2))/2.
Assume that the material is incompressible with strain-energy density W = W (I1, I2).
You may assume in this case that the Cauchy stress tensor can be written

T = (−p− 4ψ)1 + 2(φ+ ψI1)B− 2ψB2,

where p is the pressure, φ = ∂W/∂I1, ψ = ∂W/∂I2. Express the Cauchy stress tensor for
the generalised shear motion in terms of u, φ, ψ and their derivatives.

(b) Give the general form of Cauchy’s equilibrium equation and explain all terms appearing
in the equation. For the particular class of deformations considered and in the absence of
body forces, express the Cauchy equation in terms of u, φ, ψ and their derivatives. Find
a necessary condition in terms of the derivatives of both the strain-energy density W and
the function u so that the material can support a generalised shear deformation. Show
that for the particular case of strain-energy density functions of the form W = W (I1),
this condition is automatically satisfied.

(c) Consider the particular case of a neo-Hookean energy with W = µ(I1 − 3)/2 and assume
null normal traction on the faces perpendicular to the X- and Y -axes. Express this
condition in terms of the Cauchy stress and show that it implies that the pressure is
constant across the body and that u must be a harmonic function.

(d) Show that for a neo-Hookean material a generalised shear deformation cannot be realised
by the application of shear stress alone but also requires normal stresses.
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22. 2019 Question 2. We are interested in obtaining dynamical solutions for incompressible
elastic materials. We will start with known static solutions of Cauchy’s equations and find
conditions under which they can be used to define dynamical solutions.

(a) Cauchy’s equations are given by

div T + ρb = ρẍ,

T = TT.

Define and explain briefly all the quantities entering these equations and specify their
dimensions. For the rest of the question, assume that ∂tb = 0.

(b) Assume that the Cauchy equations for an incompressible homogeneous elastic body admit
a one-parameter family of static solutions of the form x = x0(τ), with T = T0(τ), where
τ ∈ R is a parameter. Show that x0(t) is a dynamical solution of the Cauchy equation if
and only if there exists a scalar potential ξ = ξ(x, t) such that

ẍ0 = −grad ξ(x0(t), t).

Show that in this case, T has the form T = T0(t) + q1, where 1 is the identity tensor and
q is a pressure field to be determined. Show that a necessary condition for the existence
of such a scalar potential is

curl ẍ = 0.

(c) Consider a homogeneous motion of the form

x = F(t)X + c(t), detF(t) = 1,

where F(t) is a constant tensor in space at each time t, c(t) is a constant vector in space at
each time t, and X ∈ R3 is the position of a material point in the reference configuration.
Find a necessary condition on F and its derivatives so that this motion is a solution of
Cauchy’s equations. Find the corresponding potential ξ.
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23. 2019 Question 3. In an isotropic material, the material response does not depend on the
local orientation of the material. For a transversely isotropic material, the strain-energy density
depends on the local orientation relative to a unit vector field M that may vary with position.
The purpose of this question is to obtain the stress tensor of a transversely isotropic material
and explore some of its properties. We consider deformations from the reference to the current
configurations characterised by a deformation gradient F.

(a) For an incompressible elastic material with strain-energy density W = W (F), give the
nominal stress tensor and the Cauchy stress tensors in terms of W and its derivatives.

(b) We consider now a particular incompressible transversely isotropic material for which the
strain-energy density W = w(I1, I4) depends on both F and M through the two invariants:
I1 = tr(B) and I4 = M · (CM) where B = FFT and C = FTF. Show that

∂I4

∂F
= 2M⊗ FM.

Use this result to express the Cauchy stress tensor in terms of w and its derivatives. Find
necessary conditions on w so that the reference configuration is stress free.

(c) Consider the homogeneous tri-axial extension of a cuboid initially positioned along the
Cartesian axes into another cuboid aligned with the same axes. Assume that M lies
in the (X1, X2) plane with components M = (cosϕ, sinϕ, 0). Compute I1, I4, and the
Cauchy stress for this deformation as functions of the principal stretches λ1, λ2, and ϕ.
Find the values of ϕ for which this deformation can be maintained by the application of
only normal stresses on the cuboid faces.

(d) Assume that the body is a transversely isotropic incompressible elastic cuboid with strain-
energy density

w =
µ

2
(I1 − 3) +

ν

4
(I4 − 1)2.

Consider the simple shear deformation given by

x1 = X1 + kX2, x2 = X2, x3 = X3,

where x and X are the Cartesian coordinates for the deformed and the reference configu-
rations, respectively. Here, k is the shear parameter. Assume that M lies in the (X1, X2)
plane with components M = (cosϕ, sinϕ, 0). Compute I1, I4, and the Cauchy stress for
this deformation as functions of k and ϕ. Show that there are at most four values of k
for which the normal tractions on the faces perpendicular to the X1 and X3 axes vanish.
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24. 2020 Question 1. The purpose of this question is to study the deformation of a cuboid under
a generalised shear. First, we will consider a general isotropic incompressible material then a
particular material described by a Mooney-Rivlin strain-energy density function. In this case,
the solution can be found explicitly.

