

C4.3 Functional Analytic Methods for PDEs Lecture 1

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

What is this course about?

• We will be concerned with linear elliptic equations of the form

$$Lu := -\partial_i (a_{ij}\partial_j u) + I.o.t. = f \text{ in } \Omega.$$
 (†)

- * Ω: a domain in \mathbb{R}^n ,
- \star $u:\Omega \to \mathbb{R}$ is the unknown,
- $\star f: \Omega \to \mathbb{R}$ is a given source,
- \star *a_{ij}* : Ω → ℝ are given coefficients with *a_{ij}* = *a_{ji}*.
- \star repeated indices are summed from 1 to *n*, i.e.

$$\partial_i(a_{ij}\partial_j u) = \sum_{i,j=1}^n \partial_i(a_{ij}\partial_j u).$$

- Linearity: L is linear in the sense that $L(\alpha u + v) = \alpha Lu + Lv$.
- Ellipticity: L is elliptic in the sense that the coefficient matrix (a_{ij})ⁿ_{i,j=1} is positive definite.
- Boundary condition: ignored at the moment.

$$Lu := -\partial_i (a_{ij}\partial_j u) + I.o.t. = f \text{ in } \Omega.$$
 (†)

• We will deal with the functional analytic aspects of (†):

- \star In what functional space should one look for the solutions u?
- \star In what functional space should one give the sources f?
- ⋆ In those spaces, is (†) solvable?
- * In those spaces, what other properties of solutions does one have?
- We will NOT be concerned with
 - \star Solving for solutions of (†) in closed form.

$$-\Delta u := -\partial_x^2 u - \partial_y^2 u = f$$
 in the unit disk $D \subset \mathbb{R}^2$. (*)

• Classical solutions:

★ $u \in C^2(D)$: u has continuous second derivative in D.
★ $f \in C(D)$: f is continuous in D.
★ $\Delta : C^2(D) \rightarrow C(D)$.

Example 1: The Poisson equation in 2D

$$-\Delta u := -\partial_x^2 u - \partial_y^2 u = f$$
 in the unit disk $D \subset \mathbb{R}^2$. (*)

Issue 1: Non-existence. The Poisson equation (★) has no classical solutions for some f ∈ C(D), e.g.

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2} \frac{5 - 4\log(x^2 + y^2)}{(1 - \log(x^2 + y^2))^{3/2}}.$$

For this function f, all 'reasonable' solutions are of the form

$$u(x,y) = (x^2 - y^2)(1 - \log(x^2 + y^2))^{1/2} +$$
 an analytic function.

These do not have continuous second derivative at (0,0).

$$-\Delta u := -\partial_x^2 u - \partial_y^2 u = f$$
 in the unit disk $D \subset \mathbb{R}^2$. (*)

Issue 2: In some applications, such as heat or electricity conduction on a plate, the source f is not continuous. For example, heat may be supplied only on part of the plate D. In such cases, f is at best piecewise continuous. Naturally the solutions u are no longer in C².

Example 2: An equation from material sciences

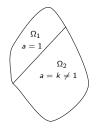
$$Lu := -\operatorname{div}(a\nabla u) = f \text{ in } \Omega \subset \mathbb{R}^3. \tag{**}$$

 A composite material occupies a region Ω = Ω₁ ∪ Ω₂, where each subregion models a different constituent material. The coefficient *a* thus assumes different values on these subregion, say

$$a(x) = \begin{cases} 1 & \text{if } x \in \Omega_1, \\ k \neq 1 & \text{if } x \in \Omega_2. \end{cases}$$

Example 2: An equation from material sciences

$$Lu := -\operatorname{div}(a\nabla u) = f \text{ in } \Omega \subset \mathbb{R}^3. \tag{**}$$



- Issue 1: As a is discontinuous, IF u is smooth, the vector a∇u does not have to be continuous and thus the meaning of div(a∇u) is not clear.
- Issue 2: If we instead requires that $a\nabla u$ be continuous, then ∇u may be discontinuous, and so u may not be twice differentiable.

$$Lu := -\partial_i (a_{ij}\partial_j u) + I.o.t. = f \text{ in } \Omega.$$
(†)

- There is a need to consider (generalised/weak) solutions which are not twice differentiable.
- There is a need to consider functions whose (generalised/weak) derivatives are discontinuous.
- GOAL: Treat (†) in Sobolev spaces $W^{1,p}$, i.e. space of functions which has first derivatives belonging to L^p .
- Agenda: L^p spaces $\rightsquigarrow W^{1,p}$ spaces \rightsquigarrow Treatment of (†).

- Definition of Lebesgue spaces $L^{p}(E)$.
- Hölder's and Minkowski's inequalities.
- Completeness of Lebesgue spaces Riesz-Fischer's theorem.
- Converse to Hölder's inequality.
- Duals of Lebesgue spaces.

