SOLID MECHANICS

Lecture 12: Chapter 4: Constitutive equations

Section 4.3: Hyperelastic materials

Oxford, Michaelmas Term 2020

Prof. Alain Goriely

4 Constitutive equations

4.3 Constitutive equations for hyperelastic materials

$\dot{ ho}+ ho{\sf div}{f v}=0,\qquad{\sf mass}$	(1)
${\sf div}\;{f T}+ ho{f b}= ho\dot{f v},\qquad {\sf linear}\;{\sf momentum}$	(2)
$\mathbf{T}^T = \mathbf{T},$ angular momentum	(3)

10 unknowns: 1 in ρ , 3 in vector v and 6 in the symmetric tensor T. But 4 equations. We need 6 extra relationships: the constitutive equations.

Cauchy elastic materials:

$$\mathbf{T} = \mathcal{Z}(\mathbf{F}), \qquad \mathcal{Z}(1) = 0. \tag{4}$$

Hyperelastic materials: the force can be derived from the stored-energy function.

Total energy of the system

$$\mathcal{E} = \mathcal{K} + \mathcal{S} = \underbrace{\frac{1}{2} \int_{\Omega} \rho \mathbf{v} \cdot \mathbf{v} \, \mathrm{d}v}_{\text{kinetic energy}} + \underbrace{\int_{\Omega} J^{-1} W \, \mathrm{d}v}_{\text{internal energy}}, \tag{5}$$

The material is *hyperelastic*: internal energy density W is a function of \mathbf{F} alone:

$$W(\mathbf{X},t) = W(\mathbf{F}(\mathbf{X},t),\mathbf{X}),\tag{6}$$

W is then the *strain-energy function*. Recall that

$$\frac{\mathsf{d}W}{\mathsf{d}t} = \mathsf{tr}(\mathbf{S}\dot{\mathbf{F}}). \tag{7}$$

For a hyperelastic material, $W = W(\mathbf{F})$ and

$$\frac{\mathsf{d}}{\mathsf{d}t}W(\mathbf{F}) = \mathsf{tr}\left(\frac{\partial W}{\partial \mathbf{F}}\dot{\mathbf{F}}\right),\tag{8}$$

so that the energy balance (7) reads now

$$\operatorname{tr}\left[\left(\frac{\partial W}{\partial \mathbf{F}} - \mathbf{S}\right)\dot{\mathbf{F}}\right] = 0. \tag{9}$$

Since this identity must be true for all motions, we conclude that

$$\mathbf{S} = \frac{\partial W}{\partial \mathbf{F}},\tag{10}$$

Explicitly

$$\frac{\partial W}{\partial \mathbf{F}} = \frac{\partial W}{\partial F_{ji}} \mathbf{E}_i \otimes \mathbf{e}_j, \qquad \left(\frac{\partial W}{\partial \mathbf{F}}\right)_{ij} = \frac{\partial W}{\partial F_{ji}}.$$
(11)

Hence

In terms of the Cauchy stress, recall that

T =
$$J^{-1}FS.$$
 (12)
T = $J^{-1}F\frac{\partial W}{\partial F}.$ (13)
Compare this expression to $\mathcal{E} = K + V$ classical rigid.
 $f = -\frac{\partial V}{\partial R}$ body mechanics
J forces derive from potential V

4.4 Internal material constraint

Geometric constraint: a smooth scalar function $C(\mathbf{F})$ such that

 $C(\mathbf{F}) = 0$

for all deformations. Incompressible material: all deformations must preserve volume,

$$det(\mathbf{F}) = 1 \quad \Rightarrow \quad C(\mathbf{F}) = det(\mathbf{F}) - 1$$

