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3 Conservation Laws, Stress, and Dynamics

3.2 Balance of linear momentum

Total forces and torques: On any domain 2 C B

J

Total linear and angular momenta:

F(Q)

= [ p(x,t)b(x,t)dv + /

o0

t,da G(22,0) = /Qp(x, t)x x b(x,t)dv +/a

Q

M(Q) = / p(x,t)v(x,t)dv H(Q,0) = /x X (p(x,t)v(x,t))dv
Q Q
Euler’s laws of motion:
dM dH
—— —F, — =G
dt dt
d
— | p(x,)v(x,t)dv = | p(x,t)b(x,t)dv+ | t,da.
dt Jg o Ja 0
- > rate of change o?ﬂnear momentum sum of body ar?g contact forces
d
— [ px x vdv :/pxxbvar/xxtnda.
dt Jg J Jo 90 J
rate of change of;gular momentum torques due to bod;/rand traction forces

X X t, da.
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3.2.3 Local form

4 p(X,t)V(X,t)dU:/p(x,t)b(x,t)dv+/ t,da,

o0

Transport formula for the rate of linear momentum:

d d
T pv dv /QO pvJdV = /QO % (pvJ) dV,

/ (pv +pv + pvdlvv) JdV,
Qo

=0, per contlnwty

/ pv dv,
9)
PROBLEM: The last integral is a surface integral.

fﬁda — f( ) au

=
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Digression: Divergence theorem for tensors. For a vector field v on €2, we have

/divvdv:/ v -nda (5)
0 o9

Take v = ¢ ¢ where c is a constant vector

/divc¢dv:c-/gradqbdv:c- ¢onda = ¢(c-n)da (6)
Q Q o0 o0
Now choose ¢ to be the basis vector e; y
dv = on;da 7
o O, 0 (7)

Consider a tensor T = Tj;e; ® e;

OT};

oT;;
divTdv = Ye.dv = e; d 3
/Q ivT dv aniej v=e, ' or, v (8)
:ej/ Tijnida (9)
BIY)
:/ ( ijej®ei)emida (10)
BY)
:/ T'n da (11)
BIY)

=> f T o da = | QWT da
D5

SL
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5

PROBLEM: The last integral in

4 /Q o, )v(x, t)dv = /Q p(x, )b(x, £)dv +

/ t,da,
o0

is not of the form [, T™n da

> | yhda
2L

Cauchy'’s tetrahedral argument: If the traction obeys Euler’s laws, then 3 a 2"%-order tensor T independent of n:

t, = Tn,

where T is a second-order tensor independent of n.

This last identity has the correct form for the application of the divergence theorem

/ tnda:/ Tnda’g/div(TT)dv
) o0 Q

The tensor T is the Cauchy stress tensor.
/ pvdy = / pbdv + / div (TT) do,
) 9) Q

Then, the first Euler law simplifies to
and the localization procedure leads to the first Cauchy equation:

div (TT) + pb = pv.

(12)

(13)

(14)

(15)
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3.3 Balance of angular momentum
Euler's second law: q
— [ px x vdv :/pxxbdv+/ X X t, da. (16)
dt Jg ) Jo 20 B
rate of change of;rngular momentum torques due to bO(B/rand traction forces
We use the transport procedure and the continuity equation and the definition t,, = Tn
/pxx(\'f—b)dv:/ x X Tnda, (17)
Q o0
Use Cauchy'’s first equation on the left-hand side
C
/pxx(V—b)dv:/XXdiv(T)dv (18)
Q Q
and divergence theorem on the right-hand side
\
/ X X Tnda;/ x x div (T") dv (19)
o0 Q

Compare the two and conclude that
T' =T.

(20)
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The Cauchy equations: We conclude that the local forms of the momenta balances are:

div'T + pb = pv,
T =T,

3.4 Many stress tensors

The traction is
t, =Tn

The normal stress, is the force per area normal to 02

n-t,=n-(Tn). (21)
Shear stress: Considering a vector m tangent to 0f2 (that is m - n = 0), the product

m-t, =m- (Tn). (22)

is a shear stress acting on 2 at p.
Hydrostatic pressure
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To obtain a stress with respect to the initial area: we apply Nanson's formula nda = JF~TINdA to the traction vector to
obtain the contact-force on a material area element:

t,da = Tnda = (JTF T)NdA = ST NdA, (23)

where
S=JF!'T (24)

is the nominal stress tensor. lIts transpose, ST, is the first Piola-Kirchhoff stress tensor. It is also called the engineering
stress tensor, as it is a convenient quantity for experimental measurements.
Since T is symmetric, we have d

STFT _ FS. \ CMQ,‘A..( 2" Qd(V\ (25)

“Div 5 - SO% = So V Cauc\nj \s)ﬁeﬁm

L agragion o




