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Lecture 11: Chapter 4: Constitutive equations

Section 4.1: Constitutive assumptions
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Equations from physical principles

p+ pdivv =0, mass
div T 4+ pb = pv, linear momentum
T =T, angular momentum

10 unknowns: 1 in p, 3 in vector v and 6 in the symmetric tensor T. But 4 equations.
We need 6 extra relationships: the constitutive equations.

3.1
1)

2)

3)

3 types of assumptions

Possible deformations.
e.g. Only rigid motions are allowed (F = R, 3 parameters). = rigid body mechanics.
e.g. Only isochoric motion = Incompressible material.

Constraining the stress tensor
eg. T =T(F)
eg T =4pl

Relate stress to motion
e.g. pressure function of density, p (for a gas).
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3.1.1 Particular examples

1) Ideal fluids
(a) detF =1 (Isochoric)

(b) p = const
(c) T=+pl
p+ pdivv =0, mass
div T + pb = pv, linear momentum
T =T, angular momentum
becomes
div v =0, mass
grad p + pb = pv, linear momentum

Note: the pressure is not determined by the motion (ball under uniform pressure).

(Lagrange multiplier for the pressure.)
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2) Elastic fluids
(a) T =4pl
(b) p = p(p)
Here p = P'(po)Ap and /7’ is the sound speed.
p+ pdivv =0, mass

div T 4 pb = pv, linear momentum
T =T, angular momentum

becomes

p+ pdivv =0, mass
grad p 4+ pb = pv, linear momentum
p=p(p)

N.B.: both fluids are inviscid (do not exert shearing forces!)

A particular case of an elastic fluid is an ideal gas: p = \p?, for A > 0, v > 1.
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3) Newtonian fluids. Shear stress through friction.

(a) detF =1, incompressible
(b) T = —pl + C[L] where C is a linear function of L.

Note C[0] =0 = T = —pl, A Newtonian fluid at rest is ideal
Note C[L] has 40 independent constants (once we have removed arbitrariness of p1.)
However objectivity (independence from observer) implies
Cl[L]=2uD, D= %(L + 1.5,
which has a single constant, viscosity p. This implies

pv = div T+ pb
dvv = 0
T = —pl+2uD
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+ pv-grad v

div v

= pA—grad p + pb,

which are the Navier-Stokes equations. (N.B. v = 11/p is the kinematic viscosity.)

Stokes flow: 1) steady, 2) neglect acceleration.

Av =
divv =

grad p—>b
0.

N.B. for more general fluids, T = —p1 + N (L).
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3.2 Elastic materials

For elastic materials, we have the simple relationship
T = Z(F) (24)

This implies that the stress in B at x depends on F and not on the history of the deformation (path-independent). Also, by
the definition of the reference configuration (assuming that it is stress free), we have

Z(1) = 0. (25)

This relationship defines a Cauchy, elastic material.




