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In the last lecture

Definition of Lebesgue spaces.
Holder's and Minkowski's inequalities

Completeness of Lebesgue spaces.

® 6 o o

Duals of Lebesgue spaces.
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This lecture

L? as a Hilbert space.

Density of simple functions for Lebesgue spaces.
Separability of Lebesgue spaces.

Weak and weak* convergence in Lebesgue spaces.

Continuity property of translation operators in LP.

@ Young's convolution inequality.
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[%(E) as a Hilbert space

The space L?(E) is a (real) Hilbert space with inner product

<f,g>=/fg.
E
This means

e (Banach) L%(E) is a Banach space.
o (Inner product) The map (f,g) — (f,g) from L2(E) x L?(E)
into R satisfies
* (Linearity) (A + f2,8) = X1, g) + (f, g) for all
NER, fi,h,g € L*(E),
* (Symmetry) (f,g) = (g, f) for all f,g € L?(E),
* (Positivity) (f,f) = ||fH%2(E). Hence (f,f) > 0 for all
f € L?(E) and (f,f) =0 if and only if f = 0.
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Density results for LP via simple functions

We will show that the following sets are dense in LP:

@ Set of simple functions, for 1 < p < oc.

@ Set of ‘rational and dyadic’ simple functions, for 1 < p < oo.
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Density results for LP via simple functions

Simple function:

N

g aixa, Where o; is a constant and A; is measurable.
i=1

Let 1 < p < oo. The set of all p-integrable simple functions is dense
in LP(E).
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Density results for LP via simple functions

Proof:

@ Take f € LP(E). We need to construct a sequence (fy) of
p-integrable simple function such that ||, — f||,» — 0.

@ Using the splitting f = f* — f~, we may assume without loss of
generality that f is non-negative.

e Fact from Integration: If f is a non-negative measurable
function, then there exist non-negative simple functions f, such
that f, /' f a.e.

Furthermore, if p < oo, then
* |fi|P < |f|P and so f, € LP;
*x As |f — f|P < |f|P € L1, and so by Lebesgue dominated
convergence theorem, [ |fi — f|Pdx — 0. So fi — f in LP.
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Density results for LP via simple functions

@ When p = oo, the above proof doesn't work as seen. Let us take
the proof one step further by recalling how such a sequence f,
can be constructed.

* For each k, one partition the range [0, co] into
=[0,27%), S =27k 2 x 27K), ..,

22k 1 1 intervals:

S = (22 — 1) x 27K, 22K x 27%) and Jézkkﬂ [2%, OO]
« f is then defined by fi(x) = (£ — 1) x 27X if {f(x) € S} for

1<0<2%k 41,

34
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Density results for LP via simple functions

@ When p = c0...

* Aside from the fact that fy 7 f, this construction has the
property that, in the set {f(x) < 2}, i.e. outside of the set

{f(x) € S&). .}, it holds that
i — fl <27k

* Now as p = oo, f is essentially bounded, i.e. there is an M and
a set Z of zero measure such that f < M in R"\ Z. We then
redefine f on Z to be zero, i.e. we work with the representative
in the ‘equivalent class f' which is bounded everywhere by M.

* After this redefinition, we see that {f(x) € 2k+1} () for large
k, and so we have |f, — f| < 27k everywhere for all large k.
This means that fy — f in L*°.
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Density results for LP via simple functions

Let 1 < p < 0o. The set .# of all finite rational linear combinations
of characteristic functions of cubes belonging to a fixed class of
dyadic cubes is dense in LP(R").

(gl %2 (53

N 0o

F = {g = ZriXQ; where r; € Q, Q; € U‘KJ}

i—1 j=1
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Density results for LP via simple functions

Proof:

@ We know that the set of p-integrable simple functions is dense in
LP. We also know that Q is dense in R.

@ Thus we only need to show that yg € .Z.

@ By the construction of the Lebesgue measure, every open subset
U of R" can be written as a countable union of cubes in U%,
say U =U>;Q;. Then

N
ZXQ" — xu in LP, and so yy € .Z.
i=1
@ Now, for every measurable set E of finite measure, the outer

regularity of the Lebesgue measure implies that there exist open
Uk, Ui D E such that ’Uk \ E| — 0. Then

Xu, = Xe in LP, and so xg € Z.
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Application: Separability of LP

For1 < p < oo, the space LP(E) is separable, i.e. it has a countable
dense subset.

Proof:

@ When E = R”", the result follows from the previous theorem, as
F is countable.

o For general E, let Z be the set of restrictions to E of functions
in .%. Then .% is countable. We will now show that .% is dense
in LP(E).

* Take f € LP(E). Set f =0in R"\ E. Then f € LP(R") and so
there exist fy € .Z such that fy — f in LP(R").

* Let fk = fklg € ¥ Z. Then ka — fHLp(E < ||fx — fHLp — 0, so
we are done.
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Weak and weak™* convergence in LP

Let X be a normed vector space and X* its dual.

@ We say that a sequence (x,) in X converges weakly to some
x € X if Tx, — Tx forall T € X*. We write x, — x.

@ We say that a sequence (T,) in X* converges weakly* to some
T e X*if T,x — Tx for all x € X. We write T, —~* T.
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Weak sequential compactness

Theorem (Weak sequential compactness in reflexive

Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly
convergent subsequence.

Corollary

Assume that 1 < p < oo and (fx) is bounded in LP(E). Then there is
a subsequence fi; which converges weakly in LP. In other words, there
exists a function f € LP such that

/fkjg—> / fg for all g € L”'(E).
E E
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Weak* sequential compactness

Theorem (Helly's theorem on weak* sequential

compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has
a weakly* convergent subsequence.