Lebesgue spaces $L^p(E)$ with $1 \le p < \infty$

- E: a measurable subset of \mathbb{R}^n ,
- $1 \le p < \infty$, define

$$\mathcal{L}^{p}(E) = \Big\{ f : E \to \mathbb{R} \Big| \ f \text{ is measurable on } E \\ \text{ and } \int_{E} |f|^{p} \ dx < \infty \Big\}.$$

• Define $L^p(E)$ as $\mathcal{L}^p(E)/\sim$ where

$$f \sim g$$
 if $f = g$ a.e. in E .

Lebesgue spaces $L^{\infty}(E)$

- E: a measurable subset of \mathbb{R}^n ,
- For a measurable f : E → ℝ, define the essential supremum of f on E by

$$\operatorname{ess\,sup}_{E} f = \inf\{c > 0 : f \le c \text{ a.e. in } E\}.$$

When $\operatorname{ess\,sup}_E |f| < \infty$, we say f is essentially bounded on E.

L[∞](*E*) is defined as the set of all essentially bounded measurable functions on *E*.

•
$$L^{\infty}(E)$$
 is defined as $\mathcal{L}^{\infty}(E)/\sim$.

- Unless otherwise stated, our functions are real-valued.
- When E is clear, we will simply write L^p in place of $L^p(E)$.
- For simplicity, we will frequently refer to elements of $L^{p}(E)$ as functions rather than equivalent classes of functions. When there is a need to speak of a representative in an equivalent class of functions, we will make it clear.
- We will use L^p_{loc}(E) to refer to the set of functions f such that, for every compact subset K of E, the restriction of f to K belongs to L^p(K).

$L^p(E)$ is a normed vector space for $1 \leq p \leq \infty$

The following results were proven in Integration:

- The space $L^{p}(E)$ is a vector space.
- If we define

$$\|f\|_{L^p(E)} = \Big\{\int_E |f|^p \, dx\Big\}^{1/p} ext{ for } 1 \le p < \infty,$$

and

$$\|f\|_{L^{\infty}(E)} = \operatorname{ess\,sup}_{E} |f|,$$

then $L^{p}(E)$ is a normed vector space with these norms for $1 \leq p \leq \infty$.

Recall that $(X, \|\cdot\|)$ is a normed vector space if $\star X$ is a vector space $\star \|\cdot\|$ maps X into $[0, \infty)$ and satisfies $\triangleright \|x\| = 0$ if and only if x = 0. $\triangleright \|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}, x \in X$. $\triangleright \|x + y\| \le \|x\| + \|y\|$ for all $x, y \in X$.

$L^p(E)$ is a normed vector space for $1 \leq p \leq \infty$

The following results were proven in Integration:

• In particular, we have

Theorem (Minkowski's inequality)

If $1 \le p \le \infty$, then $||f + g||_{L^p(E)} \le ||f||_{L^p(E)} + ||g||_{L^p(E)}$.

• The proof of the above uses the following important inequality:

Theorem (Hölder's inequality)

If
$$1 \le p, p' \le \infty$$
 are such that $\frac{1}{p} + \frac{1}{p'} = 1$, then $\|fg\|_{L^1(E)} \le \|f\|_{L^p(E)} \|g\|_{L^{p'}(E)}$.

The following result was touched upon in Integration:

Theorem (Riesz-Fischer's theorem)

If $1 \le p \le \infty$, then $L^p(E)$ is a Banach space with norm $\|\cdot\|_{L^p(E)}$.

Recall that a normed vector space is a Banach space if it is complete with respect to its norm, i.e. all Cauchy sequences converge.

- Suppose that (f_k) is a Cauchy sequence in L^p . We need to show that f_k converges in L^p to some $f \in L^p$.
- Case 1: $p = \infty$.

* For every k, m, there exists a set $Z_{k,m}$ of zero measure such that

$$|f_k - f_m| \leq ||f_k - f_m||_{L^{\infty}} \text{ in } E \setminus Z_{k,m}.$$

* Let $Z = \bigcup_{k,m} Z_{k,m}$. Then Z has zero measure and

 $|f_k - f_m| \le ||f_k - f_m||_{L^{\infty}}$ in $E \setminus Z$ for all k and m.

* So f_k converges uniformly in $E \setminus Z$ to some measurable function $f : E \setminus Z \to \mathbb{R}$. Extend f to all of E by letting f = 0 in Z.

• Case 1:
$$p = \infty$$
...

