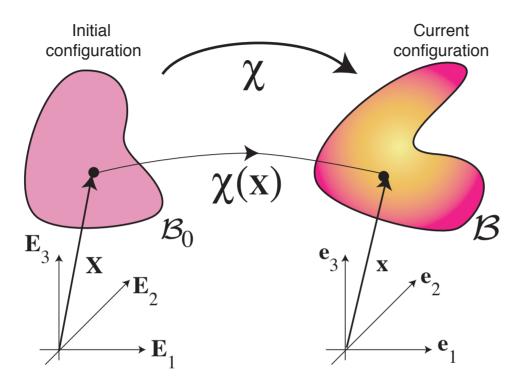
SOLID MECHANICS

Chapter 2: Kinematics

Section 2.5-2.7: The deformation gradient

Oxford, Michaelmas Term 2020

Prof. Alain Goriely



Kinematics

2.5 The deformation gradient

The deformation is defined as χ . Given a vector $\mathbf{x} = x_i(\mathbf{X})\mathbf{e}_i$, the deformation gradient tensor is

$$\mathbf{F}=\mathsf{Grad}\,\boldsymbol{\chi}$$

In Cartesian coordinates.

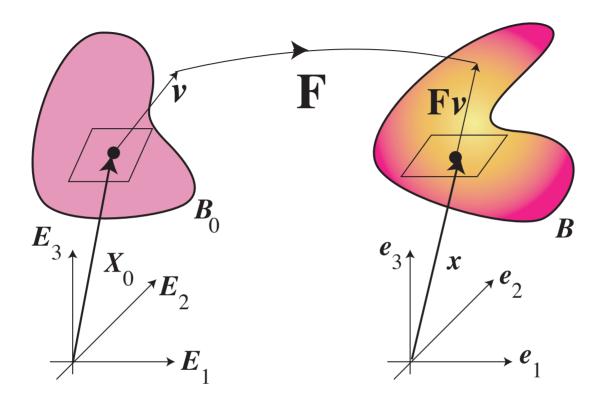
$$\mathbf{F} = \frac{\partial}{\partial X_j} (x_i \mathbf{e}_i) \otimes \mathbf{E}_j = \frac{\partial x_i}{\partial X_j} \mathbf{e}_i \otimes \mathbf{E}_j \equiv F_{ij} \mathbf{e}_i \otimes \mathbf{E}_j. \tag{1}$$

Note the mixed bases.

$$\mathbf{F} = \frac{\partial}{\partial X_j}(x_i\mathbf{e}_i)\otimes \mathbf{E}_j = \frac{\partial x_i}{\partial X_j}\mathbf{e}_i\otimes \mathbf{E}_j \equiv F_{ij}\mathbf{e}_i\otimes \mathbf{E}_j.$$

Current Initial

Jacobian matrix



Simple example:

$$\vec{z} = \vec{c}(t) + Q(t) \vec{X}$$

Q Proper orthogonal 2nd order tensor Q E SO(3)

Simple example:

$$\vec{z} = \vec{z}(t) + Q(t) \vec{X}$$

Q proper orthogonal 2nd order tensor Q E SO(3)

In curvilinear coordinates. Let $\{q_1, q_2, q_3\}$ and $\{Q_1, Q_2, Q_3\}$ be the coordinates in the reference and current configuration, respectively. The deformation χ in the bases $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ and $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ is given by $q_{\alpha} = q_{\alpha}(Q_1, Q_2, Q_3), \ \alpha = 1, 2, 3$. Then,

Grad
$$\mathbf{x} = H_{\beta}^{-1} \frac{\partial \mathbf{x}}{\partial Q_{\beta}} \otimes \mathbf{E}_{\beta}$$

$$= H_{\beta}^{-1} \frac{\partial \mathbf{x}}{\partial q_{\alpha}} \frac{\partial q_{\alpha}}{\partial Q_{\beta}} \otimes \mathbf{E}_{\beta}$$

$$= \frac{h_{\alpha}}{H_{\beta}} \frac{\partial q_{\alpha}}{\partial Q_{\beta}} \mathbf{e}_{\alpha} \otimes \mathbf{E}_{\beta},$$
(2)

