

C4.3 Functional Analytic Methods for PDEs Lecture 2

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

- Definition of Lebesgue spaces.
- Holder's and Minkowski's inequalities
- Completeness of Lebesgue spaces.
- Duals of Lebesgue spaces.

- L² as a Hilbert space.
- Density of simple functions for Lebesgue spaces.
- Separability of Lebesgue spaces.
- Weak and weak* convergence in Lebesgue spaces.
- Continuity property of translation operators in L^p .
- Young's convolution inequality.

$L^2(E)$ as a Hilbert space

Theorem

The space $L^2(E)$ is a (real) Hilbert space with inner product

$$\langle f,g
angle = \int_E fg.$$

This means

- (Banach) $L^2(E)$ is a Banach space.
- (Inner product) The map (f,g) → ⟨f,g⟩ from L²(E) × L²(E) into ℝ satisfies
 - * (Linearity) $\langle \lambda f_1 + f_2, g \rangle = \lambda \langle f_1, g \rangle + \langle f_2, g \rangle$ for all $\lambda \in \mathbb{R}, f_1, f_2, g \in L^2(E)$,
 - * (Symmetry) $\langle f,g\rangle = \langle g,f\rangle$ for all $f,g \in L^2(E)$,
 - * (Positivity) $\langle f, f \rangle = ||f||_{L^2(E)}^2$. Hence $\langle f, f \rangle \ge 0$ for all $f \in L^2(E)$ and $\langle f, f \rangle = 0$ if and only if f = 0.

We will show that the following sets are dense in L^p :

- Set of simple functions, for $1 \le p \le \infty$.
- Set of 'rational and dyadic' simple functions, for $1 \le p < \infty$.

Simple function:

$$\sum_{i=1}^{N} \alpha_i \chi_{A_i} \text{ where } \alpha_i \text{ is a constant and } A_i \text{ is measurable.}$$

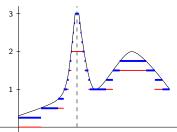
Theorem

Let $1 \le p \le \infty$. The set of all p-integrable simple functions is dense in $L^p(E)$.

Proof:

- Take $f \in L^{p}(E)$. We need to construct a sequence (f_{k}) of *p*-integrable simple function such that $||f_{k} f||_{L^{p}} \to 0$.
- Using the splitting $f = f^+ f^-$, we may assume without loss of generality that f is non-negative.
- Fact from Integration: If f is a non-negative measurable function, then there exist non-negative simple functions fk such that fk ≯ f a.e.
 Furthermore, if p < ∞, then
 - * $|f_k|^p \leq |f|^p$ and so $f_k \in L^p$;
 - * As $|f_k f|^p \le |f|^p \in L^1$, and so by Lebesgue dominated convergence theorem, $\int_F |f_k f|^p dx \to 0$. So $f_k \to f$ in L^p .

- When $p = \infty$, the above proof doesn't work as seen. Let us take the proof one step further by recalling how such a sequence f_k can be constructed.
 - * For each k, one partition the range $[0, \infty]$ into $2^{2k} + 1$ intervals: $J_1^{(k)} = [0, 2^{-k}), \ J_2^{(k)} = [2^{-k}, 2 \times 2^{-k}), \dots,$ $J_{2^{2k}}^{(k)} = [(2^{2k} - 1) \times 2^{-k}, 2^{2k} \times 2^{-k}) \text{ and } J_{2^{2k}+1}^{(k)} = [2^k, \infty].$
 - * f_k is then defined by $f_k(x) = (\ell 1) \times 2^{-k}$ if $\{f(x) \in J_\ell^{(k)}\}$ for $1 \le \ell \le 2^{2k} + 1$.



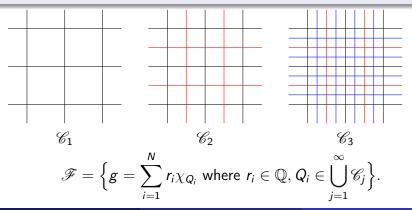
- When $p = \infty$...
 - ★ Aside from the fact that $f_k \nearrow f$, this construction has the property that, in the set $\{f(x) < 2^k\}$, i.e. outside of the set $\{f(x) \in J_{2^{2k}+1}^{(k)}\}$, it holds that

$$|f_k-f|\leq 2^{-k}.$$

* Now as p = ∞, f is essentially bounded, i.e. there is an M and a set Z of zero measure such that f < M in ℝⁿ \ Z. We then redefine f on Z to be zero, i.e. we work with the representative in the 'equivalent class f' which is bounded everywhere by M.
* After this redefinition, we see that {f(x) ∈ J^(k)_{2^{2k}+1}} = Ø for large k, and so we have |f_k - f| ≤ 2^{-k} everywhere for all large k. This means that f_k → f in L[∞].

