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1 Introduction: one-dimensional elasticity

1.1 A one-dimensional theory

Here, we consider a one-dimensional continuum that can only deform along its length. Therefore, there is no bending,
twisting, or shearing, just stretching. The steps to develop a theory are

1) Kinematics: A description of the possible deformations. The definition of strains, given by geometry: stretch along
the line.

2) Mechanics: The definitions of stresses and forces acting on the medium. Then a statement of balance laws based on
the balance of linear and angular momenta.

3) Constitutive laws: A relationship between stresses and strains.

The results of these three steps is a closed set of equations whose solutions (with appropriate boundary conditions and initial
data) is a description of the stresses and deformations in a particular body under a particular set of forces.
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1.2 Kinematics

Consider a 1D continuum of length L. Any material point is labelled by X € [0, L]. The motion or deformation is the
mapping [v = (X, t)| which is assumed smooth and invertible.
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Since the mapping is invertible, we have \ > 0 for all motion.
If the deformation is homogeneous: \ = [/L (current/original length)
The identity mapping z = X corresponds to the stress-free (Langrangian) configuration.

Motion: The velocity of a material point is V(X,t) = & = 0x/0t. Since X = X (x,t) is invertible, we can write,
o(w, 1) = (X (2,1), 1), @)

where v is the velocity at the spatial point x.
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The acceleration of a point is,

. d’z dv Ov ov
HXD=g o g T G)
where
d 0 0
a = oo @

is the material time derivative.
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1.3 Dynamics
1.3.1 Conservation of mass

We define p: linear density in the current configuration (mass per unit length as measured in the current configuration)
po: the linear density in the reference configuration.

X2 i)
/X podx=/ pd, (5)

with 21 = x(X1,1), x2 = x(Xs,t). Since|dr = AdX | we have

Assuming no mass is created, we have

Xo X5 xz,
| max= [ prax, ,_.-——> (g.~EN)BX =0
X1 X, 7{(

which implies that A\p = py, the Lagrangian conservation of mass. This is the first conservation law.

= AS = 5o
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1.3.2 Balance of linear momentum

The general principle for the balance of linear momentum is

d . :
— (linear momentum) = force acting on the system.

We decompose this into

1) The linear momentum:

/X2pox'dX = %g}f,*fﬁ\*-’ j-fe‘ia (7)

X1
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2) forces: themselves further decompose into forces due to external (body) forces or internal (contact) forces:

e Body forces,
Xo
| mrax (8)
Xy

wheref is the density of body force (force per unit mass).

e Contact forces: force the material exerts on itself.
This material exerts a force n(X3) on [0, X5] counted positive (tensile) if the force is in the direction of the axis,

compressive i refore, from the principle of action=reaction, the contact force acting on the segment
[Xl, XQ] IS n(Xg) — n(Xl)
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\/\/T —
—n(Xy) n(Xs)
Therefore, the balance of linear momentum for a one-dimensional continuum implies
d XQ X2
Qi pox dX = pofdX +n(Xs) — n(Xy) (9)
t Xl Xl
We obtain an expression with a single integral by (i) moving the derivative inside the integral and
(ii) use the fundamental theorem of calculus,
X
2 0n
—dX =n(Xs) —n(Xy). 1
| dX = a0 —n(x) (10)
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This relation is valid V X7, X3, so that, we can localise the integral (assuming continuity of the integrand) to obtain

poa = pof + g—; L&%Tﬂﬂﬁ \QWn (12)

This is an equation for the force n(X) in the material (Cauchy first equation).

This equation is in the reference configuration (all quantities depend on the material variable X and time t). We can
obtain an equation in the current configuration by using dX = A\~!dz

0 / .
pa=rf+5 | E L Nodiom (13)

The process to obtain a local equation (PDE) is:

(i) balance law from physical principle
(ii) transport: all quantities in the same reference frame
(iii) localisation: transform an integral relation to a differential one.

But what is On/0x? We need a constitutive law to close the system.

=
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1.3.3 Constitutive laws

To close the problem, we need to relate the stresses to the strains, such as Hooke's law

n=KM\-1). (14)

For large deformations, we will assume that the material is hyperelastic:
the constitutive law derives from an elastic potential W:

v

= o7 (15)

n=f(A)

we require f(1) =0 and
the derivative of f at A = 1 exists.
Then, the Hooke constant K = f’(1) is then simply the linearised behaviour around the stress-free state.
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The theory of three-dimensional elasticity developed in next section when applied to the uniaxial extension of an incom-
pressible rectangular neo-Hookean bar suggests the following nonlinear law

(16)

r |
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Figure 1. Comparison between the linear (dash) and nonlinear (solid) Hookean response for K = 3.
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End of Chapter 1