The matrix of coefficients of the deformation gradient $\mathbf{F}=F_{\alpha\beta}\mathbf{e}_{\alpha}\otimes\mathbf{E}_{\beta}$ is

$$[\mathbf{F}]_{\alpha\beta} = F_{\alpha\beta} = \frac{h_{\alpha}}{H_{\beta}} \frac{\partial q_{\alpha}}{\partial Q_{\beta}}$$
 (no summation on indices). (4)

In curvilinear coordinates. Let $\{q_1, q_2, q_3\}$ and $\{Q_1, Q_2, Q_3\}$ be the coordinates in the reference and current configuration, respectively. The deformation χ in the bases $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ and $\{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ is given by $q_{\alpha} = q_{\alpha}(Q_1, Q_2, Q_3), \ \alpha = 1, 2, 3$. Then,

Grad
$$\mathbf{x} = H_{\beta}^{-1} \frac{\partial \mathbf{x}}{\partial Q_{\beta}} \otimes \mathbf{E}_{\beta}$$

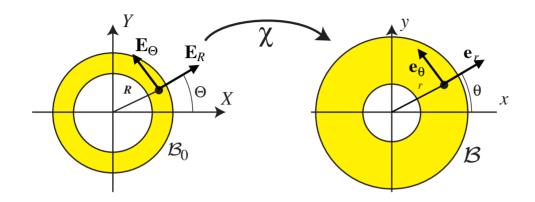
$$= H_{\beta}^{-1} \frac{\partial \mathbf{x}}{\partial q_{\alpha}} \frac{\partial q_{\alpha}}{\partial Q_{\beta}} \otimes \mathbf{E}_{\beta}$$

$$= \frac{h_{\alpha}}{H_{\beta}} \frac{\partial q_{\alpha}}{\partial Q_{\beta}} \mathbf{e}_{\alpha} \otimes \mathbf{E}_{\beta},$$
(2)

The matrix of coefficients of the deformation gradient $\mathbf{F} = F_{\alpha\beta}\mathbf{e}_{\alpha}\otimes\mathbf{E}_{\beta}$ is

$$[\mathbf{F}]_{\alpha\beta} = F_{\alpha\beta} = \frac{h_{\alpha}}{H_{\beta}} \frac{\partial q_{\alpha}}{\partial Q_{\beta}} \quad \text{(no summation on indices)}. \tag{4}$$

Example: Two sets of polar coordinates $\{q_1, q_2\} = \{r, \theta\}$ and $\{Q_1, Q_2\} = \{R, \Theta\}$.



Te deformation is given by

$$r = f(R), \quad \theta = \Theta.$$
 (5)

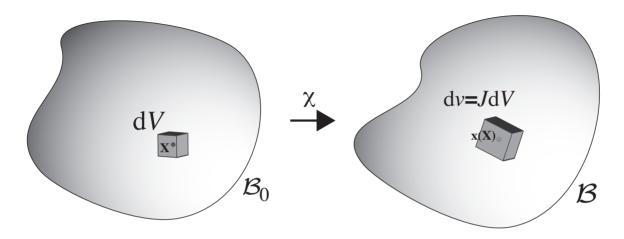
We have $h_r=H_R=1$ and $h_\theta=r$, $H_\Theta=R$, and

$$[F] = \begin{bmatrix} \frac{h_r}{H_R} \frac{\partial r}{\partial R} & \frac{h_r}{H_{\Theta}} \frac{\partial r}{\partial \Theta} \\ \frac{h_{\theta}}{H_R} \frac{\partial \theta}{\partial R} & \frac{h_{\theta}}{H_{\Theta}} \frac{\partial \theta}{\partial \Theta} \end{bmatrix} = \begin{bmatrix} f'(R) & 0 \\ 0 & \frac{f(R)}{R} \end{bmatrix}, \tag{6}$$

that is,

$$\mathbf{F} = f'(R)\mathbf{e}_r \otimes \mathbf{E}_R + \frac{r}{R}\mathbf{e}_\theta \otimes \mathbf{E}_\Theta. \tag{7}$$

2.6 Volume, surface, and line elements



Consider a set of material points in the reference configuration $\Omega_0 \subseteq \mathcal{B}_0$. It evolves in time and is deformed to a new volume $\Omega \subseteq \mathcal{B}$ in the current configuration.

