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1 Introduction: one-dimensional elasticity

1.1 A one-dimensional theory

Here, we consider a one-dimensional continuum that can only deform along its length. Therefore, there is no bending,
twisting, or shearing, just stretching. The steps to develop a theory are

1) Kinematics: A description of the possible deformations. The definition of strains, given by geometry: stretch along
the line.

2) Mechanics: The definitions of stresses and forces acting on the medium. Then a statement of balance laws based on
the balance of linear and angular momenta.

3) Constitutive laws: A relationship between stresses and strains.

The results of these three steps is a closed set of equations whose solutions (with appropriate boundary conditions and initial
data) is a description of the stresses and deformations in a particular body under a particular set of forces.
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1.2 Kinematics

Consider a 1D continuum of length L. Any material point is labelled by X 2 [0, L]. The motion or deformation is the
mapping x = x(X, t), which is assumed smooth and invertible.

0 L X

� =
@x

@X
, stretch; ẋ = V (X, t) =

@x

@t
, velocity. (1)

Since the mapping is invertible, we have � > 0 for all motion.
If the deformation is homogeneous: � = l/L (current/original length)
The identity mapping x = X corresponds to the stress-free (Langrangian) configuration.

Motion: The velocity of a material point is V (X, t) = ẋ = @x/@t. Since X = X(x, t) is invertible, we can write,

v(x, t) = ẋ(X(x, t), t), (2)

where v is the velocity at the spatial point x.
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The acceleration of a point is,

ẍ(X, t) =
d2x

dt2
, or a =

dv

dt
=

@v

@t
+ v

@v

@x
, (3)

where

d

dt
=

@

@t
+ v

@

@x
, (4)

is the material time derivative.
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1.3 Dynamics

1.3.1 Conservation of mass

We define ⇢: linear density in the current configuration (mass per unit length as measured in the current configuration)
⇢0: the linear density in the reference configuration.

Assuming no mass is created, we have

Z X2

X1

⇢0 dx =

Z x2

x1

⇢ dx, (5)

with x1 = x(X1, t), x2 = x(X2, t). Since dx = �dX, we have

Z X2

X1

⇢0 dX =

Z X2

X1

⇢� dX, (6)

which implies that �⇢ = ⇢0, the Lagrangian conservation of mass. This is the first conservation law.
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1.3.2 Balance of linear momentum

The general principle for the balance of linear momentum is

d

dt
(linear momentum) = force acting on the system.

We decompose this into

0 X1 X2 L

1) The linear momentum:

Z X2

X1

⇢0ẋ dX (7)
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�n(X1) n(X2)

2) forces: themselves further decompose into forces due to external (body) forces or internal (contact) forces:

• Body forces,

Z X2

X1

⇢0f dX (8)

wheref is the density of body force (force per unit mass).

• Contact forces: force the material exerts on itself.

This material exerts a force n(X2) on [0, X2] counted positive (tensile) if the force is in the direction of the axis,
compressive otherwise. Therefore, from the principle of action=reaction, the contact force acting on the segment
[X1, X2] is n(X2)� n(X1).
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�n(X1) n(X2)

Therefore, the balance of linear momentum for a one-dimensional continuum implies

d

dt

Z X2

X1

⇢0ẋ dX =

Z X2

X1

⇢0f dX + n(X2)� n(X1) (9)

We obtain an expression with a single integral by (i) moving the derivative inside the integral and
(ii) use the fundamental theorem of calculus,

Z X2

X1

@n

@X
dX = n(X2)� n(X1). (10)

That is
Z X2

X1

✓
⇢0ẍ dX � ⇢0f

@n

@X

◆
dX = 0. (11)1-  BE
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This relation is valid 8 X1, X2, so that, we can localise the integral (assuming continuity of the integrand) to obtain

⇢0a = ⇢0f +
@n

@X
. (12)

This is an equation for the force n(X) in the material (Cauchy first equation).

This equation is in the reference configuration (all quantities depend on the material variable X and time t). We can
obtain an equation in the current configuration by using dX = ��1 dx

⇢a = ⇢f +
@n

@x
. (13)

The process to obtain a local equation (PDE) is:

(i) balance law from physical principle
(ii) transport: all quantities in the same reference frame
(iii) localisation: transform an integral relation to a di↵erential one.

But what is @n/@x? We need a constitutive law to close the system.

Lagrangian

D Eulerian
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1.3.3 Constitutive laws

To close the problem, we need to relate the stresses to the strains, such as Hooke’s law

n = K(�� 1). (14)

For large deformations, we will assume that the material is hyperelastic :
the constitutive law derives from an elastic potential  :

n = f(�) =
@ 

@�
. (15)

we require f(1) = 0 and
the derivative of f at � = 1 exists.
Then, the Hooke constant K = f 0(1) is then simply the linearised behaviour around the stress-free state.
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The theory of three-dimensional elasticity developed in next section when applied to the uniaxial extension of an incom-
pressible rectangular neo-Hookean bar suggests the following nonlinear law

n =
K

3
(�2 � ��1), (16)

0.5 1.0 1.5 2.0 2.5 3.0
λ

-10

- 5

5

n

Figure 1: Comparison between the linear (dash) and nonlinear (solid) Hookean response for K = 3.
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