C4.3 Functional Analytic Methods for PDEs
Lecture 3

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2020

Luc Nguyen (University of Oxford) C4.3 — Lecture 3 MT 2020



In the last lecture

o ...
o Continuity property of translation operators in LP.

@ Young's convolution inequality.
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This lecture

@ Differentiation rule for convolution.

@ Approximation of identity
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Some notations

o If a = (a1,...,a,) € N"is a multi-index, we write
la = a1+ ...+ ap.

e If fis a function and a = (a4, ..., @,) is a multi-index, we write

0f = 0gr ... 0 f.
e For k>0, CK(R") = {continuous f:R"—

R such that 0*f exists and is continuous whenever|a| < k}.

o CKR") = {f € C*(R") which has compact support}. Recall
that, for a continuous function f,

Supp(f) = Support of f = {f(x) # 0}.
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Convolution with a function in C°(IR")

Iff € LlP(R"), 1< p< oo, and g € CO(R"), then f x g € CO(R").

Proof:

@ Fix some x € R". We need to show that
frxg(x+z)—fxg(x)—>0asz—0.

@ We compute
fxg(x+2z)—fxg(x)
= /n fly)gx+z—y) dy—/n f(y)g(x —y)dy

=L fy)le(x+z—y)—g(x—y)ldy.
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Convolution with a function in C°(IR")

Proof:
o frg(x+2z)—frg(x)= [pf(Vgx+z—y)—gx—y)dy.
e Since g € CX(R"), g = 0 out5|de of some big ball Br centered
at 0. Then, for |z] < R,
Frglcrs)~Fog() = [ f0lalerzy) sl
x—y|<2R

o Note that as g is continuous, it is uniformly continuous on Bsg.
Thus, for any given £ > 0, there exists small 6 € (0, R) such that

[g(x+z-y)—glx—y) <e
whenever|z| < § and |x — y| < 2R.

@ So when |z| < §, we have

\f*g<x+z)—f*g<x)\s6/ ()] dy.

[x—y|<2R
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Convolution with a function in C°(IR")

Proof:
@ So when |z| < 4§, we have

If * g(x +2z) — f*g(x)| < ellfllgx—yl<2ry)
< e[| o(n)

U e (1x—y1<2r))
= C,R"P'||f||oe.

@ Since the right side can be made arbitrarily small, this precisely
means that f x g(x +z) — f*xg(x) > 0asz—0,ie fxgis
continuous.
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Differentiation rule for convolution

If f € LP(R"),

1< p<oo, and g € CK(R") for some k > 1, then
fxge CKR") and
) =

D(f x g)(x

Proof
@ We will only consider the case k = 1. The general case can be
proved by applying the case k = 1 repeatedly.

@ Suppose that g € C}(R"). Fix a point x and consider
Oy, (f % g)(x). We need to show that

m (f xg)(x + ter) — f x g(x)
t—0 t
:ZD.Z?,.(X,f)

(f x D“g)(x) for all multi-index v with || < k.

= (f % 0x8)(x).

s

Luc Nguyen (University of Oxford) C4.3 — Lecture 3 MT 2020 8/24



Differentiation rule for convolution

Proof
o We have

D.Q.(x.t) = / f(y)g(x -y + te;) —g(x—y) dy.

As t — 0, the integrand converges to f(y)0y,g(x —y). We
would like to show that the above integral converges to

/ ()80~ y) dy = (F 0,8)(x).
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Differentiation rule for convolution

Proof
@ As before, if the support of g is contained in Bg, then, for
It| < R,
X—y+te) —glx —
Ix—y|<2R t

@ When |[x — y| <2R and |t| < R, we have |x — y + te;| < 3R.
Hence

lg(x —y +ter) — g(x —y)|
]

< max |0y, g| =: M.
Bs

R

So the integrand above satisfies

lintegrand| < M|f(y)].
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Differentiation rule for convolution

Proof
@ So we have, for |t| < R,

D.Q.(x. t) = /l_ » f(y)g(x —y+te)—g(x—y) dy

t

where
* integrand — f(y)0x,g(x —y) as t — 0.
x |integrand| < M|f(y)|, which belongs to L!({|x — y| < 2R}), as
f e LP(R").
@ By Lebesgue's dominated convergence theorem, we thus have

imD.0(x )= [ F(y)oglx—y)dy
[x—y|<2R

t—0

_ / F(y)0ug(x = y)dy = (F + 0,8)(x).
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Differentiation rule for convolution

Proof
@ We conclude that 0,,(f * g) exists and is equal to f * 0, g.