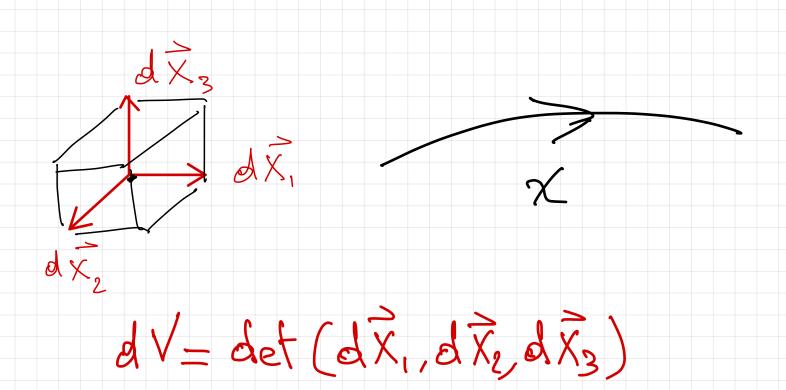
The new volume is related to the reference volume by

$$\int_{\Omega} \mathrm{d}v = \int_{\Omega_0} J \mathrm{d}V \tag{8}$$

where

$$J(\mathbf{X},t) = \det \mathbf{F}(\mathbf{X},t), \qquad (9)$$

represents the local change of volume



$$d\hat{z}_3 = F d\hat{X}_3$$

$$d\hat{z}_3 = F d\hat{X}_1$$

$$d\hat{z}_2 = F d\hat{X}_1$$

$$d\hat{z}_2 = F d\hat{X}_2$$

dv = det (Fdx, Fdx2, Fdx3)
= det F det [dx, dx2, dx3)
= det F dV

$$\frac{1}{2} \quad \text{and} \quad \frac{1}{2} \quad \text{and} \quad \frac{1}{2} \quad \text{and} \quad \frac{1}{2} \quad \frac{1}{2} \quad \text{and} \quad \frac{1}{2} \quad \frac{1}{2}$$

The image of an infinitesimal volume element dv at a material point p is

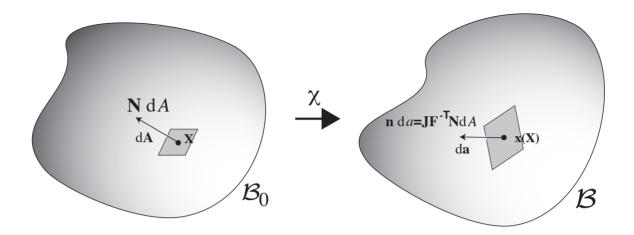
$$dv = J dV, (10)$$

We require that J > 0 in all deformations.

Hence, there exists a second-order tensor \mathbf{F}^{-1} mapping vectors from \mathcal{B} to \mathcal{B} , such that $\mathbf{F}^{-1}\mathbf{F}=\mathbf{1}$. Explicitly, this tensor is

$$\mathbf{F}^{-1} = \operatorname{grad} \mathbf{X}(\mathbf{x}, t). \tag{11}$$

A transformation that conserves locally every volume element, that is J=1, is said to be *isochoric*.

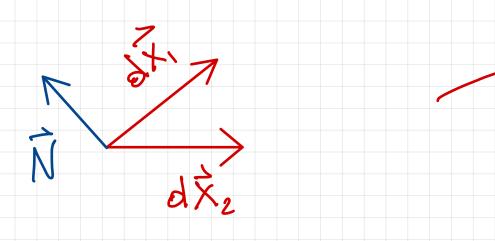


Define an area element by considering a material area element normal to a given vector N. Then,

$$\int_{\partial\Omega} \mathbf{n} \, \mathrm{d}a = \int_{\partial\Omega_0} J \mathbf{F}^{-\mathsf{T}} \mathbf{N} \, \mathrm{d}A,\tag{12}$$

