Solid Mechanics Chapter 1: 1D Elasticity Oxford, Michaelmas Term 2020

Prof. Alain Goriely

1

1 Introduction: one-dimensional elasticity

1.1 A one-dimensional theory

Here, we consider a one-dimensional continuum that can only deform along its length. Therefore, there is no bending, twisting, or shearing, just stretching. The steps to develop a theory are

- 1) **Kinematics:** A description of the possible deformations. The definition of *strains*, given by geometry: stretch along the line.
- 2) **Mechanics:** The definitions of *stresses* and *forces* acting on the medium. Then a statement of balance laws based on the balance of linear and angular momenta.
- 3) Constitutive laws: A relationship between stresses and strains.

The results of these three steps is a closed set of equations whose solutions (with appropriate boundary conditions and initial data) is a description of the stresses and deformations in a particular body under a particular set of forces.

1.2 Kinematics

Consider a 1D continuum of length L. Any material point is labelled by $X \in [0, L]$. The motion or deformation is the mapping x = x(X, t) which is assumed smooth and invertible.

Since the mapping is invertible, we have $\lambda > 0$ for all motion. If the deformation is *homogeneous*: $\lambda = l/L$ (current/original length) The identity mapping x = X corresponds to the stress-free (Langrangian) configuration.

Motion: The velocity of a material point is $V(X,t) = \dot{x} = \partial x / \partial t$. Since X = X(x,t) is invertible, we can write,

$$v(x,t) = \dot{x}(X(x,t),t),$$
 (2)

where v is the velocity at the spatial point x.

The acceleration of a point is,

$$\ddot{x}(X,t) = \frac{\mathsf{d}^2 x}{\mathsf{d}t^2}, \quad \text{or} \quad a = \frac{\mathsf{d}v}{\mathsf{d}t} = \frac{\partial v}{\partial t} + v\frac{\partial v}{\partial x},$$
(3)

where

$$\frac{\mathsf{d}}{\mathsf{d}t} = \frac{\partial}{\partial t} + v \frac{\partial}{\partial x},\tag{4}$$

is the material time derivative.

1.3 Dynamics

1.3.1 Conservation of mass

We define ρ : linear density in the current configuration (mass per unit length as measured in the current configuration) ρ_0 : the linear density in the reference configuration.

Assuming no mass is created, we have

which implies that $\lambda \rho = \rho_0$, the Lagrangian conservation of mass. This is the first conservation law.

$$\Rightarrow \lambda_{S} = S_{o}$$

1.3.2 Balance of linear momentum

The general principle for the balance of linear momentum is

 $\frac{d}{dt}$ (linear momentum) = force acting on the system.

We decompose this into

1) The linear momentum:

$$\int_{X_1}^{X_2} \rho_0 \dot{x} \, \mathrm{d}X \implies \frac{\mathrm{d}}{\mathrm{d}t} \int_{X_1}^{X_2} \dot{\rho}_0 \dot{x} \, \mathrm{d}x = \int_{X_1}^{X_2} \dot{\rho}_0 \dot{x} \, \mathrm{d} \qquad (7)$$

6

2) forces: themselves further decompose into forces due to external (body) forces or internal (contact) forces:

• Body forces,

$$\int_{X_1}^{X_2} \rho_0 f \,\mathrm{d}X \tag{8}$$

where f is the density of body force (force per unit mass).

• Contact forces: force the material exerts on itself.

This material exerts a force $n(X_2)$ on $[0, X_2]$ counted positive (tensile) if the force is in the direction of the axis, compressive otherwise. Therefore, from the principle of action=reaction, the contact force acting on the segment $[X_1, X_2]$ is $n(X_2) - n(X_1)$

Therefore, the balance of linear momentum for a one-dimensional continuum implies

$$\frac{\mathsf{d}}{\mathsf{d}t} \int_{X_1}^{X_2} \rho_0 \dot{x} \, \mathsf{d}X = \int_{X_1}^{X_2} \rho_0 f \, \mathsf{d}X + n(X_2) - n(X_1) \tag{9}$$

We obtain an expression with a single integral by (i) moving the derivative inside the integral and (ii) use the fundamental theorem of calculus,

$$\int_{X_1}^{X_2} \frac{\partial n}{\partial X} \, \mathrm{d}X = n(X_2) - n(X_1). \tag{10}$$

$$\implies \int_{x_1}^{x_2} (g_0 \ddot{z} - g_0 f + \partial n] dx = 0$$

8

This relation is valid $\forall X_1$, X_2 , so that, we can localise the integral (assuming continuity of the integrand) to obtain

$$\rho_0 a = \rho_0 f + \frac{\partial n}{\partial X}$$
. Lagrangian (12)

This is an equation for the force n(X) in the material (Cauchy first equation).

This equation is in the reference configuration (all quantities depend on the material variable X and time t). We can obtain an equation in the current configuration by using $dX = \lambda^{-1} dx$

$$\rho a = \rho f + \frac{\partial n}{\partial x}.$$
 Eulerican (13)

The process to obtain a *local* equation (PDE) is:

(i) balance law from physical principle

(ii) transport: all quantities in the same reference frame

(iii) localisation: transform an integral relation to a differential one.

But what is $\partial n/\partial x$? We need a *constitutive law* to close the system.

1.3.3 Constitutive laws

To close the problem, we need to relate the stresses to the strains, such as Hooke's law

For large deformations, we will assume that the material is *hyperelastic*: the constitutive law derives from an elastic potential Ψ :

$$n = f(\lambda) = \frac{\partial \Psi}{\partial \lambda}.$$
(15)

10

(14)

we require f(1) = 0 and the derivative of f at $\lambda = 1$ exists. Then, the Hooke constant K = f'(1) is then simply the linearised behaviour around the stress-free state.

 $n = K(\lambda - 1).$

The theory of three-dimensional elasticity developed in next section when applied to the uniaxial extension of an incompressible rectangular *neo-Hookean* bar suggests the following nonlinear law

$$n = \frac{K}{3} (\lambda^2 - \lambda^{-1}), \tag{16}$$

Figure 1: Comparison between the linear (dash) and nonlinear (solid) Hookean response for K = 3.

Example: Bungee cord. 1 April 1979, Oxford Club for Dangerous Sports

End of Chapter 1