Theorem

Let $1 \le p < \infty$. The set \mathscr{F} of all finite rational linear combinations of characteristic functions of cubes belonging to a fixed class of dyadic cubes is dense in $L^p(\mathbb{R}^n)$.



Proof:

- We know that the set of *p*-integrable simple functions is dense in L^p . We also know that \mathbb{Q} is dense in \mathbb{R} .
- Thus we only need to show that $\chi_E \in \overline{\mathscr{F}}$.
- By the construction of the Lebesgue measure, every open subset U of ℝⁿ can be written as a countable union of cubes in ∪𝔅_i, say U = ∪_{i=1}[∞]Q_i. Then

$$\sum_{i=1}^{N} \chi_{Q_i} \to \chi_U \text{ in } L^p, \text{ and so } \chi_U \in \overline{\mathscr{F}}.$$

• Now, for every measurable set E of finite measure, the outer regularity of the Lebesgue measure implies that there exist open U_k , $U_k \supset E$ such that $|U_k \setminus E| \rightarrow 0$. Then

$$\chi_{U_k} \to \chi_E$$
 in L^p , and so $\chi_E \in \overline{\mathscr{F}}$.

Application: Separability of L^p

Theorem

For $1 \le p < \infty$, the space $L^p(E)$ is separable, i.e. it has a countable dense subset.

Proof:

- When $E = \mathbb{R}^n$, the result follows from the previous theorem, as \mathscr{F} is countable.
- For general E, let \$\tilde{\varsigma}\$ be the set of restrictions to E of functions in \$\varsigma\$. Then \$\tilde{\varsigma}\$ is countable. We will now show that \$\tilde{\varsigma}\$ is dense in \$L^p(E)\$.
 - * Take $f \in L^p(E)$. Set f = 0 in $\mathbb{R}^n \setminus E$. Then $f \in L^p(\mathbb{R}^n)$ and so there exist $f_k \in \mathscr{F}$ such that $f_k \to f$ in $L^p(\mathbb{R}^n)$.
 - * Let $\tilde{f}_k = f_k|_E \in \tilde{\mathscr{F}}$. Then $\|\tilde{f}_k f\|_{L^p(E)} \le \|f_k f\|_{L^p(E)} \to 0$, so we are done.

Definition

Let X be a normed vector space and X^* its dual.

- **(**) We say that a sequence (x_n) in X converges weakly to some $x \in X$ if $Tx_n \to Tx$ for all $T \in X^*$. We write $x_n \rightharpoonup x$.
- We say that a sequence (T_n) in X^* converges weakly* to some $T \in X^*$ if $T_n x \to Tx$ for all $x \in X$. We write $T_n \rightharpoonup^* T$.

Theorem (Weak sequential compactness in reflexive Banach spaces)

Every bounded sequence in a reflexive Banach space has a weakly convergent subsequence.

Corollary

Assume that $1 and <math>(f_k)$ is bounded in $L^p(E)$. Then there is a subsequence f_{k_j} which converges weakly in L^p . In other words, there exists a function $f \in L^p$ such that

$$\int_E f_{k_j}g o \int_E$$
 fg for all $g \in L^{p'}(E).$

Theorem (Helly's theorem on weak* sequential compactness in duals of separable Banach spaces)

Every bounded sequence in the dual of a separable Banach space has a weakly* convergent subsequence.

Corollary

Assume that (f_k) is bounded in $L^{\infty}(E)$. Then there is a subsequence f_{k_j} which converges weakly* in L^{∞} . In other words, there exists a function $f \in L^{\infty}$ such that

$$\int_E f_{k_j}g o \int_E fg ext{ for all } g \in L^1(E).$$

	Dual	Reflexivity	Separability	Sequential
				compactness
				of $\overline{B(0,1)}$
Lp	$L^{p'}$	Yes	Yes	Weak and weak*
1				
L ¹	L∞	No	Yes	Neither
L^{∞}	$\supseteq L^1$	No	No	Weak*

Translation operators: For a $h \in \mathbb{R}^n$ and a measurable function $f : \mathbb{R}^n \to \mathbb{R}$, define $\tau_h f$ by

$$(\tau_h f)(x) = f(x+h)$$
 for all $x \in \mathbb{R}^n$.