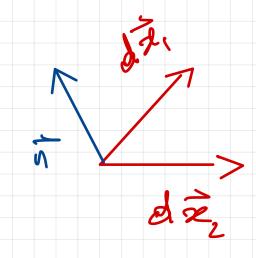
where $\mathbf{n}(\mathbf{x},t)$ and $\mathbf{N}(\mathbf{X},t)$ are outward unit normals, $\mathrm{d}A$ and $\mathrm{d}a$ are the area elements at a given point. An infinitesimal element of area defined in the reference configuration by a normal \mathbf{N} and surface area $\mathrm{d}A$ is transformed into another element of area in the current configuration defined by a vector \mathbf{n} with area $\mathrm{d}a$ by Nanson's formula:

$$\mathbf{n} \, \mathrm{d}a = J \mathbf{F}^{-\mathsf{T}} \mathbf{N} \, \mathrm{d}A. \tag{13}$$



$$\overrightarrow{N} dA = d\overrightarrow{X}_{x} d\overrightarrow{X}_{2}$$

$$||\overrightarrow{N}|| = 1$$



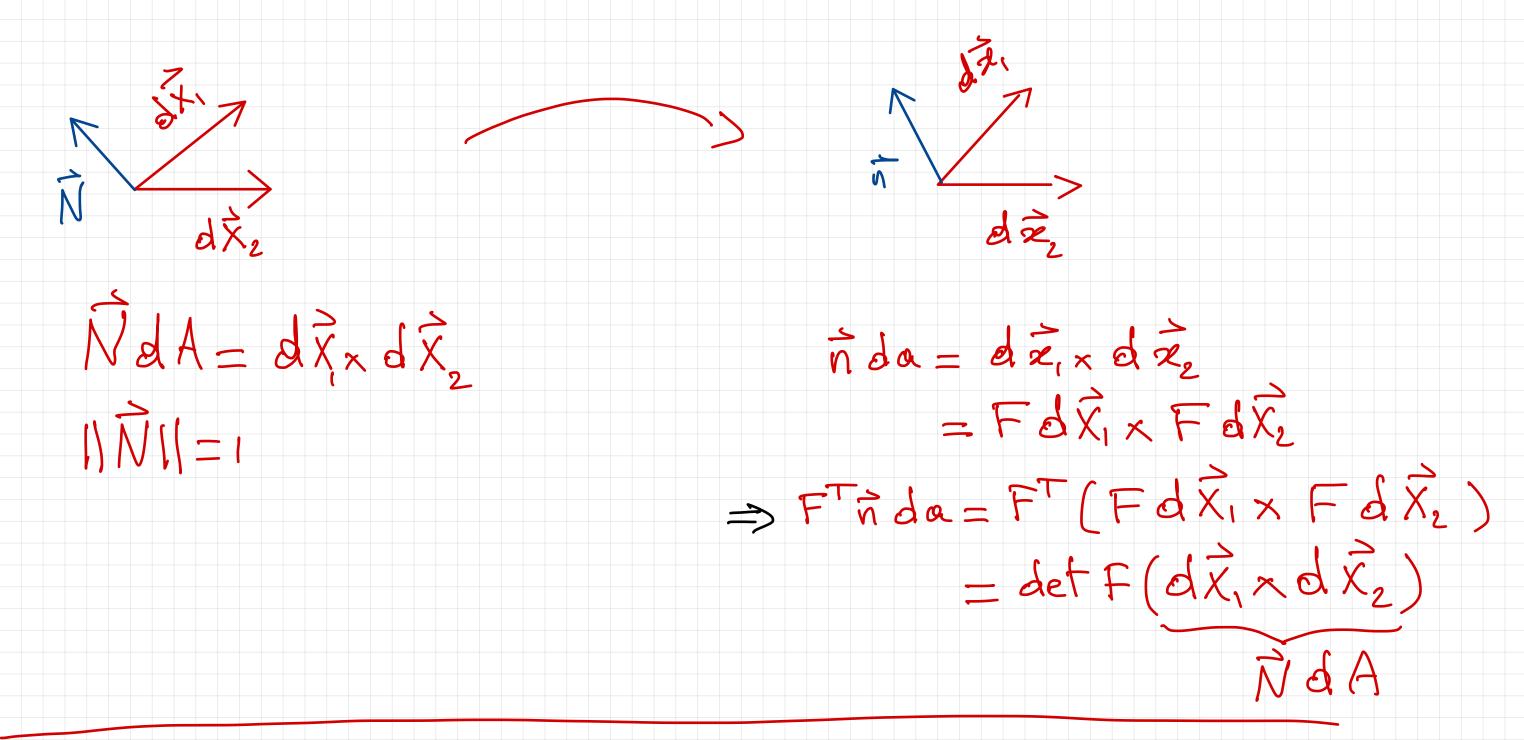
$$\vec{n} da = d\vec{z}_1 \times d\vec{z}_2$$

