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10 Linear Elasticity

u

x

�

u = x�X = �(X, t)�X

=) ru = Grad �� = H = F� ,

Assumptions of linear elasticity: Displacement gradient is small.

E = ICH t HT )
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10.3 Isotropic linear elasticity

If the body is homogeneous and isotropic with ⇢0, �, µ constant.

S = 2µE+ �(tr E) . (1)

µ > 0, 2µ+ 3� > 0. (2)

Navier equation,

µ�u+ (µ+ �)Grad Div u+ b0 = ⇢0ü (3)
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@Xi@Xj
(4)
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10.4 Examples

To understand the meaning of the elastic moduli, we consider simple deformations.

1) Pure shear, u = (�X2, 0, 0)

[E] =
1

2

2

4
0 � 0
� 0 0
0 0 0

3

5 , [S] =

2

4
0 ⌧ 0
⌧ 0 0
0 0 0

3

5 , (5)

=) ⌧ = µ� =) µ is the shear modulus.
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2) Uniform compression, u = �X and u = x�X = (� + 1)X�X

�11 = �p

�12 = �p at @⌦

E = � , � = �p (6)

We use

E =
1

2µ


� � �

2µ+ 3�
(tr �)

�
(7)

=T

goriely
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� =
1

2µ


�p +

�

2µ+ 3�
3p

�
(8)

=
1

2µ
p


�(2µ+ 3�) + 3�

2µ+ 3�

�
(9)

= � p

2µ+ 3�
(10)

=) p = �(2µ+ 3�)� = �3

✓
2µ+ 3�

3| {z }


◆
�, (11)

where  is the modulus of compression. Remember the condition 2µ+ 3� > 0!

goriely
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3) Uniaxial tension, � = tE1 ⌦ E1

�11

[E] = diag(↵, �, �), ↵ =
t

E
, � = �⌫↵. (12)

E =
µ(2µ+ 3�)

µ+ �
, ⌫ =

�

2(µ+ �)
(13)

Here E is equated to the infinitesimal Young’s modulus and ⌫ is equated to Poisson’s ratio.

E =
1

E
((1 + ⌫)� � ⌫(tr �) ) (14)

an alternative form for E.

= t

- -
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Expect ⌫ > 0 Now

 =
2µ+ 3�

3
=

E

3(1� 2⌫)
, (15)

so that as ⌫ ! 1/2,  ! 1, and we would need an infinite force to change the volume. Incompressible materials

have ⌫ = 1/2.
#
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10.4.1 General principles

1) Linear superposition

2) Stresses, strains and displacements are proportional to the loads (or displacements) applied to the solid.

3) If @2B = ; then there exists one unique solution, only displacements.

4) If only traction are given at the boundary and they are in equilibrium, then stresses and strains are unique. For initial

conditions, there exists one unique u(t).

Some nomenclature about loading

1) Plane strain

no displacement

no stretching

but stresses

u = (u(X, Y ), v(X, Y ), 0) =) e13 = e23 = e33 = 0, ⌧13 = ⌧23 = ⌧31 = ⌧32 = 0. (16)
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2) Plane stress

⌧13 = ⌧23 = ⌧33 = 0, ⌧ =

2

4
⇤ ⇤ 0
⇤ ⇤ 0
0 0 0

3

5 (17)

3) Antiplane strain

u = (0, 0, w(X, Y )) (18)

4) Pure torsion

u = (�⌦Y Z,⌦XZ,⌦'(X, Y )) (19)

(see problem sheet)
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10.4.2 Compatibility conditions

Recall: conditions for F: Curl F = 0. For

eij =
1

2

✓
@ui
@xj

+
@uj
@xi

◆
(20)

Compatibility conditions:

Curl Curl E = 0, (21)

() ✏ipm✏jqn
@2emn

@Xp@Xq
= 0 (22)

() @2eij
@Xk@X`

+
@2ek`

@Xi@Xj
� @2ei`

@Xj@Xk
� @2ejk

@Xi@X`
= 0 (23)

These are 6 relations (but only 3 are independent). For planar problems: e13 = e23 = 0, @eij/@X3 = 0,

=) @2e11
@X2

2

+
@2e22
@X2

1

� 2
@2e12

@X1@X2
= 0. (24)
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Now for plane stress we have ⌧33 = 0 and from plane strain we have ⌧33 = ⌫(⌧11 + ⌧22),

() ⌧33 = �⌫(⌧11 + ⌧22), (25)

which implies

e11 =
1 + ⌫

E
⌧11 �

⌫

E
(1 + �⌫)(⌧11 + ⌧22) (26)

e22 =
1 + ⌫

E
⌧22 �

⌫

E
(1 + �⌫)(⌧11 + ⌧22) (27)

e12 =
1 + ⌫

E
⌧12 (28)

Insert these into (⇤) and use ⌧11 =
@2�
@X2

1
� V ,

=) @4�

@x41
+ 2

@4�

@x21@
2
2

+
@4�

@x42
=

1� �⌫2

1� ⌫ � 2�⌫2

✓
@2V

@x21
+

@2V

@x22

◆
(29)

() r4� = C⌫�V , C⌫ =
1� �⌫2

1� ⌫ � 2�⌫2
. (30)

Here r4
is the biharmonic operator and � is the Airy potential. If � = 0, we have plane stress and � = 1 is plane strain.
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