Then $\tau_h : L^p(\mathbb{R}^n) \to L^p(\mathbb{R}^n)$ is a bounded linear transformation for $1 \le p \le \infty$. In fact it is an isometric isomorphism.

Theorem (Continuity in L^p)

If $f \in L^p(\mathbb{R}^n)$ for some $1 \le p < \infty$, then

$$\lim_{|h|\to 0} \|\tau_h f - f\|_{L^p(\mathbb{R}^n)} = 0.$$

Continuity of translation operators

- In other words, for $1 \le p < \infty$, for every fixed $f \in L^p(\mathbb{R}^n)$, the map $h \mapsto \tau_h f$ is a continuous map from \mathbb{R}^n into $L^p(\mathbb{R}^n)$.
- The theorem is false for $p = \infty$, e.g. with $f = \chi_Q$ with Q being the unit cube.
- The theorem does ***NOT*** assert that the maps h → τ_h is a continuous map from ℝⁿ into ℒ(L^p(ℝⁿ), L^p(ℝⁿ)). In fact,

$$\|\tau_h - Id\|_{\mathscr{L}(L^p(\mathbb{R}^n), L^p(\mathbb{R}^n))} \ge 2^{1/p}$$
 when $h \neq 0$.

- * Let r = |h|/4 and let $f = c_n r^{-n/p} \chi_{B_r(0)}$ where c_n is chosen such that $||f||_{L^p} = 1$.
- \star Then $\tau_h f$ and f has disjoint support. So

$$\|\tau_h f - f\|_{L^p} = \left\{ \|\tau_h f\|_{L^p}^p + \|f\|_{L^p}^p \right\}^{1/p} = 2^{1/p}.$$

Continuity of translation operators

Proof:

- Let \mathscr{A} denote the set of functions f in L^p such that $\|\tau_h f f\|_{L^p} \to 0$ as $|h| \to 0$.
- It is clear that if $f, g \in \mathscr{A}$ then $f + g \in \mathscr{A}$, and $\lambda f \in \mathscr{A}$ for any $\lambda \in \mathbb{R}$. So \mathscr{A} is a vector subspace of L^p .
- We claim that \mathscr{A} is closed in L^p , i.e. if $(f_k) \subset \mathscr{A}$ and $f_k \to f$ in L^p , then $f \in \mathscr{A}$. Indeed, by Minkowski's inequality, we have

$$\begin{aligned} \|\tau_h f - f\|_{L^p} &\leq \|\tau_h f_k - f_k\|_{L^p} + \|\tau_h f_k - \tau_h f\|_{L^p} + \|f_k - f\|_{L^p} \\ &= \|\tau_h f_k - f_k\|_{L^p} + 2\|f_k - f\|_{L^p}. \end{aligned}$$

Now, if one is given an $\varepsilon > 0$, one can first select large k such that $\|f_k - f\|_{L^p} \le \varepsilon/3$, and then select $\delta > 0$ such that $\|\tau_h f_k - f_k\|_{L^p} \le \varepsilon/3$ for all $|h| \le \delta$, so that

$$\|\tau_h f - f\|_{L^p} \leq \varepsilon$$
 for all $|h| \leq \delta$.

- So \mathscr{A} is a closed vector subspace of L^p .
- Now, observe that if Q is a cube in ℝⁿ, then ||τ_hχ_Q − χ_Q ||_{L^p} → 0 as |h| → 0, by e.g. Lebesgue's dominated convergence theorem (or a direct estimate).
- So A contains all finite linear combinations of characteristic functions of cubes. In particular, it contains all finite rational linear combinations of characteristic functions of cubes belonging to a fixed class of dyadic cubes. As this latter set is dense in L^p and A is closed, we thus have A = L^p, as desired.

Definition

Let f and g be measurable functions on \mathbb{R}^n . The convolution f * g of f and g is defined by

$$(f*g)(x) = \int_{\mathbb{R}^n} f(y)g(x-y) \, dy$$

wherever the integral converges.

