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What is this course about?

@ We will be concerned with linear elliptic equations of the form
Lu = —Oi(a,-j@-u) + l.o.t. = f in €. ("’)

* Q: a domain in R”,

* u:Q — Ris the unknown,

* f:Q — R is a given source,

% ajj : 2 — R are given coefficients with a;; = aj;.
* repeated indices are summed from 1 to n, i.e.

9;(a;0;u) Z 9;(a;0;u)
ij=1
@ Linearity: L is linear in the sense that L(au+ v) = alu+ Lv.

o Ellipticity: L is elliptic in the sense that the coefficient matrix
(a;)7 ;1 is positive definite.
@ Boundary condition: ignored at the moment.
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What is this course about?

Lu = —0;(a;O0;u) + l.o.t. = f in Q. (1)

@ We will deal with the functional analytic aspects of (}):
* In what functional space should one look for the solutions u?
* In what functional space should one give the sources 7
* In those spaces, is (1) solvable?
* In those spaces, what other properties of solutions does one
have?

@ We will NOT be concerned with
* Solving for solutions of () in closed form.
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Example 1: The Poisson equation in 2D

~Au = —0%u — 6§u = f in the unit disk D C R?. (%)

@ Classical solutions:
* u € C%(D): u has continuous second derivative in D.
* f € C(D): f is continuous in D.
« A C3(D) — C(D).
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Example 1: The Poisson equation in 2D

—Au = —0%u — 6§u = f in the unit disk D C R?. (%)

@ Issue 1: Non-existence. The Poisson equation (x) has no
classical solutions for some f € C(D), e.g.

x> —y? 5 — 4|og(x2 + yz)

f(x,y) = .
U = ST T Toslo 1)

For this function f, all ‘reasonable’ solutions are of the form
u(x,y) = (x> — y*)(1 — log(x* + y*))*? + an analytic function.

These do not have continuous second derivative at (0, 0).
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Example 1: The Poisson equation in 2D

—Au = —0%u — 6§u = f in the unit disk D C R?. (%)

@ Issue 2: In some applications, such as heat or electricity
conduction on a plate, the source f is not continuous. For
example, heat may be supplied only on part of the plate D. In
such cases, f is at best piecewise continuous. Naturally the
solutions u are no longer in C2.
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Example 2: An equation from material sciences

Lu := —div(aVu) = f in Q C R3. (xx)

@ A composite material occupies a region € = Q; U €25, where
each subregion models a different constituent material. The
coefficient a thus assumes different values on these subregion,

say
()_ 1 ifXEQ]_,
T k#£1 ifxe Q.
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Example 2: An equation from material sciences

Lu := —div(aVu) = f in Q C R3. (xx)

@ Issue 1: As a is discontinuous, IF u is smooth, the vector aVu
does not have to be continuous and thus the meaning of
div(aVu) is not clear.

@ Issue 2: If we instead requires that aVu be continuous, then Vu
may be discontinuous, and so u may not be twice differentiable.
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Conclusion

Lu = —0;(a;0;u) + l.o.t. = f in Q. (1)

@ There is a need to consider (generalised /weak) solutions which
are not twice differentiable.

@ There is a need to consider functions whose (generalised /weak)
derivatives are discontinuous.

@ GOAL: Treat (1) in Sobolev spaces W'*, i.e. space of functions
which has first derivatives belonging to LP.

@ Agenda: LP spaces ~» WP spaces ~ Treatment of (7).
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Outline for the rest of the lecture

Definition of Lebesgue spaces LP(E).
Holder's and Minkowski's inequalities.
Completeness of Lebesgue spaces — Riesz-Fischer's theorem.

Converse to Holder's inequality.

Duals of Lebesgue spaces.
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Lebesgue spaces LP(E) with 1 < p < o0

@ E: a measurable subset of R”,
o 1 < p < oo, define

LP(E) = {f : E — R| f is measurable on E
and / IF|P dx < oo}.
E

@ Define LP(E) as LP(E)/ ~ where

f~giff=gae inE.
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Lebesgue spaces L>(E)

@ E: a measurable subset of R”,

@ For a measurable f : E — R, define the essential supremum of f
on E by

esssupf =inf{c >0:f <cae. in E}.
E

When esssupg |f| < oo, we say f is essentially bounded on E.

e L>(E) is defined as the set of all essentially bounded
measurable functions on E.

@ [>(E) is defined as L>(E)/ ~.
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Some conventions

@ Unless otherwise stated, our functions are real-valued.

