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A body B: set of material points whose elements are in a 1-1 correspondence (bijection) with points in a region B ⇢ E3.
Bt (or just B): the configuration of B at time t.
B0: initial configuration (unloaded, unstressed)
B: current configuration where loads are applied

B0 is parameterized by material points relative to the position vector X0 with origin O

B is parameterized by the position vector x with origin o.
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Basic assumptions for the deformation of a continuum:
the body retains its integrity and that material points do not overlap during a deformation.
Therefore, both B0 and B are bijections of B, and there exists an invertible mapping, called deformation or motion

� : B0 ! Bt

such that

x = �(X, t), 8 X 2 B0 and X = ��1(x, t), 8 x 2 Bt. (1)

We assume that this mapping is twice continuously di↵erentiable in space and smooth in time.
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We use two orthonormal rectangular Cartesian bases {E1,E2,E3} and {e1, e2, e3} to represent vectors in the initial and
current configuration

X = XiEi x = xiei, (2)

Initial configuration: AKA, Lagrangian, referential, or material. Current configuration: AKA Eulerian or spatial.
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1.1 Scalars, vectors, and tensors

The scalar product between two vectors a = aiei and b = biei, in the same vector space:

u · v = uivi, (3)

and is used to defined the Euclidean norm
|v| =

p
v · v. (4)

The tensor product.
Consider two vectors u = uiei and v = viEi, not necessarily defined in the same vector space. Then, the tensor product ,

u⌦ v

is a second-order tensor such that, for an arbitrary vector a = aiEi,

(u⌦ v)a = (v · a)u. (5)

The vector v and a belong to the same vector space, but u can belong to a di↵erent space:

u⌦ v = uiei ⌦ vjEj = uivjei ⌦ Ej. (6)

Note: When there is no possibility of confusion, the components of the second-order tensor u ⌦ v in the Cartesian bases
{e1, e2, e3} and {E1,E2,E3} is written (u⌦ v)ij = uivj, i, j = 1, 2, 3.

( =?. vivi )

-

o
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A general second-order tensor in the Cartesian bases {e1, e2, e3} and {E1,E2,E3} is

T = Tijei ⌦ Ej () Tij = ei ·TEj, (7)

For a vector a = ajEj,
(Ta)i = Tijaj. (8)

We define the matrix of components of a tensor in Cartesian coordinates by [T] such that [T]ij = Tij.

A particularly important class of second-order tensor are the tensors whose component matrices are square matrices. For
these second-order tensors, the determinant and trace of a second-order tensor are

detT = det([T]), tr T = tr ([T]) = Tii. (9)

The matrix of the transpose of a tensor is the transpose of the matrix, that is

[TT] = [T]T (10)

and a tensor is symmetric, TT = T, if and only if Tij = Tji.
The product of two tensors S and T is only defined when the image of a vector by T is in the domain of S. Then, for an
arbitrary vector a, we have

(ST)a = S(Ta). (11)

In such cases, the matrix of the product is the product of the two matrices:

[ST] = [S][T]. (12)

no
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A tensor S is an orthogonal tensor if
SS

T = S
T
S = 1, (13)

where 1 is the identity tensor defined as (1)a = a 8a, then the components of an orthogonal tensor is an orthogonal matrix.
The group of all orthogonal tensors in three dimensions is denoted O(3).
A proper orthogonal tensor is an orthogonal tensor with the additional property det S = 1. The group of all proper orthog-
onal tensors in three dimensions is denoted SO(3).

We can also contract two tensors together to obtain a scalar by introducing the double contraction

S : T = tr(ST) = SijTji. (14)

If the determinant of a tensor T does not vanish, the matrix of inverse of T is the inverse of the matrix:

[T�1] = [T]�1
. (15)

Explicitly, for a tensor T = Tijei ⌦ Ej, we have

T
�1 = ([T]�1)ijEi ⌦ ej, (16)

so that

TT
�1 = 1 = �ijei ⌦ ej, (17)

T
�1
T = 1 = �ijEi ⌦ Ej, (18)

where �ij is the usual Kronecker delta’s symbol (�ii = 1 and �ij = 0 for i 6= j).
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Higher-order tensors.

Scalars are 0-order tensors
Vectors are first order tensor
Second-order tensors T = Tijei ⌦ Ej

Third-order tensor, Q,

Q = Qijkei ⌦ ej ⌦ ek, (19)

Fourth-order tensor Q, in the basis {e1, e2, e3} are defined as

Q = Qijklei ⌦ ej ⌦ ek ⌦ el. (20)

and so on.

tdamentalru: cobxfja-cv.ca
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