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What is this course about?

We will be concerned with linear elliptic equations of the form

Lu := −∂i(aij∂ju) + l .o.t. = f in Ω. (†)

? Ω: a domain in Rn,
? u : Ω→ R is the unknown,
? f : Ω→ R is a given source,
? aij : Ω→ R are given coefficients with aij = aji .
? repeated indices are summed from 1 to n, i.e.

∂i (aij∂ju) =
n∑

i ,j=1

∂i (aij∂ju).

Linearity: L is linear in the sense that L(αu + v) = αLu + Lv .

Ellipticity: L is elliptic in the sense that the coefficient matrix
(aij)

n
i ,j=1 is positive definite.

Boundary condition: ignored at the moment.
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What is this course about?

Lu := −∂i(aij∂ju) + l .o.t. = f in Ω. (†)

We will deal with the functional analytic aspects of (†):

? In what functional space should one look for the solutions u?
? In what functional space should one give the sources f ?
? In those spaces, is (†) solvable?
? In those spaces, what other properties of solutions does one

have?

We will NOT be concerned with

? Solving for solutions of (†) in closed form.
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Example 1: The Poisson equation in 2D

−∆u := −∂2
xu − ∂2

yu = f in the unit disk D ⊂ R2. (?)

Classical solutions:

? u ∈ C 2(D): u has continuous second derivative in D.
? f ∈ C (D): f is continuous in D.
? ∆ : C 2(D)→ C (D).
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Example 1: The Poisson equation in 2D

−∆u := −∂2
xu − ∂2

yu = f in the unit disk D ⊂ R2. (?)

Issue 1: Non-existence. The Poisson equation (?) has no
classical solutions for some f ∈ C (D), e.g.

f (x , y) =
x2 − y 2

x2 + y 2

5− 4 log(x2 + y 2)

(1− log(x2 + y 2))3/2
.

For this function f , all ‘reasonable’ solutions are of the form

u(x , y) = (x2 − y 2)(1− log(x2 + y 2))1/2 + an analytic function.

These do not have continuous second derivative at (0, 0).
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Example 1: The Poisson equation in 2D

−∆u := −∂2
xu − ∂2

yu = f in the unit disk D ⊂ R2. (?)

Issue 2: In some applications, such as heat or electricity
conduction on a plate, the source f is not continuous. For
example, heat may be supplied only on part of the plate D. In
such cases, f is at best piecewise continuous. Naturally the
solutions u are no longer in C 2.
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Example 2: An equation from material sciences

Lu := −div(a∇u) = f in Ω ⊂ R3. (??)

A composite material occupies a region Ω = Ω1 ∪ Ω2, where
each subregion models a different constituent material. The
coefficient a thus assumes different values on these subregion,
say

a(x) =

{
1 if x ∈ Ω1,
k 6= 1 if x ∈ Ω2.

Ω1

a = 1

Ω2

a = k 6= 1
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Example 2: An equation from material sciences

Lu := −div(a∇u) = f in Ω ⊂ R3. (??)

Ω1

a = 1

Ω2

a = k 6= 1

Issue 1: As a is discontinuous, IF u is smooth, the vector a∇u
does not have to be continuous and thus the meaning of
div(a∇u) is not clear.

Issue 2: If we instead requires that a∇u be continuous, then ∇u
may be discontinuous, and so u may not be twice differentiable.
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Conclusion

Lu := −∂i(aij∂ju) + l .o.t. = f in Ω. (†)

There is a need to consider (generalised/weak) solutions which
are not twice differentiable.

There is a need to consider functions whose (generalised/weak)
derivatives are discontinuous.

GOAL: Treat (†) in Sobolev spaces W 1,p, i.e. space of functions
which has first derivatives belonging to Lp.

Agenda: Lp spaces  W 1,p spaces  Treatment of (†).
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Outline for the rest of the lecture

Definition of Lebesgue spaces Lp(E ).

Hölder’s and Minkowski’s inequalities.

Completeness of Lebesgue spaces – Riesz-Fischer’s theorem.

