SOLID MECHANICS

Lecture 11: Chapter 4: Constitutive equations

Section 4.1: Constitutive assumptions

Oxford, Michaelmas Term 2020

Prof. Alain Goriely

Equations from physical principles

$$\begin{split} \dot{\rho} + \rho \operatorname{div} \mathbf{v} &= 0, \quad \text{mass} \\ \operatorname{div} \mathbf{T} + \rho \mathbf{b} &= \rho \dot{\mathbf{v}}, \quad \text{linear momentum} \\ \mathbf{T}^T &= \mathbf{T}, \quad \text{angular momentum} \end{split}$$

10 unknowns: 1 in ρ , 3 in vector v and 6 in the symmetric tensor T. But 4 equations. We need 6 extra relationships: the constitutive equations.

3.1 3 types of assumptions

1) Possible deformations.

e.g. Only rigid motions are allowed ($\mathbf{F} = \mathbf{R}$, 3 parameters). \implies rigid body mechanics. *e.g.* Only isochoric motion \implies Incompressible material.

- 2) Constraining the stress tensor
 e.g. T = T(F)
 e.g. T = + p1
- 3) Relate stress to motion e.g. pressure function of density, ρ (for a gas).

3.1.1 Particular examples

1) Ideal fluids

(a) det F = 1 (Isochoric)
(b) ρ = const
(c) T = + p1

$\dot{ ho} + ho \operatorname{div} \mathbf{v} = 0,$	mass	(4)
$\operatorname{div} \mathbf{T} + \rho \mathbf{b} = \rho \dot{\mathbf{v}},$	linear momentum	(5)
$\mathbf{T}^T = \mathbf{T},$ angula	ar momentum	(6)

becomes

div
$$\mathbf{v} = 0$$
, mass (7)

grad
$$p + \rho \mathbf{b} = \rho \mathbf{v}$$
, linear momentum (8)

Note: the pressure is *not* determined by the motion (ball under uniform pressure). (Lagrange multiplier for the pressure.)

(9)

3.1.1 Particular examples

1) Ideal fluids

- (a) det F = 1 (Isochoric)
 (b) ρ = const
 (c) T = + p1
- $\dot{\rho} + \rho \operatorname{div} \mathbf{v} = 0,$ mass div $\mathbf{T} + \rho \mathbf{b} = \rho \dot{\mathbf{v}},$ linear momentum $\mathbf{T}^T = \mathbf{T},$ angular momentum

becomes

div $\mathbf{v} = 0$, mass grad $p + \rho \mathbf{b} = \rho \dot{\mathbf{v}}$, linear momentum

Note: the pressure is *not* determined by the motion (ball under uniform pressure). (Lagrange multiplier for the pressure.)

(4) (5)

(6)

2) Elastic fluids

(a) $\mathbf{T} = p \mathbb{1}$

(b) $p = p(\rho)$

Here $\ddot{\rho} = P'(\rho_0)\Delta\rho$ and $\sqrt{p'}$ is the sound speed.

$$\dot{\rho} + \rho \operatorname{div} \mathbf{v} = 0, \quad \text{mass}$$
 (10)

div
$$\mathbf{T} + \rho \mathbf{b} = \rho \dot{\mathbf{v}},$$
 linear momentum (11)

$$\mathbf{T}^T = \mathbf{T},$$
 angular momentum (12)

becomes

$$\dot{\rho} + \rho \operatorname{div} \mathbf{v} = 0, \quad \text{mass}$$
 (13)

grad
$$p + \rho \mathbf{b} = \rho \dot{\mathbf{v}}$$
, linear momentum (14)

$$p = p(\rho) \tag{15}$$

N.B.: both fluids are inviscid (do not exert shearing forces!)

A particular case of an elastic fluid is an *ideal gas*: $p = \lambda \rho^{\gamma}$, for $\lambda > 0$, $\gamma > 1$.

- 3) Newtonian fluids. Shear stress through friction.
 - (a) det $\mathbf{F} = 1$, incompressible
 - (b) $\mathbf{T} = -p\mathbb{1} + \mathcal{C}[\mathbf{L}]$ where \mathcal{C} is a linear function of \mathbf{L} .

Note $\mathcal{C}[0] = 0 \implies \mathbf{T} = -p\mathbb{1}$, A Newtonian fluid at rest is ideal

Note C[L] has 40 independent constants (once we have removed arbitrariness of p1.)

