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In the last lecture

Definition of Lebesgue spaces.

Holder’s and Minkowski’s inequalities

Completeness of Lebesgue spaces.

Duals of Lebesgue spaces.
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This lecture

L2 as a Hilbert space.

Density of simple functions for Lebesgue spaces.

Separability of Lebesgue spaces.

Weak and weak* convergence in Lebesgue spaces.

Continuity property of translation operators in Lp.

Young’s convolution inequality.
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L2(E ) as a Hilbert space

Theorem
The space L2(E ) is a (real) Hilbert space with inner product

〈f , g〉 =

∫
E

fg .

This means

(Banach) L2(E ) is a Banach space.

(Inner product) The map (f , g) 7→ 〈f , g〉 from L2(E )× L2(E )
into R satisfies
? (Linearity) 〈λf1 + f2, g〉 = λ〈f1, g〉+ 〈f2, g〉 for all
λ ∈ R, f1, f2, g ∈ L2(E ),

? (Symmetry) 〈f , g〉 = 〈g , f 〉 for all f , g ∈ L2(E ),
? (Positivity) 〈f , f 〉 = ‖f ‖2L2(E). Hence 〈f , f 〉 ≥ 0 for all

f ∈ L2(E ) and 〈f , f 〉 = 0 if and only if f = 0.
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Density results for Lp via simple functions

We will show that the following sets are dense in Lp:

Set of simple functions, for 1 ≤ p ≤ ∞.

Set of ‘rational and dyadic’ simple functions, for 1 ≤ p <∞.
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Density results for Lp via simple functions

Simple function:

N∑
i=1

αiχAi
where αi is a constant and Ai is measurable.

Theorem

Let 1 ≤ p ≤ ∞. The set of all p-integrable simple functions is dense
in Lp(E ).
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Density results for Lp via simple functions

Proof:

Take f ∈ Lp(E ). We need to construct a sequence (fk) of
p-integrable simple function such that ‖fk − f ‖Lp → 0.

Using the splitting f = f + − f −, we may assume without loss of
generality that f is non-negative.

Fact from Integration: If f is a non-negative measurable
function, then there exist non-negative simple functions fk such
that fk ↗ f a.e.
Furthermore, if p <∞, then

? |fk |p ≤ |f |p and so fk ∈ Lp;
? As |fk − f |p ≤ |f |p ∈ L1, and so by Lebesgue dominated

convergence theorem,
∫
E |fk − f |p dx → 0. So fk → f in Lp.
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Density results for Lp via simple functions

When p =∞, the above proof doesn’t work as seen. Let us take
the proof one step further by recalling how such a sequence fk
can be constructed.
? For each k, one partition the range [0,∞] into 22k + 1 intervals:

J
(k)
1 = [0, 2−k), J

(k)
2 = [2−k , 2× 2−k), . . . ,

J
(k)

22k
= [(22k − 1)× 2−k , 22k × 2−k) and J

(k)

22k+1
= [2k ,∞].

? fk is then defined by fk(x) = (`− 1)× 2−k if {f (x) ∈ J
(k)
` } for

1 ≤ ` ≤ 22k + 1.

1

2

3
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Density results for Lp via simple functions

When p =∞...

? Aside from the fact that fk ↗ f , this construction has the
property that, in the set {f (x) < 2k}, i.e. outside of the set

{f (x) ∈ J
(k)

22k+1
}, it holds that

|fk − f | ≤ 2−k .

? Now as p =∞, f is essentially bounded, i.e. there is an M and
a set Z of zero measure such that f < M in Rn \ Z . We then
redefine f on Z to be zero, i.e. we work with the representative
in the ‘equivalent class f ’ which is bounded everywhere by M.

? After this redefinition, we see that {f (x) ∈ J
(k)

22k+1
} = ∅ for large

k , and so we have |fk − f | ≤ 2−k everywhere for all large k.
This means that fk → f in L∞.
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Density results for Lp via simple functions

Theorem

Let 1 ≤ p <∞. The set F of all finite rational linear combinations
of characteristic functions of cubes belonging to a fixed class of
dyadic cubes is dense in Lp(Rn).

C1 C2 C3

F =
{
g =

N∑
i=1

riχQi
where ri ∈ Q,Qi ∈

∞⋃
j=1

Cj

}
.
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Density results for Lp via simple functions

Proof:

We know that the set of p-integrable simple functions is dense in
Lp. We also know that Q is dense in R.
Thus we only need to show that χE ∈ F .
By the construction of the Lebesgue measure, every open subset
U of Rn can be written as a countable union of cubes in ∪Ci ,
say U = ∪∞i=1Qi . Then

N∑
i=1

χQi
→ χU in Lp, and so χU ∈ F .