$$= F d\vec{X}_1 \times F d\vec{X}_2$$

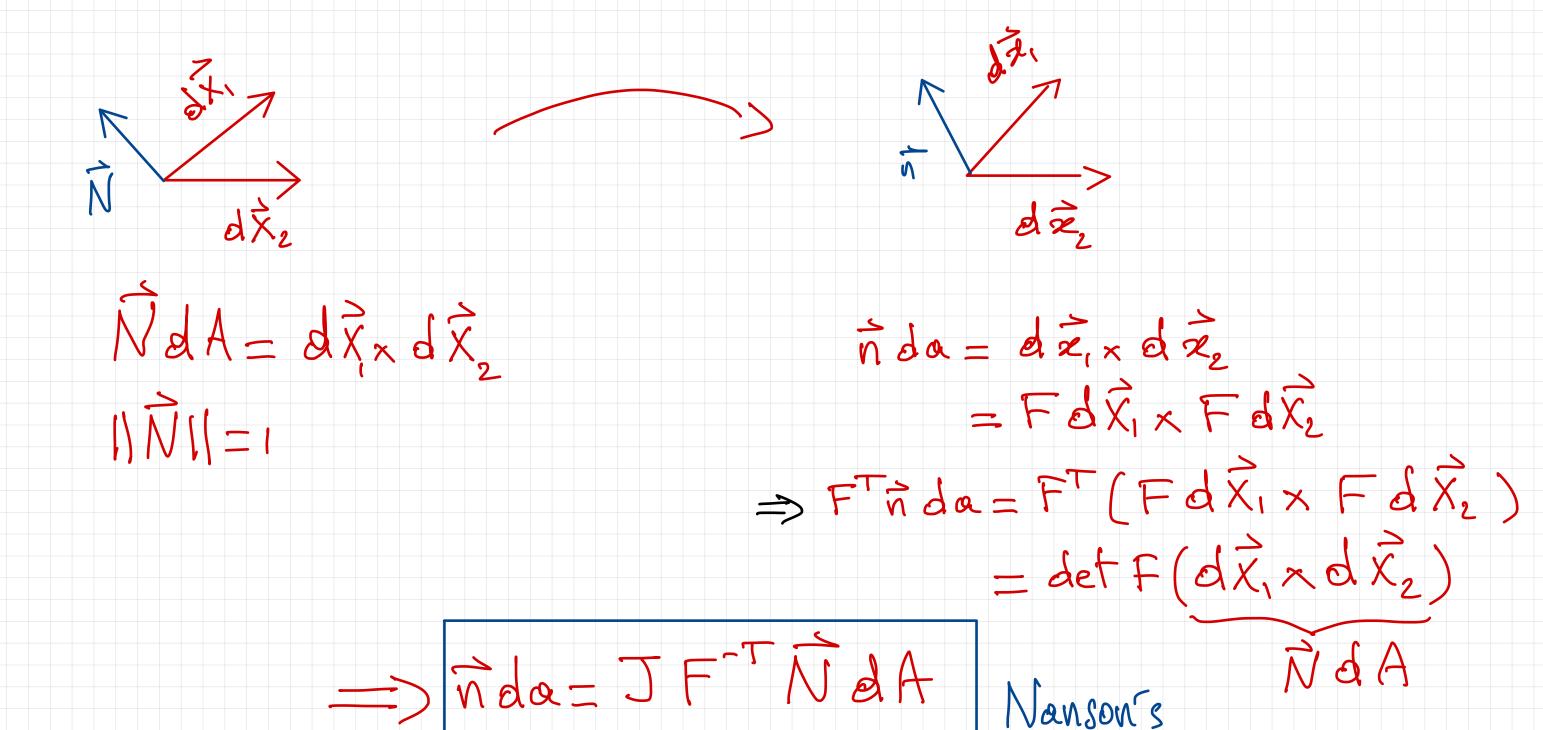
$$\Rightarrow F \vec{n} da = F T (F d\vec{X}_1 \times F d\vec{X}_2)$$

