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2 Kinematics
2.5 The deformation gradient
The deformation is defined as .
Given a vector x = z;(X)e;, the deformation gradient tensor is
F = Grad x

In Cartesian coordinates,

0 Ox;

Note the mixed bases.
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In curvilinear coordinates. Let {q1, 2, q3} and {Q1,Q2,Q3} be the coordinates in the reference and current configuration,
respectively. The deformation x in the bases {e;, es,e3} and {E;, Eo, E3} is given by ¢, = ¢ (Q1,Q2,Q3), a = 1,2,3.

Then,

Gradx = H§1—®E5

The matrix of coefficients of the deformation gradient F = F,ge, ® E3 is

ha Oqq
Fa :Fa —_
[Flap "= 1,00,

(no summation on indices).
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In curvilinear coordinates. Let {q1, 2, q3} and {Q1,Q2,Q3} be the coordinates in the reference and current configuration,

respectively. The deformation x in the bases {e;, es,e3} and {Ei, Eo, E3} is given by ¢, = ¢u(Q1,Q2,Q3), a =

Then,

Gradx = H§1—®E5

The matrix of coefficients of the deformation gradient F =

Faﬁea X EB IS

(no summation on indices).

1,2,3.
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Example: Two sets of polar coordinates {q1,¢2} = {r,0} and {Q1, @2} = {R, O}.
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Te deformation is given by

We have h, = Hrp =1 and hy = r, Ho = R, and
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that is,

F = f’(R)er R Eg + %eg ® Eg.
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2.6 Volume, surface, and line elements

By

Consider a set of material points in the reference configuration €y C B,.

It evolves in time and is deformed to a new volume €2 C B in the current configuration.

The new volume is related to the reference volume by

where

represents the local change of volume

/dv:/ JdV
Q Q

J(X,t) = det F (X, 1),




&b’z% : 19&‘:'23: T-—@\K;

\ ‘7C P I ~
Q\‘XZ: FAXZ

d i

A\/: C&e% CAP;(‘,A?Z/A\;3> @(Af: del CF A)?‘ ,;éig,, Faﬁ@)
= Ac{' o éte,\“ [_Ai,&?z,dzg)
— &t T AV
:> A — 3 éz\/

= Aot T




2  KINEMATICS 8

The image of an infinitesimal volume element dv at a material point p is
dv = JdV, (10)

We require that J > 0 in all deformations.
Hence, there exists a second-order tensor F~1 mapping vectors from B to B, such that F'F =1. Explicitly, this tensor is

F! = grad X(x, t). (11)

A transformation that conserves locally every volume element, that is J = 1, is said to be isochoric.



2  KINEMATICS 9

nda=JF NdA
e X)
da

Define an area element by considering a material area element normal to a given vector N. Then,

/ nda = / JF TN dA, (12)
o0 Qo

where n (x,t) and N (X, t) are outward unit normals, dA and da are the area elements at a given point.
An infinitesimal element of area defined in the reference configuration by a normal N and surface area dA is transformed
into another element of area in the current configuration defined by a vector n with area da by Nanson’s formula:

nda = JF TN dA. (13)
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dx=FdX

dx’=FdX’
x(X)

Consider a local infinitesimal vector dX tangent to a material line in By at a material point p, then its image is dx = FdX.
If M is the unit vector along dX then

dX =MdS and dx =mds, (14)
where dS = |dX] and ds = |dx]|.
Hence, we have mds = FM dS.
Now take the norm of each side:
ds|*> = (FM - FM)|dS|* = (FTFM) - M|dS|*. (15)
Equivalently, we can write
ds
— =4/(FTFM) - M 1
=/ (FTEM) - M, (16)
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where ds/dS is the change of length of a material line in the direction M.
Define the stretch, A = A(M) in the direction M:
A(M) = /(FTFM) - M. (17)
A material is said to be unstrained in the direction M if and only if A(M) = 1.
The right Cauchy-Green tensor is
C=F'F. (18)

A material is unstrained at a given point if it is unstrained in all directions. That is A(M) = 1 VM.
Hence C = 1.
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2.7 Polar decomposition theorem

For a second-order tensor ¥ such that det F > 0, there exist unique positive definite symmetric tensors U, V and a unique

proper orthogonal tensor R such that,
F = RU = VR.

The positive symmetric tensors U and V are called the left and right stretch tensors:

F'F=U?=C, the right Cauchy-Green tensor,
FF' = V2 =B, the left Cauchy-Green tensor.

Since V.= RUR, U and V have the same eigenvalues {\;, X, A3}.
The principal stretches, can be obtained are the positive roots of the eigenvalues of either C or B, and

3
U = Z)\Zul ®U.i,

1=1

3
V = Z )\ivi X V.
1=1

3
F = Z)\ZVZ X u;.

i=1

(19)

(20)

(21)
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