Converse to Hölder’s inequality.

Duals of Lebesgue spaces.
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Lebesgue spaces Lp(E ) with 1 ≤ p <∞

E : a measurable subset of Rn,

1 ≤ p <∞, define

Lp(E ) =
{
f : E → R

∣∣ f is measurable on E

and

∫
E

|f |p dx <∞
}
.

Define Lp(E ) as Lp(E )/ ∼ where

f ∼ g if f = g a.e. in E .
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Lebesgue spaces L∞(E )

E : a measurable subset of Rn,

For a measurable f : E → R, define the essential supremum of f
on E by

ess sup
E

f = inf{c > 0 : f ≤ c a.e. in E}.

When ess supE |f | <∞, we say f is essentially bounded on E .

L∞(E ) is defined as the set of all essentially bounded
measurable functions on E .

L∞(E ) is defined as L∞(E )/ ∼.
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Some conventions

Unless otherwise stated, our functions are real-valued.

When E is clear, we will simply write Lp in place of Lp(E ).

For simplicity, we will frequently refer to elements of Lp(E ) as
functions rather than equivalent classes of functions. When
there is a need to speak of a representative in an equivalent class
of functions, we will make it clear.

We will use Lploc(E ) to refer to the set of functions f such that,
for every compact subset K of E , the restriction of f to K
belongs to Lp(K ).
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Lp(E ) is a normed vector space for 1 ≤ p ≤ ∞

The following results were proven in Integration:

The space Lp(E ) is a vector space.

If we define

‖f ‖Lp(E) =
{∫

E

|f |p dx
}1/p

for 1 ≤ p <∞,

and
‖f ‖L∞(E) = ess sup

E
|f |,

then Lp(E ) is a normed vector space with these norms for
1 ≤ p ≤ ∞.
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Recap

Recall that (X , ‖ · ‖) is a normed vector space if

? X is a vector space

? ‖ · ‖ maps X into [0,∞) and satisfies

. ‖x‖ = 0 if and only if x = 0.

. ‖λx‖ = |λ|‖x‖ for all λ ∈ R, x ∈ X .

. ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x , y ∈ X .
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Lp(E ) is a normed vector space for 1 ≤ p ≤ ∞

The following results were proven in Integration:

In particular, we have

Theorem (Minkowski’s inequality)

If 1 ≤ p ≤ ∞, then ‖f + g‖Lp(E) ≤ ‖f ‖Lp(E) + ‖g‖Lp(E).

The proof of the above uses the following important inequality:

Theorem (Hölder’s inequality)

If 1 ≤ p, p′ ≤ ∞ are such that 1
p

+ 1
p′

= 1, then

‖fg‖L1(E) ≤ ‖f ‖Lp(E)‖g‖Lp′ (E).
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Lp(E ) is a Banach space 1 ≤ p ≤ ∞

The following result was touched upon in Integration:

Theorem (Riesz-Fischer’s theorem)

If 1 ≤ p ≤ ∞, then Lp(E ) is a Banach space with norm ‖ · ‖Lp(E).

Recall that a normed vector space is a Banach space if it is complete
with respect to its norm, i.e. all Cauchy sequences converge.
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Proof of Riesz-Fischer’s theorem

Suppose that (fk) is a Cauchy sequence in Lp. We need to show
that fk converges in Lp to some f ∈ Lp.

Case 1: p =∞.

? For every k ,m, there exists a set Zk,m of zero measure such that

|fk − fm| ≤ ‖fk − fm‖L∞ in E \ Zk,m.

? Let Z = ∪k,mZk,m. Then Z has zero measure and

|fk − fm| ≤ ‖fk − fm‖L∞ in E \ Z for all k and m.

? So fk converges uniformly in E \ Z to some measurable function
f : E \ Z → R. Extend f to all of E by letting f = 0 in Z .
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Proof of Riesz-Fischer’s theorem

Case 1: p =∞...

? So fk converges uniformly in E \ Z to some measurable function
f : E \ Z → R. Extend f to all of E by letting f = 0 in Z .