Introduce a Lagrangian multiplier $p = p(\mathbf{X}, t)$ Modify the energy density $W \to W - pC$ The identity

$$\operatorname{tr}\left[\left(\frac{\partial W}{\partial \mathbf{F}} - \mathbf{S}\right)\dot{\mathbf{F}}\right] = 0.$$
(14)

becomes

$$\operatorname{tr}\left[\left(\frac{\partial}{\partial \mathbf{F}}(W - pC) - \mathbf{S}\right)\dot{\mathbf{F}}\right] = 0, \tag{15}$$

which leads to

$$\mathbf{S} = \frac{\partial W}{\partial \mathbf{F}} - p \frac{\partial C}{\partial \mathbf{F}}.$$
(16)

In terms of the Cauchy stress:

where

$$\mathbf{T} = J^{-1} \mathbf{F} \mathbf{S} = J^{-1} \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} - p \mathbf{N},$$

$$\mathbf{N} = J^{-1} \mathbf{F} \frac{\partial C}{\partial \mathbf{F}},$$
(17)
(18)

is the *reaction stress*.

Example: Incompressible materials, we have

$$\frac{\partial C}{\partial \mathbf{F}} = (\det \mathbf{F}) \ \mathbf{F}^{-1} = J\mathbf{F}^{-1} = \mathbf{F}^{-1}, \tag{19}$$

that is, N = 1.

The constitutive relationship for an incompressible hyperelastic material is

$$\mathbf{T} = \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} - p\mathbf{1}.$$
 (20)

For a given $W = W(\mathbf{F})$, the Cauchy stress for compressible or incompressible materials can be written in the general form

$$\mathbf{T} = J^{-1} \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} - p \mathbf{1},\tag{21}$$

where J = 1 for an incompressible material and $p = p(\mathbf{x}, t)$ must be determined. If the material is unconstrained, then p = 0.

5 Summary of equations

$\dot{ ho} + ho \operatorname{div} \mathbf{v} = 0,$	continuity equation	(22)
$\operatorname{div} \mathbf{T} + \rho \mathbf{b} = \rho \dot{\mathbf{v}},$	equation of motion	(23)
	symmetry of Cauchy stress tensor	(24)
$\mathbf{T} = J^{-1} \mathbf{F} \frac{\partial W}{\partial \mathbf{F}} - p 1,$	constitutive law	(25)

10 equations for 10 unknowns: the scalar field ρ , the vector field χ and the six components of T.

In the reference configuration

$$\dot{\rho}_{0} = 0, \quad \text{continuity equation} \qquad (26)$$

$$\text{Div } \mathbf{S} + \rho_{0} \mathbf{B} = \rho_{0} \dot{\mathbf{v}} \quad \text{equation of motion} \qquad (27)$$

$$\mathbf{S}^{\mathsf{T}} \mathbf{F}^{\mathsf{T}} = \mathbf{F} \mathbf{S}, \quad \text{symmetry of Cauchy stress tensor} \qquad (28)$$

$$\mathbf{S} = \frac{\partial \mathbf{W}}{\partial \mathbf{F}} - p \mathbf{J} \mathbf{F}^{-1}, \quad \text{constitutive law} \qquad (29)$$

where $\rho_0 = J(\mathbf{X}, t)\rho(\mathbf{x}(\mathbf{X}, t), t)$ is the reference density at a material point,

 $\mathbf{B} = \mathbf{b}(\mathbf{x}(\mathbf{X}, \mathbf{t}), \mathbf{t})$ is the body force acting at the same point, and $\dot{\mathbf{v}} = \dot{\mathbf{v}}(\mathbf{x}(\mathbf{X}, t), t)$ is the acceleration of a material point.

5.1 Boundary conditions

A surface traction \mathbf{t}_b and deformation \mathbf{x}_b are prescribed at the boundary:

$$\mathbf{Tn} = \mathbf{t}_{\mathsf{b}} \qquad \text{for } \mathbf{X} \in \partial \mathcal{B}_0^t \tag{30}$$

$$\mathbf{x}(\mathbf{X}) = \mathbf{x}_{\mathsf{b}} \quad \text{for } \mathbf{X} \in \partial \mathcal{B}_0^d$$
 (31)