Theorem (Young's convolution inequality)

Let p, q and r satisfy $1 \leq p, q, r \leq \infty$ and

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1.$$

If $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$, then $f \ast g \in L^r(\mathbb{R}^n)$ and

 $\|f * g\|_{L^{r}(\mathbb{R}^{n})} \leq \|f\|_{L^{p}(\mathbb{R}^{n})} \|g\|_{L^{q}(\mathbb{R}^{n})}.$

Proof: We will only deal with the case q = 1 and r = p. We are thus given $f \in L^p, g \in L^1$. We need to show that $f * g \in L^p$ and $\|f * g\|_{L^p} \le \|f\|_{L^p} \|g\|_{L^1}$.

- Observe that |f ∗ g| ≤ |f| ∗ |g|. We may thus assume without loss of generality in the proof that f, g ≥ 0.
- Case 1: *p* = 1.
 - \star Consider the integral

$$I=\int_{\mathbb{R}^n\times\mathbb{R}^n}f(y)g(x-y)\,dx\,dy.$$

This integral is well-defined as $f, g \ge 0$ and the function G(x, y) = g(x - y) is measurable as a function from $\mathbb{R}^n \times \mathbb{R}^n$ into \mathbb{R} .

* Consider $I = \int_{\mathbb{R}^n \times \mathbb{R}^n} f(y) g(x - y) \, dx \, dy$.

* By Tonelli's theorem, we have

$$I = \int_{\mathbb{R}^n} \left\{ \int_{\mathbb{R}^n} f(y) g(x - y) \, dy \right\} dx = \int_{\mathbb{R}^n} (f * g)(x) \, dx$$

= $\|f * g\|_{L^1}$.
$$I = \int_{\mathbb{R}^n} f(y) \left\{ \int_{\mathbb{R}^n} g(x - y) \, dx \right\} dy = \int_{\mathbb{R}^n} f(y) \|g\|_{L^1} \, dy$$

= $\|f\|_{L^1} \|g\|_{L^1}$.

* So
$$||f * g||_{L^1} = ||f||_{L^1} ||g||_{L^1}$$
.

• Case 2: $p = \infty$. This case is easy, as

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y) g(x - y) dy$$

 $\leq \int_{\mathbb{R}^n} \|f\|_{L^{\infty}} g(x - y) dy = \|f\|_{L^{\infty}} \|g\|_{L^1}.$

• Case 3:
$$1 .$$

 \star We start by writing

$$|(f * g)(x)| = \int_{\mathbb{R}^n} [f(y)g(x-y)^{\frac{1}{p}}][g(x-y)^{\frac{1}{p'}}] dy$$

and applying Hölder's inequality to the above.

• Case 3:
$$1 .
* $|(f * g)(x)| = \int_{\mathbb{R}^n} [f(y)g(x - y)^{\frac{1}{p}}][g(x - y)^{\frac{1}{p'}}] dy$.
* So
 $|(f * g)(x)| \le \left\{ \int_{\mathbb{R}^n} f(y)^p g(x - y) dy \right\}^{1/p} \left\{ \int_{\mathbb{R}^n} g(x - y) dy \right\}^{1/p'}$
 $= [(f^p * g)(x)]^{1/p} ||g||_{L^1}^{1/p'}.$$$

★ It follows that

$$\|f * g\|_{L^{p}} = \left\{ \int_{\mathbb{R}^{n}} |(f * g)(x)|^{p} dx \right\}^{1/p} \\ \leq \left\{ \int_{\mathbb{R}^{n}} (f^{p} * g)(x) dx \right\}^{1/p} \|g\|_{L^{1}}^{1/p'} \\ = \|f^{p} * g\|_{L^{1}}^{1/p} \|g\|_{L^{1}}^{1/p'}$$

• Case 3:
$$1 .
* $||f * g||_{L^p} \le ||f^p * g||_{L^1}^{1/p} ||g||_{L^1}^{1/p'}$.
* So by Case 1,
 $||f * g||_{L^p} \le \left[||f^p||_{L^1} ||g||_{L^1} \right]^{1/p} ||g||_{L^1}^{1/p'}$
 $= ||f||_{L^p} ||g||_{L^1}$.$$