? Now, for any k , we have

|fk − f | ≤ sup
m≥k
‖fk − fm‖L∞ in E \ Z .

? As Z has measure zero, this means

‖fk − f ‖L∞ ≤ sup
m≥k
‖fk − fm‖L∞ .

? Since fk ∈ L∞, it follows from Minkowski’s inequality that
f ∈ L∞. Also, sending k →∞ in the above inequality also
shows that ‖fk − f ‖L∞ → 0, i.e. fk converges to f in L∞.
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Proof of Riesz-Fischer’s theorem

Case 2: 1 ≤ p <∞.

? We have

|{x ∈ E : |fk(x)− fm(x)| > ε}| ≤ 1

εp

∫
E
|fk(x)− fm(x)|p

=
1

εp
‖fk(x)− fm(x)‖pLp

k,m→∞−→ 0.

This means that the sequence (fk) is Cauchy in measure.
? A result from Integration then asserts that (fk) converges in

measure, and hence it has a subsequence, say (fkj ), which
converges a.e. in E to some function f . To conclude, we show
that f ∈ Lp and fk → f in Lp.
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Proof of Riesz-Fischer’s theorem

Case 2: 1 ≤ p <∞...

? Fix some δ > 0, then, for large k and j ,∫
E
|fkj − fk |p dx = ‖fkj − fk‖pLp ≤ δ

p.

? Sending j →∞ and using Fatou’s lemma, we get∫
E
|f − fk |p dx ≤ lim inf

j→∞

∫
E
|fkj − fk |p dx ≤ δp.

? So we have ‖f − fk‖Lp ≤ δ for large k . By Minkowski’s
inequality, this implies that f ∈ Lp. As δ is arbitrary, this also
gives fk → f in Lp, as desired.
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Converse to Hölder’s inequality

Proposition (Converse to Hölder’s inequality)

Let E be measurable, and f be measurable on E . If 1 ≤ p ≤ ∞ and
1
p

+ 1
p′

= 1, then

‖f ‖Lp(E) = sup
{∫

E

fg dx : g ∈ Lp
′
(E ), ‖g‖Lp′ (E) ≤ 1

and fg is integrable on E
}
.

Note: We do not presume that f ∈ Lp(E ).
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Proof of Converse to Hölder’s inequality

Will only present the case 1 < p <∞. The cases p = 1 and
p =∞ need some justification; see notes.

Let

α = sup
{∫

E

fg dx : ‖g‖Lp′ ≤ 1, fg ∈ L1(E )
}
∈ [0,∞].

By Hölder’s inequality, we have α ≤ ‖f ‖Lp . So it suffices to
show α ≥ ‖f ‖Lp .

If ‖f ‖Lp = 0, we are done. Assume henceforth that ‖f ‖Lp > 0.
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Proof of Converse to Hölder’s inequality

Case 1: 0 < ‖f ‖Lp <∞.
In this case, we test the definition of α using

g0(x) =
sign(f (x))|f (x)|p−1

‖f ‖p−1
Lp

.

? We have, as p′ = p
p−1 ,∫

E
|g0|p

′
dx =

1

‖f ‖pLp

∫
E
|f |p dx = 1.

? Next, ∫
E
|f | |g0| dx =

1

‖f ‖p−1
Lp

∫
E
|f |p dx <∞.

? So by the definition of α,

α ≥
∫
E
f g0 dx =

1

‖f ‖p−1
Lp

∫
E
|f |p dx = ‖f ‖Lp .
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Proof of Converse to Hölder’s inequality

Case 2: ‖f ‖Lp =∞.
In this case, we need to show that α =∞.

? Consider a truncation of |f | given by

fk(x) =

{
min(|f |(x), k) if x ∈ E and |x | ≤ k ,
0 otherwise.

Note that we are truncating both in the domain and in the
range: fk(x) = min(|f |(x), k)χE∩{|x |≤k}(x).