Now, for every measurable set E of finite measure, the outer
regularity of the Lebesgue measure implies that there exist open
Uk , Uk ⊃ E such that |Uk \ E | → 0. Then

χUk
→ χE in Lp, and so χE ∈ F .
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Application: Separability of Lp

Theorem

For 1 ≤ p <∞, the space Lp(E ) is separable, i.e. it has a countable
dense subset.

Proof:

When E = Rn, the result follows from the previous theorem, as
F is countable.

For general E , let F̃ be the set of restrictions to E of functions
in F . Then F̃ is countable. We will now show that F̃ is dense
in Lp(E ).

? Take f ∈ Lp(E ). Set f = 0 in Rn \ E . Then f ∈ Lp(Rn) and so
there exist fk ∈ F such that fk → f in Lp(Rn).

? Let f̃k = fk |E ∈ F̃ . Then ‖f̃k − f ‖Lp(E) ≤ ‖fk − f ‖Lp(E) → 0, so
we are done.
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Weak and weak* convergence in Lp

Definition
Let X be a normed vector space and X ∗ its dual.
(i) We say that a sequence (xn) in X converges weakly to some

x ∈ X if Txn → Tx for all T ∈ X ∗. We write xn ⇀ x .
(ii) We say that a sequence (Tn) in X ∗ converges weakly* to some

T ∈ X ∗ if Tnx → Tx for all x ∈ X . We write Tn ⇀
∗ T .
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Weak sequential compactness

Theorem (Weak sequential compactness in reflexive
Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Corollary

Assume that 1 < p <∞ and (fk) is bounded in Lp(E ). Then there is
a subsequence fkj which converges weakly in Lp. In other words, there
exists a function f ∈ Lp such that∫

E

fkjg →
∫
E

fg for all g ∈ Lp
′
(E ).
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Weak* sequential compactness

Theorem (Helly’s theorem on weak* sequential
compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has
a weakly* convergent subsequence.

Corollary

Assume that (fk) is bounded in L∞(E ). Then there is a subsequence
fkj which converges weakly* in L∞. In other words, there exists a
function f ∈ L∞ such that∫

E

fkjg →
∫
E

fg for all g ∈ L1(E ).
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A summary

Dual Reflexivity Separability Sequential
compactness

of B(0, 1)

Lp Lp
′

Yes Yes Weak and weak*
1 < p <∞

L1 L∞ No Yes Neither
L∞ ) L1 No No Weak*
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Continuity of translation operators

Translation operators: For a h ∈ Rn and a measurable function
f : Rn → R, define τhf by

(τhf )(x) = f (x + h) for all x ∈ Rn.

Then τh : Lp(Rn)→ Lp(Rn) is a bounded linear transformation for
1 ≤ p ≤ ∞. In fact it is an isometric isomorphism.

Theorem (Continuity in Lp)

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then

lim
|h|→0
‖τhf − f ‖Lp(Rn) = 0.
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Continuity of translation operators

In other words, for 1 ≤ p <∞, for every fixed f ∈ Lp(Rn), the
map h 7→ τhf is a continuous map from Rn into Lp(Rn).

The theorem is false for p =∞, e.g. with f = χQ with Q being
the unit cube.

The theorem does ***NOT*** assert that the maps h 7→ τh is a
continuous map from Rn into L (Lp(Rn), Lp(Rn)). In fact,

‖τh − Id‖L (Lp(Rn),Lp(Rn)) ≥ 21/p when h 6= 0.

? Let r = |h|/4 and let f = cnr
−n/pχBr (0) where cn is chosen such

that ‖f ‖Lp = 1.
? Then τhf and f has disjoint support. So

‖τhf − f ‖Lp =
{
‖τhf ‖pLp + ‖f ‖pLp

}1/p
= 21/p.
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Continuity of translation operators

Proof:
Let A denote the set of functions f in Lp such that
‖τhf − f ‖Lp → 0 as |h| → 0.
It is clear that if f , g ∈ A then f + g ∈ A , and λf ∈ A for any
λ ∈ R. So A is a vector subspace of Lp.
We claim that A is closed in Lp, i.e. if (fk) ⊂ A and fk → f in
Lp, then f ∈ A . Indeed, by Minkowski’s inequality, we have

‖τhf − f ‖Lp ≤ ‖τhfk − fk‖Lp + ‖τhfk − τhf ‖Lp + ‖fk − f ‖Lp
= ‖τhfk − fk‖Lp + 2‖fk − f ‖Lp .