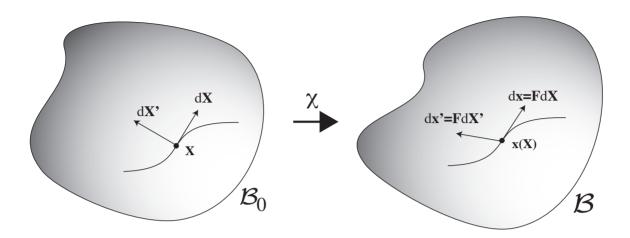
$$= det F (d\vec{X}_1 \times d\vec{X}_2)$$

$$\vec{N} dA$$



Lemma: FT (Faxb) = det F (axb)





Consider a local infinitesimal vector $d\mathbf{X}$ tangent to a material line in \mathcal{B}_0 at a material point p, then its image is $d\mathbf{x} = \mathbf{F}d\mathbf{X}$. If \mathbf{M} is the unit vector along $d\mathbf{X}$ then

$$dX = M dS \quad and \quad dx = m ds, \tag{14}$$

where $dS = |d\mathbf{X}|$ and $ds = |d\mathbf{x}|$.

Hence, we have $\mathbf{m} \, ds = \mathbf{F} \mathbf{M} \, dS$. Now take the norm of each side:

$$|\mathsf{d}s|^2 = (\mathbf{F}\mathbf{M} \cdot \mathbf{F}\mathbf{M})|\mathsf{d}S|^2 = (\mathbf{F}^\mathsf{T}\mathbf{F}\mathbf{M}) \cdot \mathbf{M}|\mathsf{d}S|^2. \tag{15}$$

Equivalently, we can write

$$\frac{\mathsf{d}s}{\mathsf{d}S} = \sqrt{(\mathbf{F}^\mathsf{T}\mathbf{F}\mathbf{M}) \cdot \mathbf{M}},\tag{16}$$

where ds/dS is the change of length of a material line in the direction M.

Define the *stretch*, $\lambda = \lambda(\mathbf{M})$ in the direction \mathbf{M} :

$$\lambda(\mathbf{M}) = \sqrt{(\mathbf{F}^{\mathsf{T}}\mathbf{F}\mathbf{M}) \cdot \mathbf{M}}.$$
 (17)

A material is said to be *unstrained* in the direction M if and only if $\lambda(M) = 1$.

The right Cauchy-Green tensor is

$$\mathbf{C} = \mathbf{F}^{\mathsf{T}} \mathbf{F}.\tag{18}$$

A material is *unstrained* at a given point if it is unstrained in all directions. That is $\lambda(\mathbf{M}) = \mathbf{1} \ \forall \mathbf{M}$. Hence $\mathbf{C} = \mathbf{1}$.

Polar decomposition theorem 2.7

For a second-order tensor F such that $\det F > 0$, there exist unique positive definite symmetric tensors U, V and a unique proper orthogonal tensor R such that,

$$F = RU = VR$$
.

The positive symmetric tensors U and V are called the *left* and *right stretch tensors*:

 $\mathbf{F}^{\mathsf{T}}\mathbf{F} = \mathbf{U}^2 \equiv \mathbf{C}$, the right Cauchy-Green tensor, $\mathbf{F}\mathbf{F}^\mathsf{T} = \mathbf{V}^2 \equiv \mathbf{B}$, the left Cauchy-Green tensor.

Since $\mathbf{V} = \mathbf{R}\mathbf{U}\mathbf{R}^\mathsf{T}$, \mathbf{U} and \mathbf{V} have the same eigenvalues $\{\lambda_1, \lambda_2, \lambda_3\}$.

The principal stretches, can be obtained are the positive roots of the eigenvalues of either C or B, and

$$U = \sum_{i=1}^{3} \lambda_i \mathbf{u}_i \otimes \mathbf{u}_i, \tag{19}$$

$$\mathbf{U} = \sum_{i=1}^{3} \lambda_{i} \mathbf{u}_{i} \otimes \mathbf{u}_{i}, \tag{19}$$

$$\mathbf{V} = \sum_{i=1}^{3} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{v}_{i}. \tag{20}$$

$$\mathbf{F} = \sum_{i=1}^{3} \lambda_{i} \mathbf{v}_{i} \otimes \mathbf{u}_{i}. \tag{21}$$

$$\mathbf{F} = \sum_{i=1}^{3} \lambda_i \mathbf{v}_i \otimes \mathbf{u}_i. \tag{21}$$