★ So f_k converges uniformly in $E \setminus Z$ to some measurable function $f : E \setminus Z \to \mathbb{R}$. Extend f to all of E by letting f = 0 in Z. ★ Now, for any k, we have

$$|f_k-f| \leq \sup_{m\geq k} ||f_k-f_m||_{L^{\infty}}$$
 in $E\setminus Z$.

 \star As Z has measure zero, this means

$$\|f_k-f\|_{L^{\infty}}\leq \sup_{m\geq k}\|f_k-f_m\|_{L^{\infty}}.$$

* Since $f_k \in L^{\infty}$, it follows from Minkowski's inequality that $f \in L^{\infty}$. Also, sending $k \to \infty$ in the above inequality also shows that $||f_k - f||_{L^{\infty}} \to 0$, i.e. f_k converges to f in L^{∞} .

• Case 2:
$$1 \le p < \infty$$
.

★ We have

$$\begin{split} |\{x \in E : |f_k(x) - f_m(x)| > \varepsilon\}| &\leq \frac{1}{\varepsilon^p} \int_E |f_k(x) - f_m(x)|^p \\ &= \frac{1}{\varepsilon^p} ||f_k(x) - f_m(x)||_{L^p}^p \\ &\stackrel{k, m \to \infty}{\longrightarrow} 0. \end{split}$$

This means that the sequence (f_k) is Cauchy in measure.

* A result from Integration then asserts that (f_k) converges in measure, and hence it has a subsequence, say (f_{k_j}) , which converges a.e. in E to some function f. To conclude, we show that $f \in L^p$ and $f_k \to f$ in L^p .

* Fix some $\delta > 0$, then, for large k and j,

$$\int_E |f_{k_j} - f_k|^p \, dx = \|f_{k_j} - f_k\|_{L^p}^p \leq \delta^p.$$

 $\star\,$ Sending $j\to\infty$ and using Fatou's lemma, we get

$$\int_E |f - f_k|^p \, dx \leq \liminf_{j \to \infty} \int_E |f_{k_j} - f_k|^p \, dx \leq \delta^p.$$

* So we have $||f - f_k||_{L^p} \le \delta$ for large k. By Minkowski's inequality, this implies that $f \in L^p$. As δ is arbitrary, this also gives $f_k \to f$ in L^p , as desired.

Proposition (Converse to Hölder's inequality)

Let E be measurable, and f be measurable on E. If $1\leq p\leq\infty$ and $\frac{1}{p}+\frac{1}{p'}=1,$ then

$$\|f\|_{L^{p}(E)} = \sup \left\{ \int_{E} fg \ dx : g \in L^{p'}(E), \|g\|_{L^{p'}(E)} \leq 1 \\ \text{and fg is integrable on } E \right\}$$

Note: We do not presume that $f \in L^{p}(E)$.

• Will only present the case 1 . The cases <math>p = 1 and $p = \infty$ need some justification; see notes.

Let

$$\alpha = \sup\left\{\int_{E} fg \ dx : \|g\|_{L^{p'}} \leq 1, fg \in L^{1}(E)\right\} \in [0,\infty].$$

By Hölder's inequality, we have $\alpha \leq ||f||_{L^p}$. So it suffices to show $\alpha \geq ||f||_{L^p}$.

• If $||f||_{L^p} = 0$, we are done. Assume henceforth that $||f||_{L^p} > 0$.

$$g_0(x) = rac{sign(f(x))|f(x)|^{p-1}}{\|f\|_{L^p}^{p-1}}.$$

* We have, as
$$p' = \frac{p}{p-1}$$
,

$$\int_{E} |g_{0}|^{p'} dx = \frac{1}{\|f\|_{L^{p}}^{p}} \int_{E} |f|^{p} dx = 1.$$

⋆ Next,

$$\int_{E} |f| |g_{0}| dx = \frac{1}{\|f\|_{L^{p}}^{p-1}} \int_{E} |f|^{p} dx < \infty.$$

 $\star\,$ So by the definition of α ,

$$\alpha \geq \int_{E} f g_{0} dx = \frac{1}{\|f\|_{L^{p}}^{p-1}} \int_{E} |f|^{p} dx = \|f\|_{L^{p}}.$$

• Case 2: $||f||_{L^p} = \infty$.

In this case, we need to show that $\alpha = \infty$.

 $\star\,$ Consider a truncation of |f| given by

$$f_k(x) = \begin{cases} \min(|f|(x), k) & \text{if } x \in E \text{ and } |x| \leq k, \\ 0 & \text{otherwise.} \end{cases}$$

Note that we are truncating both in the domain and in the range: $f_k(x) = \min(|f|(x), k)\chi_{E \cap \{|x| \le k\}}(x)$.