However *objectivity* (independence from observer) implies

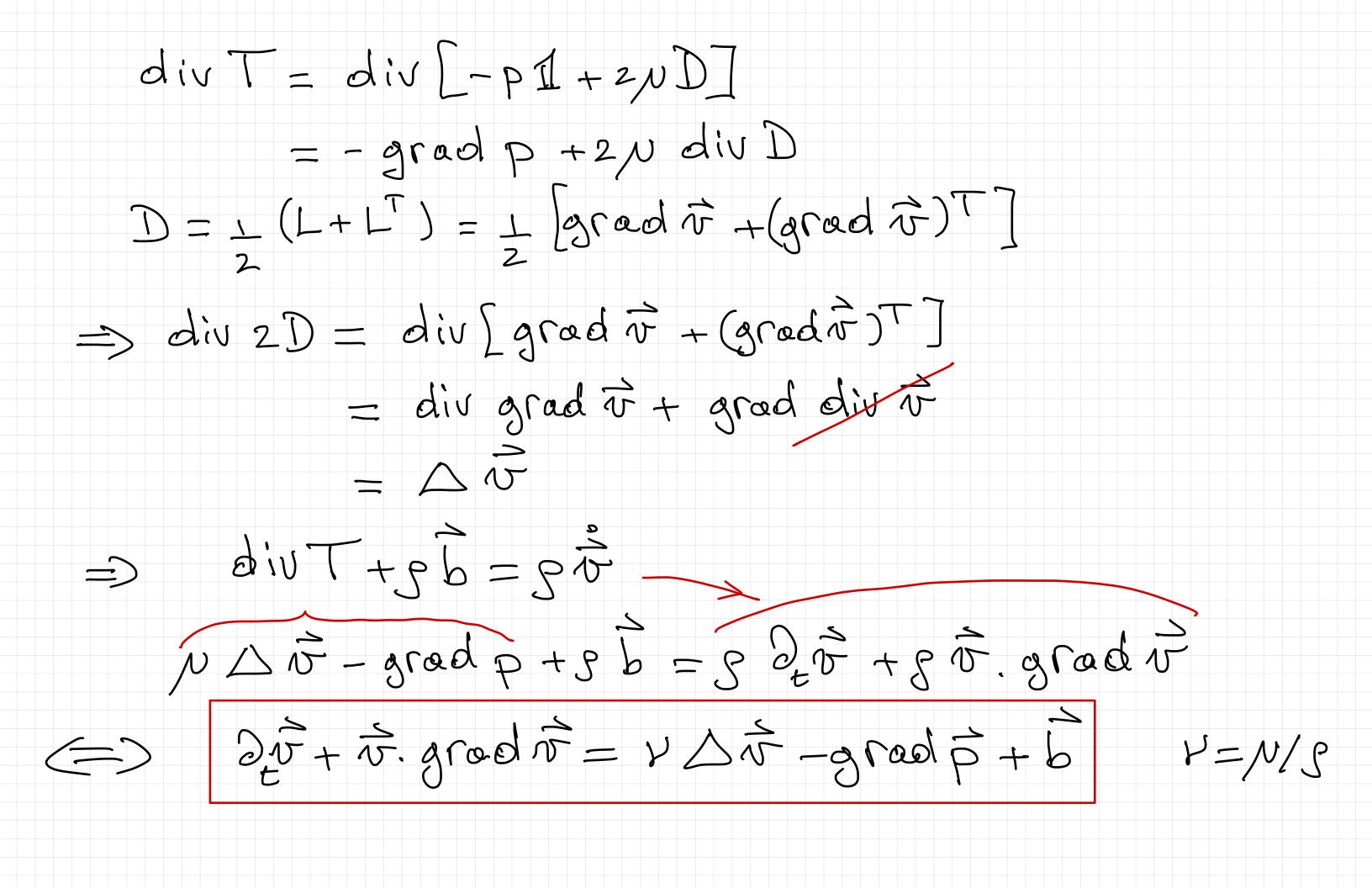
$$C[\mathbf{L}] = 2\mu \mathbf{D}, \qquad \mathbf{D} = \frac{1}{2}(\mathbf{L} + \mathbf{L}^T),$$
(16)

which has a single constant, viscosity μ . This implies

$$\rho \dot{\mathbf{v}} = \operatorname{div} \mathbf{T} + \rho \mathbf{b} \tag{17}$$

$$\operatorname{div} \mathbf{v} = 0 \tag{18}$$

$$\mathbf{T} = -p\mathbb{1} + 2\mu\mathbf{D} \tag{19}$$



$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \text{grad } \mathbf{v} = \mu \Delta - \text{grad } p + \rho \mathbf{b},$$

$$\text{div } \mathbf{v} = 0,$$
(20)
(21)

which are the Navier–Stokes equations. (N.B. $\nu = \mu/\rho$ is the kinematic viscosity.) Stokes flow: 1) steady, 2) neglect acceleration.

$$\Delta \mathbf{v} = \operatorname{grad} p - \mathbf{b}$$
(22)
div $\mathbf{v} = 0.$ (23)

N.B. for more general fluids, $\mathbf{T}=-p\mathbbm{1}+\mathcal{N}(\mathbf{L}).$

3.2 Elastic materials

For elastic materials, we have the simple relationship

$$\mathbf{T} = \mathcal{Z}(\mathbf{F}) \tag{24}$$

This implies that the stress in \mathcal{B} at x depends on F and not on the history of the deformation (path-independent). Also, by the definition of the reference configuration (assuming that it is stress free), we have

$$\mathcal{Z}(1) = 0. \tag{25}$$

This relationship defines a Cauchy, elastic material.