Now, if one is given an ε > 0, one can first select large k such
that ‖fk − f ‖Lp ≤ ε/3, and then select δ > 0 such that
‖τhfk − fk‖Lp ≤ ε/3 for all |h| ≤ δ, so that

‖τhf − f ‖Lp ≤ ε for all |h| ≤ δ.
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Continuity of translation operators

So A is a closed vector subspace of Lp.

Now, observe that if Q is a cube in Rn, then
‖τhχQ − χQ‖Lp → 0 as |h| → 0, by e.g. Lebesgue’s dominated
convergence theorem (or a direct estimate).

So A contains all finite linear combinations of characteristic
functions of cubes. In particular, it contains all finite rational
linear combinations of characteristic functions of cubes
belonging to a fixed class of dyadic cubes. As this latter set is
dense in Lp and A is closed, we thus have A = Lp, as desired.
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Convolution

Definition
Let f and g be measurable functions on Rn. The convolution f ∗ g of
f and g is defined by

(f ∗ g)(x) =

∫
Rn

f (y)g(x − y) dy

wherever the integral converges.
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Young’s convolution inequality

Theorem (Young’s convolution inequality)

Let p, q and r satisfy 1 ≤ p, q, r ≤ ∞ and

1

p
+

1

q
=

1

r
+ 1.

If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g ∈ Lr (Rn) and

‖f ∗ g‖Lr (Rn) ≤ ‖f ‖Lp(Rn)‖g‖Lq(Rn).
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Young’s convolution inequality

Proof: We will only deal with the case q = 1 and r = p. We are thus
given f ∈ Lp, g ∈ L1. We need to show that f ∗ g ∈ Lp and
‖f ∗ g‖Lp ≤ ‖f ‖Lp ‖g‖L1 .

Observe that |f ∗ g | ≤ |f | ∗ |g |. We may thus assume without
loss of generality in the proof that f , g ≥ 0.

Case 1: p = 1.

? Consider the integral

I =

∫
Rn×Rn

f (y)g(x − y) dx dy .

This integral is well-defined as f , g ≥ 0 and the function
G (x , y) = g(x − y) is measurable as a function from Rn × Rn

into R.

Luc Nguyen (University of Oxford) C4.3 – Lecture 2 MT 2020 23 / 27



Young’s convolution inequality

Case 1: p = 1.

? Consider I =
∫
Rn×Rn f (y)g(x − y) dx dy .

? By Tonelli’s theorem, we have

I =

∫
Rn

{∫
Rn

f (y) g(x − y) dy
}
dx =

∫
Rn

(f ∗ g)(x) dx

= ‖f ∗ g‖L1 .

I =

∫
Rn

f (y)
{∫

Rn

g(x − y) dx
}
dy =

∫
Rn

f (y)‖g‖L1 dy

= ‖f ‖L1‖g‖L1 .

? So ‖f ∗ g‖L1 = ‖f ‖L1‖g‖L1 .
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Young’s convolution inequality

Case 2: p =∞. This case is easy, as

(f ∗ g)(x) =

∫
Rn

f (y) g(x − y) dy

≤
∫
Rn

‖f ‖L∞ g(x − y) dy = ‖f ‖L∞ ‖g‖L1 .

Case 3: 1 < p <∞.

? We start by writing

|(f ∗ g)(x)| =

∫
Rn

[f (y)g(x − y)
1
p ][g(x − y)

1
p′ ] dy

and applying Hölder’s inequality to the above.
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Young’s convolution inequality

Case 3: 1 < p <∞.

? |(f ∗ g)(x)| =
∫
Rn [f (y)g(x − y)

1
p ][g(x − y)

1
p′ ] dy .

? So

|(f ∗ g)(x)| ≤
{∫

Rn

f (y)pg(x − y)] dy
}1/p{∫

Rn

g(x − y) dy
}1/p′

= [(f p ∗ g)(x)]1/p‖g‖1/p
′

L1
.

? It follows that

‖f ∗ g‖Lp =
{∫

Rn

|(f ∗ g)(x)|p dx
}1/p

≤
{∫

Rn

(f p ∗ g)(x) dx
}1/p
‖g‖1/p

′

L1

= ‖f p ∗ g‖1/p
L1
‖g‖1/p

′

L1
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Young’s convolution inequality

Case 3: 1 < p <∞.

? ‖f ∗ g‖Lp ≤ ‖f p ∗ g‖
1/p
L1
‖g‖1/p

′

L1
.

? So by Case 1,

‖f ∗ g‖Lp ≤
[
‖f p‖L1‖g‖L1

]1/p
‖g‖1/p

′

L1

= ‖f ‖Lp‖g‖L1 .
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