SOLID MECHANICS

Lecture 7: Chapter 3: Dynamics

Section 3.1: Balance laws-transport formula

Oxford, Michaelmas Term 2020

Prof. Alain Goriely

Tensor calculus ϕ , **v**, **T** are, scalar, vector and 2^{nd} -order tensor fields

$\mathbf{F} = Grad\mathbf{x} = rac{\partial x_i}{\partial X_j}\mathbf{e}_i\otimes\mathbf{E}_j$	Deformation Gradient	(T1)
$J = det\mathbf{F}$	Determinant of \mathbf{F}	(T2)
$\operatorname{grad} \mathbf{v} = rac{\partial \mathbf{v}}{\partial x_i} \otimes \mathbf{e}_i$	Definition of the gradient of a vector	(T3)
grad $\mathbf{T} = rac{\partial \mathbf{T}}{\partial x_i} \otimes \mathbf{e}_i$	Definition of the gradient of a tensor	(T4)
$\operatorname{div} \mathbf{T} = rac{\partial T_{ij}}{\partial x_i} \mathbf{e}_j$	Definition of the divergence of a tensor	(T5)
$Grad\phi=\mathbf{F}^{\mathbf{T}}grad\phi$	Gradients of a scalar	(T6)
$Grad\mathbf{v}=(grad\mathbf{v})\mathbf{F}$	Gradients of a vector	(T7)
$\operatorname{Div} \mathbf{v} = J \operatorname{div} \left(J^{-1} \mathbf{F} \mathbf{v} \right)$	Divergences of a vector	(T8)
$Div\mathbf{T}=Jdiv(J^{-1}\mathbf{FT})$	Divergences of a tensor	(T9)
${\rm div}(J^{-1}{\bf F})=0$	An important identity	(T10)
$rac{\partial}{\partial\lambda}(det\mathbf{T}) = (det\mathbf{T})tr\left(\mathbf{T}^{-1}rac{\partial\mathbf{T}}{\partial\lambda} ight)$	A useful identity. λ is a scalar	(T11)

Kinematics

$\mathbf{F} = Grad \ \mathbf{x}(\mathbf{X}, t)$	The deformation gradient	(K1)
$J = det\mathbf{F}$	Determinant of \mathbf{F}	(K2)
$d\mathbf{x} = \mathbf{F}d\mathbf{X}$	Transformation of line element	(K3)
$d\mathbf{a} = J\mathbf{F}^{-T} d\mathbf{A}$	Transformation of area element	(K4)
$\mathrm{d}v = J\mathrm{d}V$	Transformation of volume element	(K5)
$\mathbf{C} = \mathbf{F}^T \mathbf{F}$	Right Cauchy-Green tensor	(K6)
$\mathbf{B} = \mathbf{F}\mathbf{F}^T$	Left Cauchy-Green tensor	(K7)
$\mathbf{E} = rac{1}{2} \left(\mathbf{F}^T \mathbf{F} - 1 ight)$	Euler strain tensor	(K8)
$\mathbf{L}=grad~\mathbf{v}$	Velocity gradient	(K9)
$\dot{\mathbf{F}} = \mathbf{L}\mathbf{F}$	Evolution of the deformation $gradient(\mathbf{v}:velocity)$	(K10)
$\dot{J} = J$ div ${f v}$	Evolution of the volume element	(K11)
$\mathbf{D} = \frac{1}{2} \left(\mathbf{L} + \mathbf{L}^{T} \right)$	Eulerian strain rate tensor	(K12)
$\mathbf{W} = rac{1}{2} \left(\mathbf{L} - \mathbf{L}^T ight)$	Rate of rotation tensor	(K13)

3 Conservation Laws, Stress, and Dynamics

3.1 Balance of mass

Define $\rho = \rho(\mathbf{x}, t)$, the volume density (mass per unit current volume) at each point of the body in the current configuration. Assume that the mass of $\Omega \subseteq \mathcal{B}$ is conserved in time

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \rho\left(\mathbf{x}, t\right) \mathrm{d}v = 0.$$

First, since dv = JdV

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_0} \rho\left(\mathbf{x}(\mathbf{X}, t), t\right) J \mathrm{d}V = 0,$$