? It is clear that fk ∈ Lp(E ). Also, by Lebesgue’s monotone
convergence theorem,

‖fk‖pLp =

∫
E
|fk |p dx →

∫
E
|f |p dx =∞.

In addition, by Case 1,

‖fk‖Lp = sup
{∫

E
fk g dx : ‖g‖Lp′ ≤ 1, fkg ∈ L1(E )

}
.
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Proof of Converse to Hölder’s inequality

Case 2: ‖f ‖Lp =∞...

? In fact, the proof in Case 1 shows that the function

gk = |fk |p−1

‖fk‖p−1
Lp
≥ 0 satisfies ‖gk‖Lp′ = 1, fkgk ∈ L1(E ) and

‖fk‖Lp =

∫
E
fk gk dx .

? As |f | ≥ fk ≥ 0, It follows that, as∫
E
|f |gk dx ≥

∫
E
fk gk dx = ‖fk‖Lp →∞.

? Letting g̃k(x) = sign(f (x))gk(x), we then have ‖g̃k‖Lp′ = 1,
f g̃k ∈ L1(E ) and so

α ≥
∫
E
f g̃k dx =

∫
E
|f | gk dx →∞.

So α =∞, as desired.

Luc Nguyen (University of Oxford) C4.3 – Lecture 1 MT 2020 26 / 30



Dual space of Lp(E )

Recall that for a (real) normed vector space X , the dual of X ,
denoted as X ∗, is the Banach space of bounded linear functional
T : X → R, equipped with the dual norm

‖T‖∗ = sup ‖Tx‖.

Theorem (Riesz’ representation theorem)

Let E be measurable, 1 ≤ p <∞ and p′ = p
p−1

. Then there is an

isometric isomorphism π : (Lp(E ))∗ → Lp
′
(E ) such that

Tg =

∫
E

π(T )g dx for all g ∈ Lp(E ) and T ∈ (Lp(E ))∗.
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Dual space of Lp(E )

Theorem (Riesz’ representation theorem)

Let E be measurable, 1 ≤ p <∞ and p′ = p
p−1

. Then there is an

isometric isomorphism π : (Lp(E ))∗ → Lp
′
(E ) such that

Tg =

∫
E

π(T )g dx for all g ∈ Lp(E ) and T ∈ (Lp(E ))∗.

Note the similarity of the above and Riesz’ representation
theorem for Hilbert spaces. In particular, observe the connection
when p = 2.
The theorem is false for p =∞. The dual of L∞(E ) is
strictly bigger than L1(E ). In other words, there exists a linear
functional T on L∞(E ) for which there is no f ∈ L1(E ) satisfying

Tg =

∫
E

fg dx for all g ∈ L∞(E ).
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(L∞(R))∗ 6= L1(R)

Let Tk ∈ (L∞(R))∗ given by

Tkg =
1

k

∫ k

0

g dx .

Then, for every g ∈ L∞(R), (Tkg) ∈ `∞.

Let L ∈ (`∞)∗ be such that

L((xk)) = lim
k→∞

xk provided (xk) is convergent.

Such L exists by the Hahn-Banach theorem.

Define Tg = L((Tkg)) for all g ∈ L∞(R). It is easy to check
that T ∈ (L∞(R))∗.
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(L∞(R))∗ 6= L1(R)
We claim that there is no f ∈ L1(R) such that

Tg =

∫
R
fg dx for all g ∈ L∞(R).

Suppose by contradiction that such f exists. Fix some m > 0
and let g1(x) = sign(f (x))χ(0,m)(x). Then, as |g1| ≤ χ(0,m), we
have for k > m that |Tkg1| ≤ m

k
. It follows that∫ m

0

|f | dx = Tg1 = L((Tkg1)) = lim
k→∞

m

k
= 0.

As m is arbitrary, we thus have f = 0 a.e. in (0,∞)
On the other hand, with g2 = χ(0,∞), we have Tkg2 = 1 and so

0 =

∫ ∞
0

f dx = Tg2 = L((Tkg2)) = lim
k→∞

1 = 1,

which is absurd.
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