(a) Assume that the material is isotropic and incompressible with strain-energy density func-
tion W = W (I1, I2), where I1 and I2 are the invariants defined below. For a deformation
with deformation gradient F, show that the Cauchy stress tensor can be written

T = −p1 + β1B + β−1B
−1,

where B = FFT and I1 = tr(B), I2 = (I2
1 − tr(B2))/2. Give the explicit form of β1, β−1

in terms of W and its derivatives. Explain the physical interpretation of the function
p = p(x, y, z) appearing in the Cauchy stress tensor.

(b) The generalised shear deformation of a cuboid of hyperelastic material is described by

x = X, y = K(X) + Y, z = Z,

where (X,Y, Z) ∈ [0, A]×[0, B]×[0, C] and (x, y, z) ∈ R3 are the Cartesian coordinates for
the reference and current configuration, respectively, and K = K(X) is a smooth function
to be determined (with the property: K(0) = 0). Compute the deformation gradient F
for this deformation and express the Cauchy stress tensor in terms of (p, β1, β−1) and K.

(c) Show that a generalised shear deformation cannot be realised by the application of shear
stress alone but also requires normal stresses.

(d) In the absence of body forces and in the particular case of a Mooney-Rivlin material, with
strain-energy density function

W =
µ1

2
(I1 − 3) +

µ2

2
(I2 − 3) ,

show that β1 and β−1 are constant, compute the equations of equilibrium, and show that
a generalised shear deformation is possible only if K is a quadratic function of X.
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25. 2020 Question 2. The goal of this problem is to prove Ericksen’s theorem stating that a
deformation of an arbitrary homogeneous isotropic hyperelastic body can be maintained by the
application of surface tractions only (without body forces) if and only if it is a homogeneous
deformation in the Cartesian coordinates.

(a) Express the Cauchy equations in terms of the nominal stress tensor S in the reference
configuration. Define and explain all terms entering the equation. Give the constitutive
law for hyperleastic material relating the nominal stress tensor to a strain-energy density
functionW =W(F). By using these equations, or otherwise, prove that in the absence of
body forces, a homogeneous deformation can be maintained by the application of surface
tractions.

(b) For an isotropic body, one can express the strain-energy density functionW = W (I1, I2, I3)
in terms of the invariants of B = FFT where I1 = tr(B), I2 = (I2

1 − tr(B2))/2 and
I3 = det(B). Write the nominal stress tensor in terms of W and its derivatives.

(c) Show that in the absence of body forces, a necessary condition for the Cauchy equations
to be satisfied for arbitrary materials (i.e. for all W ) is

Div

(
∂Ii
∂F

)
= 0, and Grad(Ii) = 0, i = 1, 2, 3. (25)

(d) By using equalities (25) for i = 1, or otherwise, show that the only deformations that can
be maintained by surface tractions for all materials are homogeneous deformations.
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26. 2020 Question 3. We consider the deformation mapping an incompressible hyperelastic
rectangular bar,

0 < A0 6 X 6 A1, 0 6 Y 6 B, 0 6 Z 6 C,

into an annular wedge by the deformation

r =
√

2αX, θ =
Y

α
, z = Z, α > 0.

where (X,Y, Z) are the reference Cartesian coordinates and (r, θ, z) are the current cylindrical
coordinates. The problem is to understand the kinematics of the deformation and compute
the tractions necessary to bend the block into a wedge.

(a) Show that the deformation gradient F has the form

F = λr(r)er ⊗EX + λθ(r)eθ ⊗EY + λz(r)ez ⊗EZ , (26)

where {er, eθ, ez} and {EX ,EY ,EZ} are the orthonormal basis vectors associated with
the reference and current configurations, respectively. Find the form of the principal
stretches {λr(r), λθ(r), λz(r)}.

(b) For an hyperelastic material with a strain-energy density function described in terms
of the principal stretches W = W (λr, λθ, λz), find the components of the Cauchy stress
tensor T for this deformation in cylindrical coordinates.

(c) In the absence of body forces, the stress in cylindrical coordinates satisfies

∂Trr
∂r

+
1

r

∂Tθr
∂θ

+
∂Tzr
∂z

+
1

r
(Trr − Tθθ) = 0, (27)

∂Trθ
∂r

+
1

r

∂Tθθ
∂θ

+
∂Tzθ
∂z

+
1

r
(Trθ + Tθr) = 0, (28)

∂Trz
∂r

+
1

r

∂Tθz
∂θ

+
∂Tzz
∂z

+
1

r
Trz = 0. (29)

Assume that the radial stress Trr vanishes at the internal surface r0 =
√

2αA0. Show
that by introducing the auxiliary function h(r) = W (λr(r), λθ(r), λz(r)), the radial stress
Trr and hoop stress Tθθ can be expressed in terms of h(r) and dh/dr. Provide also an
expression for p(r) and Tzz(r) in terms of the functions h, W and their derivatives.

(d) For the particular case of a neo-Hookean bar with A0 = 1, A1 = 2, and strain-energy
density function

W =
µ

2

(
λ2
r + λ2

θ + λ2
z − 3

)
, (30)

find the pressure P = −Trr at the external surface r1 = 2
√
α necessary to bend the bar.

Find the value of α such that P = 0. Explain how this solid bar can be deformed into a
wedge despite the fact that P = 0.
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