@ When E is clear, we will simply write LP in place of LP(E).

e For simplicity, we will frequently refer to elements of LP(E) as
functions rather than equivalent classes of functions. When
there is a need to speak of a representative in an equivalent class
of functions, we will make it clear.

o We will use L (E) to refer to the set of functions f such that,

loc
for every compact subset K of E, the restriction of f to K

belongs to LP(K).
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LP(E) is a normed vector space for 1 < p < oo

The following results were proven in Integration:

@ The space LP(E) is a vector space.

o If we define
1/p
||f||LP(E):{/|f|de} for 1 < p < oo,
E

and
|| ]| (g) = ess sup |f],
E

then LP(E) is a normed vector space with these norms for
1<p<oo.
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Recall that (X, || - ||) is a normed vector space if
* X is a vector space
* || - || maps X into [0, 00) and satisfies
> [[x|| = 0 if and only if x = 0.
> [Ax]l = [AllIx]| for all A € R, x € X.
> x vl < Ix[l +[lyll for all x,y € X.
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LP(E) is a normed vector space for 1 < p < oo

The following results were proven in Integration:

@ In particular, we have

Theorem (Minkowski's inequality)

If1 < p< oo, then ||f+g||LP(E) < ||f||Lp(E) + ||g||Lp(E).

@ The proof of the above uses the following important inequality:

Theorem (Holder's inequality)

If1 < p,p < oo are such that ;_1: + ﬁ =1, then
gl ey < Iflleee) gl e gy-
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LP(E) is a Banach space 1 < p < o0

The following result was touched upon in Integration:

Theorem (Riesz-Fischer's theorem)

If1 < p < oo, then LP(E) is a Banach space with norm || - || e().

Recall that a normed vector space is a Banach space if it is complete
with respect to its norm, i.e. all Cauchy sequences converge.
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Proof of Riesz-Fischer's theorem

@ Suppose that (f;) is a Cauchy sequence in LP. We need to show
that f, converges in LP to some f € LP.

e Case 1: p = 0.
% For every k, m, there exists a set Zj p, of zero measure such that

’fk — fm‘ S ||fk — meLoo in E\Zk,m.
* Let Z = Uk mZk m- Then Z has zero measure and
|fx — fm| < ||[fx — fml||1 in E'\ Z for all k and m.

* So fi converges uniformly in E '\ Z to some measurable function
f:E\Z— R. Extend f to all of E by letting f =0 in Z.
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Proof of Riesz-Fischer's theorem

o Case 1: p=o0...

* So fi converges uniformly in E '\ Z to some measurable function
f:E\Z— R. Extend f to all of E by letting f =0 in Z.
* Now, for any k, we have

|fx — f| < sup ||fx — |1~ in E\ Z.
m>k
* As Z has measure zero, this means
||fk — f”[_oo S sup ||fk — meLoo
m>k

* Since f, € L™, it follows from Minkowski's inequality that
f € L*°. Also, sending k — oo in the above inequality also
shows that ||fx — f||;ec — 0, i.e. fx converges to f in L.
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Proof of Riesz-Fischer's theorem

@ Case 2: 1 < p < oo0.
* We have

[1x € B2 1)~ ] > e} < 55 [ 1600~ 0P

1
= () = G2,

k,m—o0
—

0.

This means that the sequence (fx) is Cauchy in measure.

* A result from Integration then asserts that (fx) converges in
measure, and hence it has a subsequence, say (f;), which
converges a.e. in E to some function f. To conclude, we show
that f € LP and f, — f in LP.
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Proof of Riesz-Fischer's theorem

o Case 2: 1 < p<o0...
* Fix some § > 0, then, for large k and j,

/ ’fkj — fk‘de = kaj — fszp S 5p.
E
* Sending j — oo and using Fatou's lemma, we get
/ |f — P dx < Iiminf/ |fi; — fic|P dx < 0P,
E j—oo JE
* So we have ||f — fi|[1» < 6 for large k. By Minkowski's

inequality, this implies that f € LP. As § is arbitrary, this also
gives fy — f in LP, as desired.
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Converse to Holder's inequality

Proposition (Converse to Holder's inequality)

Let E be measurable, and f be measurable on E. If 1 < p < oo and
;lJ + % =1, then

IFlley =sup { [ o g € L7(E) ey < 1
E

and fg is integrable on E }

v

Note: We do not presume that f € LP(E).
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Proof of Converse to Holder's inequality

@ Will only present the case 1 < p < co. The cases p =1 and
p = oo need some justification; see notes.

