Continuously extended to the paries?
. Dirichlet bary problem:
$$14u=f$$
 in $R \leq \hat{c}$
 $2u_{2R}^2 = \hat{g}$

extremi length.
Chop 1.
• Uniform limit of analytic functions is analytic
• Liouville theorem: the only bold entire function are
Constant functions.
• Maximum modulus principle: the maximum modulus of
a non-constant analytic function is achieved on the
bolog of the domain.
• Schwontz telleorum principle:
let
$$\mathcal{I}_{L} \subseteq IH$$
 , and I be an open in IR such that
all its gts cure bodry pts of \mathcal{R} .
• Let f be an analytic function in R
and cts in \mathcal{R} Ult f be an analytic function in R
and cts in \mathcal{R} Ult f is real-valued on I.
Define F: $\widetilde{\mathcal{R}} = \mathcal{I} \sqcup \sqcup \bigcup \widetilde{\mathcal{I}}_{L}$
where $\widehat{\mathcal{R}}$ is given if $\mathcal{I} = \mathcal{I} \sqcup \amalg \bigcup \widetilde{\mathcal{I}}_{L}$
where $\widehat{\mathcal{I}}$ is symmetric to \mathcal{R} calcult
the real chis.
F(2) = $\begin{cases} f(2) & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ f(\widetilde{z}) & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in \widetilde{\mathcal{I}}_{L} \cup I \\ \hline{f(\widetilde{z})} & \text{if } Z \in$

. Let $\nabla \mathcal{L} \subseteq \mathcal{L}$ and assume there are two univalent maps f and g, $\mathcal{N} \xrightarrow{f} \mathcal{N}'$ $\mathcal{N} \xrightarrow{f} \mathcal{N}'$ $(\nabla \mathcal{L}' \text{ is one of three standard types of domains } \mathcal{M}$

$$\mu = g \circ f^{-1} \qquad \Omega' \to \Omega'$$

$$\mu = g \circ f^{-1} \qquad \Omega' \to \Omega'$$

$$prop 2.1.8 \quad All conformal automorphism of $\mathcal{L} \circ \mathcal{L} \cdot \mathcal{H}$
and $\mathcal{D} \ cove \ \mathcal{M} \ biss transform.$
Then 2.1.2 $\mathcal{L} \ Schwant 2 \ limma$.
$$Int 2.1.2 \ \mathcal{L} \ Schwant 2 \ limma$$
.
$$Int f be a analytic function in the unit disc $\mathcal{D} \cdot normalized$
by $f(\sigma) = 0$, and $\mathcal{I} f(2\sigma) \leq 1$.
$$Int (f(2)) \leq |Z| \quad form all $Z \in \mathcal{D} \ and \ |f'(\sigma)| \leq |.$

$$Introview \quad if \quad \exists \ Z \neq 0 \quad g \leftrightarrow \quad if(2\sigma) = |Z|, \ or \ |f'(\sigma)| \leq |.$$

$$Introview \quad if \quad \exists \ Z \neq 0 \quad g \leftrightarrow \quad if(2\sigma) = |Z|, \ or \ |f'(\sigma)| \leq |.$$

$$Introview \quad if \quad \exists \ Z \neq 0 \quad g \leftrightarrow \quad if(2\sigma) = |Z|, \ or \ |f'(\sigma)| = |$$

$$Interview \quad f(2) = \mathcal{L}^{10} \neq for \quad gome \ forced \ \theta \in iR.$$

$$Interview \quad f(2) = \mathcal{L}^{10} \neq for \quad gome \ forced \ \theta \in iR.$$

$$Interview \quad g(Z) = \int_{1}^{10} f(Z) / Z \quad if \ Z \neq 0$$

$$L \ f'(0) \quad rf \ Z = 0$$

$$g \ has a \ remover le \ singularity \ at \ o \ , \ analytic \ in \ D.$$

$$Int \ r \ G(\sigma, 1) \ be \ fixed \ on \ |Z| \leq Y, \ for \ |f(2)| \leq |f|.$$

$$Interview \ ig (Z) = \int_{1}^{10} f(Z) | \leq |f|.$$

$$Interview \ ig (Z) = \int_{1}^{10} f(Z) | \leq |f|.$$

$$Interview \ force \ in \ g \in X.$$

$$Passory \ br \ limit \ as \ r \rightarrow 1, \ we \ have \ [g|Z| | \leq |f|.$$

$$Interview \ as \ r \rightarrow 1, \ we \ have \ [g|Z| | \leq |f|.$$

$$Interview \ for \ g \in Z.$$

$$Interview \ force \ g \in Z.$$

$$Interview \ f(Z) = \mathcal{L}^{10} \ f(Z) =$$$$$$$$

proof: (of Prop 2.1.3) only for D.
let
$$f: D \rightarrow D$$
 be a conformal cuitomorphism.
define $\mu(Z) = \frac{Z - f(0)}{1 - f(0) Z}$ $f(C)$
 $\Im = \mu \circ f(\mu(f))$ is an analytic map. in D
with $g(0) = O$ $|g(Z)| \leq 1$
By Schwartz Lemma $|g(Z)| \leq |Z|$.
Apply \longrightarrow to $g(1 \text{ and } |g(R)| \leq |Z|$
 $\Rightarrow |g(Z)| = |Z|$
 $\Rightarrow g(Z) = e^{i\theta}Z$ for some $\theta \in R$.
 $\mu(f) = e^{i\theta}Z \Rightarrow f = \mu^{-1}(e^{i\theta}Z)$ type
 $\therefore f$ is the nurse of the Nöbius transform $E^{i\theta}\mu(Z)$.

Prop 2.1.1 The only Möbius bransform that map D, G or IH
to themselves are of the form
$$f: D \rightarrow D$$
 $f(Z) = e^{i\theta} \frac{2\cdot 4}{1-\bar{a}Z}$ $a tD, B tR.$
 $G \rightarrow G$ $f(Z) = aZ + b$ $a, b \in G$
 $H > H$ $f(Z) = aZ + b$ $a, b \in G$
 $H > H$ $f(Z) = aZ + b$ $a, b \in C$
 $d = b, C, d \in R$
 $ad - b \in 7^{2}$