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2  KINEMATICS

2 Kinematics

2.3 Spatial derivatives of tensors

We have two sets of spatial variables, the Lagrangian variables X and the Eulerian variables x.

Let ¢, u, T be scalar, vector, and tensor fields over x

u = UZ'(X, t)ei, T = T%j(X, t)ei X €;.

¢ = p(x,1),
We define the Eulerian gradient of scalar and vector functions as
¢ 09
do=5"=—"e
grad ¢ ox 8::/;ie
orad u = Jdu Ou _ O(ue;)

It follows from this definition that

ox or, %" Ton

The gradient is an operation that increases the order of the tensor and is defined, in general, as the operation

€;

grad(-)z%(‘)

J

X e

j.

5‘ui
= _—e e

a$j

grad(pu) = u ® grad ¢ + ¢ grad u.
Similarly, we define the gradient of a second-order tensor as

grad T =

3$k

(Tie;®ej) ®e, =

Ti;

(%k

€ e ¥ e.






2  KINEMATICS 4

The divergence decreases the order of a tensor by contracting indices. For a vector, we have simply

8ui
8xi .

(7)

divu =

For a second-order tensor, the contraction can take place on the first or second index depending on the convention. Here,
we choose to define the divergence as a contraction on the first index, that is

. JT;; T
div T = 87;Zej (e;i-ep) = 8:0] e;. (8)

With this particular definition of the divergence operator, the divergence theorem, applied on a domain 2 C R3, reads

/GQTnda:/Qdiv(TT)dv. (9)
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We consider now spatial derivatives with respect to Lagrangian coordinates. Let ®, U, and T are now fields over X:

d=¢(X,t), U=u(XtE,

T = T;'j(X, t)ei X Ej.
The Lagrangian gradient is then the operation

Explicitly, we have

Grad ® = 00 0o

X~ ox,
~dU 39U A(UE) o,
CradU=ox =ox, OB = —ox, OBi=ox, B0k
Grad T = ﬁ

OT;;
an( e QE;) ®E; ane@) i @ Ey
The divergence is then

oU;
DivU = ——
1v 5X,’
. Ty 9T}
Div T = aXiej (Ez . Ek) = aXJz Ej.

(10)

(11)

(12)
(13)
(14)

(15)
(16)
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2.4 Derivatives in curvilinear coordinates

It is often convenient to describe a body and a deformation with respect to curvilinear coordinates. For instance, it is natural
to use cylindrical coordinates to describe simple deformations of a cylinder. We use the curvilinear coordinates {q1, ¢2, q3}
in the current configuration and {Q1, 2, Q3} in the reference configuration. These coordinates are related to the Cartesian
coordinates in each configuration through the position vectors x = x(q1, ¢2, ¢3) and X = X (@1, Q2, Q3). Here, we use greek
subscripts to denote quantities defined in non-Cartesian coordinates. For instance, we associate to each coordinate set, a set
of basis vectors

ox 0X
o=h'=—— E,=H,'—/—, =1,2,3, 17
© * 0qa > 9Q., @ (17)
where h, and H, are scale factors, used to normalize the basis vectors:
ox 0X
ha: YRR Ha: a | :172a37 18
94 |<9Qa o 18)

For brevity, we restrict our attention to a set of orthogonal coordinate, so that
€y €3 = 5@&7 Ea : Eﬂ = 50467 oz,ﬁ = 1, 2, 3. (19)

We define the gradient, grad T = V ® T, of a tensor T at a point x € B as the tensor that maps a vector v in the tangent
space of B at x onto the infinitesimal variation of T along a path going through x with tangent v. For any given v, we
define a path I', parameterized by its arc length s, going through x and tangent to v. The operation of the gradient on a
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vector v Is
(VeTy — dT(T'(s)) — tim T(['(s+ds)) — T(I'(s)) > L
ds ds—0 ds '\l

_ OT(x)dx 8T(x)(S dgs

T oz ds  oze s e

_or dgs .

— aqa (ha ea hﬁeﬂ) dS

= (@ haten) ), (20)

where we have used the fact that the tangent to I' at x is hgeg
the gradient of a tensor in orthogonal curvilinear coordinates is

LT
« a ® eOé?
Qo

gradT = h

Similarly, we define the divergence of a tensor field T as divT

oT

divT = h;lea . a—qa,

(dgs/ds). Since this operation applies to arbitrary vectors v,

T
Grad T = Hglaacga ® E,. (21)
=V -T, that is
DivT = H'E, - 885@' (22)
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Choosing Cartesian coordinates {qi1, ¢2, g3} = {1, x2,x3} leads to h, = 1Va.
Example: polar coordinates {q1,q2} = {r,0} in the Euclidean plane.
The position vector is
X = r cos fe; + rsin fe,
0
e?“ — a_X7 hT = 17
r
o 10x . (23)
VR "
Hence, according to (21), the gradient of a scalar ¢ is
1
grad ¢ = (0,¢) e, + — (Op9) v, (24)

and we recover the usual formula of vector calculus.
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If we write a second-order tensor T in polar representation:
T=T,e Qe +Tye Rey+ TyeyRe,+ Type)R ey, (25)

then its divergence is the first order tensor

(10 10Ty, Ty
divT = (__T(TTrr)+; 50 _T> e,

10 10Thg  Th,
+ (;5(7’7}9) + ;W + 7)) ey.

(26)
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10

And, the gradient of T is the third order tensor

grad T

8_T
or

X e,

10T

+ -7 ®ep

r 00

(a Trr) e Qe Ke + (8 Tr@) e XeyX e,
+ (0, Ty ) ep @ €, @ e, + (0, Tpg) €9 ® €9 @ €,

+ <_ (athT’l“ -

+

(39T97~

(0pT70)

_|_

+
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(OpTho)

— Ty e, Qe Rey
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2.5 Derivatives of scalar functions of tensors

Let A, B, C be second-order tensors with Cartesian components in the basis {e;, e, e3} given by A;;, B;;, Ci;.
Let F' = F(A) be a scalar function of A. Define

OF(A)\  OF(A)
( DA ) " o (27)
ij
That is oF(A)  oF
aA = 8Ajiei ®ej. (28)

Now, let A = BC and consider the derivative of F' with respect to B. In components, we have

(8F(A)> . OF(BuCin) 0AwmOF(A)  0BuCi, OF(A)
ij

0B 0Bj; B 0Bji 0Apm - 0Bji  0Apm
0F(A) OF(A) OF(A)
= 00 Cim——>—" = Cim——— = C} :
G g g = G, = Cm\ oA -
So that, in general, we can write
OF(A) _ CﬁF(A). (29)

0B 0A
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Other useful identities are Jacobi’s relations for the first and second derivative of a non-vanishing determinant,

8% (det(A)) = det(A)A ™, (30)
o 0

ir Ka—Aa—A det A) B] — det(A) [tr (A'B) A~ — A~'BA"] |

where the contraction tr (LA) of a second-order tensor A with a fourth-order tensor L is defined by (tr (LA))i; = LijriAi.
In the last equality, the derivative of the inverse of a tensor by itself defines a fourth-order tensor such that

tr K%A*) B] =-A"'BA . (31)
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If A = A(t), the derivative of a scalar function of A with respect to a parameter ¢ can be obtained by the chain rule:

9pA) =t (aF (A) dA) | (32)

dt oA dt

Example: the first Jacobi relation 1) can be used to compute the derivative of the determinant of a tensor with re-
spect to a parameter

% (det(A)) = tr (a%(deuA))%) = det(A)tr (A*%) : (33)