o Let
o= sup{/ fede: gl < Lfg e L'(E)} € [0.0].
E

By Holder's inequality, we have o < ||f]|.». So it suffices to
show a > || f]| -

o If ||f||.» = 0, we are done. Assume henceforth that [|f]|» > 0.
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Proof of Converse to Holder's inequality

@ Case 1: 0 < ||f||rr < 0.
In this case, we test the definition of « using

o) _ SO FLP
&0 M

* We have, as p’ = %,

1
/\go\p dx = |fH /\f|pdx—1
Jo 1l = s [[17P <o

* So by the definition of «,

1
a>/fgodx /|f\de—||fHLp.
E k3l

* Next,
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Proof of Converse to Holder's inequality

e Case 2: |[f]| = 0.
In this case, we need to show that o = oo.
* Consider a truncation of |f| given by
fu(x) = min(|f|(x), k) if x € E and |x| < k,
0 otherwise.
Note that we are truncating both in the domain and in the

range: fi(x) = min(|f[(x), K)xen{|x|<k} (X)-
~ It is clear that f, € LP(E). Also, by Lebesgue's monotone
convergence theorem,

ka\l’ipz/|fk|"dxa/ |F|P dx = co.
E E

In addition, by Case 1,

[ felle = sup{/Efkgdx gl <1,fkg € Ll(E)}.
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Proof of Converse to Holder's inequality

o Case 2: ||f||»r = o0...
* In fact, the proof in Case 1 shows that the function

fi|P—1L .
8k = H'f:‘”p_l > 0 satisfies || gk ,» = 1, fxgx € L*(E) and
Lp

\fllee = | fx gk dx.
E

* As |f| > f >0, It follows that, as

/rf\gkdxz/fkgkdx—nfkuwoo.
E E

* Letting gx(x) = sign(f(x))gk(x), we then have ||gk||,» = 1,
f&c € L1(E) and so

aZ/fgkdX:/ngdx—)oo.
E E

So av = 00, as desired.
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Dual space of LP(E)

Recall that for a (real) normed vector space X, the dual of X,
denoted as X*, is the Banach space of bounded linear functional
T : X — R, equipped with the dual norm

[Tl = sup [ Tx||.

Theorem (Riesz’ representation theorem)

Let E be measurable, 1 < p < oo and p' = ﬁ. Then there is an

isometric isomorphism 7 : (LP(E))* — LP'(E) such that

Tg = / 7w(T)g dx for all g € LP(E) and T € (LP(E))".
E
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Dual space of LP(E)

Theorem (Riesz’ representation theorem)

Let E be measurable, 1 < p < oo and p' = ﬁ. Then there is an
isometric isomorphism 7 : (LP(E))* — LP'(E) such that

Tg = / 7w(T)g dx for all g € LP(E) and T € (LP(E))".
3

@ Note the similarity of the above and Riesz’' representation
theorem for Hilbert spaces. In particular, observe the connection
when p = 2.

@ The theorem is false for p = co. The dual of L*(E) is
strictly bigger than L}(E). In other words, there exists a linear
functional T on L°°(E) for which there is no f € L*(E) satisfying

Tg = / fg dx for all g € L°(E).
E

Luc Nguyen (University of Oxford) C4.3 — Lecture 1 MT 2020

28 /30



(L=(R))* # LY(R)

o Let T, € (L°(R))* given by

1 k
Tkg:—/ g dx.
k Jo

Then, for every g € L*(R), (Tkg) € (.
@ Let L € (¢*°)* be such that

L((x)) = kILn;o X, provided (xx) is convergent.

Such L exists by the Hahn-Banach theorem.

o Define Tg = L((Tkg)) for all g € L*(R). It is easy to check
that T € (L*(R))*.

29 /30
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(L=(R))* # LY(R)

@ We claim that there is no f € L}(R) such that

Tg = / fg dx for all g € L*(R).
R

@ Suppose by contradiction that such f exists. Fix some m > 0

and let g,(x) = sign(F(x))X(o.m)(x). Then, as lgi| < Y(o.m. we
have for k > m that | T, g1| < 7. It follows that

/ |fldx = Tgr = L((Tkg1)) = lim E:0_
0

k—oo k

As m is arbitrary, we thus have f =0 a.e. in (0, c0)
@ On the other hand, with g» = X(0,.c), We have Ty g, =1 and so

0 :/ fdx=Tg = L((Tkg2)) = lim 1 =1,
0 k—o0

which is absurd.
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