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Problem 1.

In the lectures I gave a sketch of the proof of the Distortion Theorem (Theorem 3.2.9 in
the lecture notes). Write the complete proof of this theorem. (There is no need to write the
“moreover” part.)
Problem 2.

The harmonic measure is conformally invariant by the definition. Let us assume that
the boundary ∂Ω is smooth. In this case the harmonic measure ω(z,A) is continuous with
respect to the arc-length i.e. there is the density function hz(ζ) = hz,Ω(ζ) on the boundary
of Ω such that

ω(z,A) =

∫
A

hz(ζ)ds(ζ)

where ds is the arc-length.
(1) Let Ω and Ω′ be two simply connected domains with analytic boundary, so that the

Riemann maps are differentiable on the boundary. Let f : Ω→ Ω′ be a conformal
transformation. Derive the relation between hz,Ω(ζ) and hf(z),Ω′(f(ζ)).

(2) Let Ω = D, compute the density of harmonic measure with the pole at z0 ∈ D.
(3) Show that the density of the harmonic measure hz,Ω(ζ) is equal to ∂nGΩ(z0, ζ)/2π,

where ∂nG is the normal derivative of the Green’s function on the boundary.
(4) Use the connection between the Green’s function and the harmonic measure to

derive the result from (1)
(5) (Bonus question) Have you seen the function h before? What is the name for this

function?

Problem 3.
Let Γ be the family of rectifiable curves in the annulusA(r,R) that are not contractable,

that is go around the circle |z| = r and let Γ′ be the family of rectifiable curves in A(r,R)
that connect two boundary components. Find λ(Γ) and λ(Γ′).

Problem 4.
Use the symmetry rule to prove the following statement.
Let Ω1 be a domain in the upper half plane and let E1 and F1 be two sets on ∂Ω. Let

Ω2, E2, and F2 be their symmetric images with respect to R. We define Ω = Ω1 ∪ Ω2 (to
be completely rigorous we also have to add the real part of the boundary), E = E1 ∪ E2,
and F = F1 ∪ F2. Then

2dΩ(E,F ) = dΩ1
(E1, F1) = dΩ2

(E2, F2).
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Problem 5.
Let Ω be a simply connected domain, z0 ∈ Ω and A be an arc (connected set) on the

boundary of Ω. If you wish, you may assume that Ω is a nice domain, say, a domain
bounded by an analytic Jordan curve, but this is not too important.

(1) Let Ω′, z′0 and A′ be another domain, a point and an arc as above. Show that there
is a conformal map f such that f(Ω) = Ω′, f(z0) = z′0 and f(A) = A′ if and
only if ωΩ(z0, A) = ωΩ′(z′0, A

′).
(2) Let Γ be the family of all rectifiable curves in Ω such that their endpoints are on A

and they separate z0 from ∂Ω \ A. Show that there is a function F (independent
of Ω, z0 and A) such that λ(Γ) = F (ωΩ(z0, A)).

FIGURE 1. Family of curves Γ.

(3) By part (1) we can assume without loss of generality that Ω = D, z0 = 0 and A is
the arc {eiθ,−θ0 < θ < θ0} for some θ0 ∈ [0, π). Let Γ be the family of curves
as defined in part (2). Show that

λ(Γ) = 2dD+([−1, 0], A+) = 4dD\[−1,0]([−1, 0], A),

where D+ is the upper half-disc, A+ is the upper half of A and dΩ(E,F ) is the
extremal distance, that is the extremal length of the family of curves connecting
boundary sets E and F inside Ω.

(4) Our next goal is to compute dD+
([−1, 0], A+). We know that D+ with marked

points −1, 0, 1, eiθ0 could be mapped onto a rectangle in such a way that the
marked points are mapped to the vertices. Use this fact to compute dD+([−1, 0], A+)
in terms of θ0. Combine all the results to find a formula for the function F from
part (2).

(Hint: Use the fact that the upper half-plane with marked points−1/k,−1, 1, 1/k
could be mapped onto a rectangle with the ratio of side lengths equal to 2K(k)/K ′(k),
where K and K ′ are the complete elliptic integral of the the complementary com-
plete elliptic integrals of the first king. You don’t need to know anything about K
and K ′, the only important thing is that they give an explicit expression for the
side length ratio in terms of k.)

Problem 6.
Let Ω be a conformal triangle, i.e. a simply connected domain bounded by a Jordan

curve with three marked points on it. We will call these marked points the vertices and the
arcs between them the sides of the conformal triangle Ω. Let γ be a continuous curve in Ω̄
such that it intersects with all three sides of Ω.

Use extremal lengths to show that there exists a curve γ as above such that

L(γ) ≤ 31/4
√
A(Ω)

where L(γ) is the usual Euclidean length of γ and A(Ω) is the area of Ω.



FIGURE 2. Conformal triangle and a curve inside touching all three sides.

Show that the constant 31/4 is sharp.


