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A body B: set of material points whose elements are in a 1-1 correspondence (bijection) with points in a region B C E3.
B, (or just B): the configuration of B at time t.

By: initial configuration (unloaded, unstressed)

B: current configuration where loads are applied

By is parameterized by material points relative to the position vector X, with origin O
B is parameterized by the position vector x with origin o.
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Basic assumptions for the deformation of a continuum:
the body retains its integrity and that material points do not overlap during a deformation.
Therefore, both By and B are bijections of B, and there exists an invertible mapping, called deformation or motion

X : By — B,
such that

x=x(X,t), YXe&€By and X=x'(x,t), VxcB.

We assume that this mapping is twice continuously differentiable in space and smooth in time.
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We use two orthonormal rectangular Cartesian bases {Ej, Es, E3} and {e;, es, e3} to represent vectors in the initial and
current configuration

X = X’LEZ X = T;€e;, (2)

Initial configuration: AKA, Lagrangian, referential, or material. Current configuration: AKA Eulerian or spatial.



1.1 Scalars, vectors, and tensors

The scalar product between two vectors a = a;e; and b = b;e;, in the same vector space:

u-v = uv;, (__‘:_ Z:( UC\/C .> (3)
1

V| = Vv -v. (4)

and is used to defined the Euclidean norm

The tensor product.
Consider two vectors u = u;e; and v = v;E;, not necessarily defined in the same vector space. Then, the tensor product ,

uv

is a second-order tensor such that, for an arbitrary vector a = a;E;,

(u®v)a=(v-aju (5)

The vector v and a belong to the same vector space, but u can belong to a different space:

uUuRXv=uye ’UjEj = U;V;€; X Ej. (6)

Note: When there is no possibility of confusion, the components of the second-order tensor u ® v in the Cartesian bases
{el, €9, 63} and {El, EQ, Eg} IS written (U. ® V)ij = U;vj, Z,] = 1, 2, 3.



A general second-order tensor in the Cartesian bases {e1, es,e3} and {Eq, Eo, E3} is

T = T%jei X Ej <~ T%j =e€;- TEj, (7)

For a vector a = a;E;,
(Ta); = Tj;a;. (8)

We define the matrix of components of a tensor in Cartesian coordinates by [T] such that [T};; = T;;.

A particularly important class of second-order tensor are the tensors whose component matrices are square matrices. For
these second-order tensors, the determinant and trace of a second-order tensor are

det T = det([T)), tr T = tr ([T]) = Ty. (9)
The matrix of the transpose of a tensor is the transpose of the matrix, that is
[T'] = [T]" (10)

and a tensor is symmetric, TT = T, if and only if T}; = Tj;.
The product of two tensors S and T is only defined when the image of a vector by T is in the domain of S. Then, for an

arbitrary vector a, we have
(ST)a = S(Ta). (11)

In such cases, the matrix of the product is the product of the two matrices:

[ST] = [S][T]. (12)
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A tensor S is an orthogonal tensor if
SST=8Ts =1, (13)

where 1 is the identity tensor defined as (1)a = a Va, then the components of an orthogonal tensor is an orthogonal matrix.
The group of all orthogonal tensors in three dimensions is denoted O(3),

A proper orthogonal tensor is an orthogonal tensor with the additional property det S = 1. The group of all proper orthog-
onal tensors in three dimensions is denoted SO(3).

We can also contract two tensors together to obtain a scalar by introducing the double contraction

S: T =tr(ST) = S;;1j;. (14)
If the determinant of a tensor T does not vanish, the matrix of inverse of T is the inverse of the matrix:
[T =[T]~". (15)
Explicitly, for a tensor T = Tj;e; ® E;, we have
T = ([T]),Ei ®ej, (16)
so that
TT '=1=/e ey, (17)
T 'T=1=4,E oFE,;, (18)

where §;; is the usual Kronecker delta’s symbol (6;; = 1 and 6;; = 0 for i # j).



Higher-order tensors.

Scalars are 0-order tensors

Vectors are first order tensor
Second-order tensors T = Tj;e; ® E;
Third-order tensor, Q,

Q= Qijre; V e; Q ey, (19)
Fourth-order tensor Q, in the basis {e1, €2, e3} are defined as
Q= QijneiVe; Ve, ey. (20)

and so on.
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