Second, the domain Ω_0 is fixed so

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega_0}^{J} J\rho\left(\mathbf{x}, t\right) \mathrm{d}V = \int_{\Omega_0} \frac{\mathrm{d}}{\mathrm{d}t} \left(J\rho\right) \mathrm{d}V = 0.$$
(3)

Third, we map the integral back to the current configuration

$$\int_{\Omega_0} \frac{\mathrm{d}}{\mathrm{d}t} (J\rho) \,\mathrm{d}V = \int_{\Omega} \frac{\mathrm{d}}{\mathrm{d}t} (J\rho) J^{-1} \mathrm{d}v = \int_{\Omega} (\dot{\rho} + \rho \operatorname{div} \mathbf{v}) \,\mathrm{d}v = 0, \tag{4}$$

$$\int_{\Omega_0} \frac{1}{\mathrm{d}t} \int_{\Omega_0} \frac{1}{\mathrm{d}t$$

Fourth, assuming that the integrand is continuous, we obtain the continuity equation

$$\dot{\rho} + \rho \operatorname{div} \mathbf{v} = 0.$$
 (5)

Note the process: the two-step process called the Maxwell transport and localization procedure

The localization procedure can be also applied directly to the first integral appearing in (4).

$$\int_{\Omega_0} \frac{\mathrm{d}}{\mathrm{d}t} \left(J\rho \right) \mathrm{d}V = 0$$

to obtain

Define the *reference density*

$$\frac{\mathrm{d}}{\mathrm{d}t}(J\rho) = 0. \qquad \qquad \textbf{agrangian} \tag{6}$$

then

$$\rho_0(\mathbf{X}, t) = J(\mathbf{X}, t) \rho(\mathbf{x}(\mathbf{X}, t), t)$$

$$\frac{\partial}{\partial t}\rho_0 = 0. \tag{7}$$

3.1.1 Transport formulas

For any scalar ϕ or vector field ${f u}$ associated with the moving body in the current configuration

-

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \phi \,\mathrm{d}v = \int_{\Omega} (\dot{\phi} + (\operatorname{div} \mathbf{v})\phi) \,\mathrm{d}v, \tag{8}$$

$$\frac{\mathsf{d}}{\mathsf{d}t} \int_{\Omega} \mathbf{u} \, \mathsf{d}v = \int_{\Omega} (\dot{\mathbf{u}} + (\mathsf{div} \, \mathbf{v})\mathbf{u}) \, \mathsf{d}v, \tag{9}$$

where $\Omega \subseteq \mathcal{B}$ is an arbitrary subset.

$$\frac{\partial}{\partial t} \int_{\Omega} \frac{\partial}{\partial t} dN = \frac{\partial}{\partial t} \int_{S_{0}} \frac{\partial}{\partial t} J dV$$

$$\frac{\partial}{\partial t} \int_{\Omega} \frac{\partial}{\partial t} (\partial J) dV = \int_{S_{0}} (\dot{\partial} J + \dot{\partial} J) dV = \int_{S_{0}} J (\dot{\partial} + \dot{\partial} div \vec{v}) dV$$

$$\frac{\partial}{\partial t} \int_{S_{0}} \frac{\partial}{\partial t} J dv$$

$$= \int_{\Omega} (\dot{\partial} + \dot{\partial} div \vec{v}) J J dv$$

3.1.1 Transport formulas

For any scalar ϕ or vector field ${f u}$ associated with the moving body in the current configuration

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\Omega} \phi \,\mathrm{d}v = \int_{\Omega} (\dot{\phi} + (\operatorname{div} \mathbf{v})\phi) \,\mathrm{d}v, \tag{8}$$

$$\frac{\mathsf{d}}{\mathsf{d}t} \int_{\Omega} \mathbf{u} \, \mathsf{d}v = \int_{\Omega} (\dot{\mathbf{u}} + (\mathsf{div} \, \mathbf{v})\mathbf{u}) \, \mathsf{d}v, \tag{9}$$

where $\Omega \subseteq \mathcal{B}$ is an arbitrary subset.