Corollary

| \

Assume that (fy) is bounded in L>°(E). Then there is a subsequence
fi, which converges weakly* in L>. In other words, there exists a
function f € L*> such that

/ fig — / fg for all g € L*(E).
E E
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A summary

Dual | Reflexivity | Separability Sequential
compactness
of B(0,1)
LP L Yes Yes Weak and weak*
l<p<oo
Lt L No Yes Neither
L°° oLt No No Weak*
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Continuity of translation operators

Translation operators: For a h € R” and a measurable function
f:R" — R, define 7,f by

(thf)(x) = f(x + h) for all x € R".

Then 75, : LP(R™) — LP(R") is a bounded linear transformation for
1 < p < 0. In fact it is an isometric isomorphism.

Theorem (Continuity in LP)

If f € LP(R") for some 1 < p < oo, then

li f—f n = 0.
s |75 | Lo ()
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Continuity of translation operators

@ In other words, for 1 < p < oo, for every fixed f € LP(R"), the
map h — 7,f is a continuous map from R” into LP(R").

@ The theorem is false for p = 00, e.g. with f = o with Q being
the unit cube.

@ The theorem does ¥***NOT*** assert that the maps h— 7, is a
continuous map from R” into .Z(LP(R"), LP(R")). In fact,

HTh — IdH;g(Lp(Rn)’Lp(Rn)) > 21/p when h 7§ 0.
* Let r=1h|/4 and let f = c,,r*”/PXBr(O) where ¢, is chosen such
that |||, = 1.

* Then 74f and f has disjoint support. So

1/p
I7af = Fllis = {lmnf 12 + £} = 2277,
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Continuity of translation operators

Proof:
@ Let .o denote the set of functions f in LP such that
|7 — fl|ee — 0 as |h| — 0.
@ ltisclear thatif f,g € o/ then f + g € &/, and Af € &/ for any
A € R. So &/ is a vector subspace of LP.
@ We claim that o7 is closed in LP, i.e. if (fy) C </ and fy — f in
LP, then f € o/. Indeed, by Minkowski's inequality, we have

|7nf — fllee < lITafc — fill e + [[7nfk — Tf o + | — fl|10
= |ITnfec = ficllee + 2[|fc — |10

Now, if one is given an € > 0, one can first select large k such
that ||fx — f|.r < /3, and then select 6 > 0 such that
HThfk — kaLp < 6/3 for all |h| < 5, so that

|7nf — f|le < € for all |h| < 0.
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Continuity of translation operators

@ So 7 is a closed vector subspace of LP.

@ Now, observe that if Q is a cube in R”, then
lThx@ — xolle — 0 as |h| — 0, by e.g. Lebesgue's dominated
convergence theorem (or a direct estimate).

@ So &7 contains all finite linear combinations of characteristic
functions of cubes. In particular, it contains all finite rational
linear combinations of characteristic functions of cubes
belonging to a fixed class of dyadic cubes. As this latter set is
dense in LP and &7 is closed, we thus have &7 = LP, as desired.
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Convolution

Definition
Let f and g be measurable functions on R"”. The convolution f x g of
f and g is defined by

(f*xg)(x) = / f(y)g(x —y)dy

wherever the integral converges.
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Young's convolution inequality

Theorem (Young's convolution inequality)
Let p, q and r satisfy 1 < p,q,r < oo and

If f € LP(R") and g € LY(R"), then f x g € L"(R") and

| *gllr@wey < N llern)l| &1 Lo(rn)-
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Young's convolution inequality

Proof: We will only deal with the case g =1 and r = p. We are thus
given f € LP, g € L'. We need to show that f x g € L? and

I+ gller < [Ifllee llgl]er-

@ Observe that |f x g| < |f| % |g|. We may thus assume without
loss of generality in the proof that f,g > 0.

o Case 1: p=1.

* Consider the integral

I = / f(y)g(x —y) dxdy.
RAXR"

This integral is well-defined as f, g > 0 and the function
G(x,y) = g(x — y) is measurable as a function from R"” x R"
into R.
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Young's convolution inequality

o Case 1: p=1.

* Consider | = [, pn F(y)g(x — y) dx dy.
* By Tonelli's theorem, we have

/:/n{/nf(y)g(x—y)dy}dxz/n(f*g)(X)dX

= |f * gl
lz/n f(y){/ng(x—y)dX} dy = g fF(y)lgll dy

= [1Fllellgll e

* So [[fxgll = [Ifllallglle-
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Young's convolution inequality

@ Case 2: p = co. This case is easy, as
(f*g)(X)Z/ f(y)g(x —y)dy
< i [l g(x = y) dy = [l l|g][12-

@ Case 3: 1 < p < .
* We start by writing

(7)) = [ [F)elx =) llec =) 1 dy

and applying Holder's inequality to the above.

Luc Nguyen (University of Oxford) C4.3 — Lecture 2 MT 2020 25 /27



Young's convolution inequality

o Case 3: 1 < p < .

<)l JanlF)E(x = y)?1lg(x — )7 ] dy.

I(f * g)(x)| < /f X—y)]dy}l/p{/Rng(x—y)dy}l/p,
= [(£P * &) )7 llgll}2”

* It follows that

gl ={ [ 10 =)o}

<{ [ ora el

1
— |17« g|}0Plgl P
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Young's convolution inequality

o Case 3: 1 < p < 0.

1 1/p'
« |IF*glle < [1FP gl 2P llelli?

* So by Case 1,

1/p 1/p'
I+ gl < (177l ligle | gl

= [[fllellgll -
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