★ It is clear that $f_k \in L^p(E)$. Also, by Lebesgue's monotone convergence theorem,

$$\|f_k\|_{L^p}^p = \int_E |f_k|^p \, dx \to \int_E |f|^p \, dx = \infty.$$

In addition, by Case 1,

$$\|f_k\|_{L^p} = \sup \Big\{ \int_E f_k g \, dx : \|g\|_{L^{p'}} \leq 1, f_k g \in L^1(E) \Big\}.$$

• Case 2:
$$||f||_{L^p} = \infty$$
...
* In fact, the proof in Case 1 shows that the function
 $g_k = \frac{|f_k|^{p-1}}{\|f_k\|_{L^p}^{p-1}} \ge 0$ satisfies $\|g_k\|_{L^{p'}} = 1$, $f_k g_k \in L^1(E)$ and
 $\|f_k\|_{L^p} = \int_E f_k g_k dx$.

 $\star~{\sf As}~|f|\geq f_k\geq {\sf 0},$ It follows that, as

$$\int_E |f|g_k \, dx \geq \int_E f_k \, g_k \, dx = \|f_k\|_{L^p} \to \infty.$$

* Letting $\tilde{g}_k(x) = sign(f(x))g_k(x)$, we then have $\|\tilde{g}_k\|_{L^{p'}} = 1$, $f\tilde{g}_k \in L^1(E)$ and so

$$\alpha \geq \int_E f\tilde{g}_k \, dx = \int_E |f| \, g_k \, dx \to \infty.$$

So $\alpha = \infty$, as desired.

Recall that for a (real) normed vector space X, the dual of X, denoted as X^* , is the Banach space of bounded linear functional $T: X \to \mathbb{R}$, equipped with the dual norm

 $\|T\|_* = \sup \|Tx\|.$

Theorem (Riesz' representation theorem)

Let E be measurable, $1 \le p < \infty$ and $p' = \frac{p}{p-1}$. Then there is an isometric isomorphism $\pi : (L^p(E))^* \to L^{p'}(E)$ such that

$$Tg = \int_E \pi(T)g \, dx$$
 for all $g \in L^p(E)$ and $T \in (L^p(E))^*$.

Dual space of $L^p(E)$

Theorem (Riesz' representation theorem)

Let *E* be measurable, $1 \le p < \infty$ and $p' = \frac{p}{p-1}$. Then there is an isometric isomorphism $\pi : (L^p(E))^* \to L^{p'}(E)$ such that

$$Tg=\int_E \pi(T)g \ dx \ ext{for all } g\in L^p(E) \ ext{and} \ T\in (L^p(E))^*.$$

- Note the similarity of the above and Riesz' representation theorem for Hilbert spaces. In particular, observe the connection when p = 2.
- The theorem is false for p = ∞. The dual of L[∞](E) is strictly bigger than L¹(E). In other words, there exists a linear functional T on L[∞](E) for which there is no f ∈ L¹(E) satisfying

$$Tg = \int_E fg \, dx$$
 for all $g \in L^\infty(E)$.

$$(L^{\infty}(\mathbb{R}))^* \neq L^1(\mathbb{R})$$

• Let $T_k \in (L^\infty(\mathbb{R}))^*$ given by

$$T_kg=\frac{1}{k}\int_0^k g\,dx.$$

Then, for every $g \in L^{\infty}(\mathbb{R})$, $(T_k g) \in \ell^{\infty}$.

• Let $L \in (\ell^{\infty})^*$ be such that

$$L((x_k)) = \lim_{k \to \infty} x_k$$
 provided (x_k) is convergent.

Such *L* exists by the Hahn-Banach theorem.

Define Tg = L((T_kg)) for all g ∈ L[∞](ℝ). It is easy to check that T ∈ (L[∞](ℝ))*.

$(L^{\infty}(\mathbb{R}))^* \neq L^1(\mathbb{R})$

• We claim that there is no $f \in L^1(\mathbb{R})$ such that

$$Tg=\int_{\mathbb{R}}$$
 fg dx for all $g\in L^{\infty}(\mathbb{R}).$

• Suppose by contradiction that such f exists. Fix some m > 0and let $g_1(x) = sign(f(x))\chi_{(0,m)}(x)$. Then, as $|g_1| \le \chi_{(0,m)}$, we have for k > m that $|T_kg_1| \le \frac{m}{k}$. It follows that

$$\int_0^m |f| \, dx = Tg_1 = L((T_k g_1)) = \lim_{k \to \infty} \frac{m}{k} = 0.$$

As *m* is arbitrary, we thus have f = 0 a.e. in $(0, \infty)$ • On the other hand, with $g_2 = \chi_{(0,\infty)}$, we have $T_k g_2 = 1$ and so

$$0 = \int_0^\infty f \, dx = Tg_2 = L((T_kg_2)) = \lim_{k \to \infty} 1 = 1,$$

which is absurd.

•