@ By the previous lemma, we have that f x 0,,g is continuous. So
Oy, (f * g) is continuous. Applying this to all partial derivatives,
we conclude that f x g € CY(R").
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Approximation of identity

o A family of “kernels” {o. : R" — R}..¢ is called an
approximation of identity if

fxop."—"fase—0,

where the meaning of the convergence depends on the context.

o Loosely speaking, it means that the operators T, defined by
T.f = f *x p. "approximates” the identity operator.
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Approximation of identity in continuous settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in C2°(R") such that [, 0= 1. For

e >0, let
(X)_i (’_()
0:() = Zo(2)-

If f € C(R"), then f x o. converges uniformly on compact subsets of
R" to f.

o’

More on terminologies:
@ A family (o.) as in the statement is called a family of ‘mollifiers’.

@ The family (f % o.) is called a regularization of f by mollification.
Note that since o. € C°(R"), we have that f *x o. € C*(R").
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Approximation of identity in continuous settings

Proof:

@ Let us first consider pointwise convergence, i.e. for every x there
holds:

()0 = [ 10)onlx =y dy =2 1)

@ The idea is to convert f(x) into an integral as well. For this we
use the identity

/Rngf(x_y)dy:/R,,QE(z)dZ:/nQ(W)dw:l.

Hence
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Approximation of identity in continuous settings

Proof:

@ So we need to show

e—0

Rn[f(X) — f(y)]o(x —y)dy — 0.

@ By hypotheses, ¢ vanishes outside of some ball Br centered at
the origin. So o.(x —y) = 0 when |x — y| > ¢R. It follows that

< sup [f(x) = f(y)] 0:(x —y)dy
{y:iIx—y|<eR} |x—y|<eR
e—0
= sup |f(x)—f(y)[—0.
{y:Ix—y|<eR}
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Approximation of identity in continuous settings

Proof:
@ Now we turn to prove the uniform convergence on compact sets,
i.e. for every given compact set K, we need to show

e—0

sup ‘(f * 0:)(x) — f(x)| — 0.

xeK

As before, this is equivalent to

0
E— 07

sup | [ [F(x) = F(y)]o-(x — y) dy
xeK R7
which can be turned into

—0
€ 0’

su f(x)—f (x—y)d
ol Wl dy

xeK
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Approximation of identity in continuous settings

Proof:
@ We need to show

ac=sw| [ 70— F el — y) dy| S0,
{y:lx— y\<6R}

xeK

@ In the same way as before, we have

A.<sup  sup  [f(x)—f(y)l
x€K {y:|x—y|<eR}
@ Note that if K C Br, e <1, x € K and |x — y| < ¢R, then

x| <R <R+R

* |y <Ix[+ly —x| <R+ R.

So
e—0
A. < sup [f(x) = f(y)[— 0,

{Ix[,ly|<R+R’,|x—y|<eR}

in view of the uniform continuity of f on Bg g
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Approximation of identity in Lipschitz settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in C2°(R") such that [, 0= 1. For
>0, let

If f € COY(R™), i.e. there exists L > 0 such that
|f(x) — f(y)| < L|x —y| for all x,y € R",
then, for some constant C > 0 depending only on the choice of o,

sup |f % 0.(x) — f(x)| < ClLe.

x€ER"
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Approximation of identity in Lipschitz settings

Proof: Following the same argument as before, we have

sup |(f * 0:)(x) = f(x)] = sup | [ [f(x) = f(y)]es(x — y) dy

xeRnM xeR" Rn

<sup sup[f(x) = f(y)]
x€RM {y:|x—y|<eR}

<sup sup Llx—y|
x€R" {y:|x—y|<eR}

< LeR.
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Approximation of identity in LP settings

Theorem (Approximation of identity)

Let ¢ be a non-negative function in L'(R") such that [, 0= 1. For
>0, let
1 /x
0:(x) = 5@(5)-
If f € LP(R") for some 1 < p < oo, then

!l‘% ||f * 0 — f”Lp(Rn) = 0

Luc Nguyen (University of Oxford) C4.3 — Lecture 3 MT 2020 21/24



There exist f € L*(R") and o € C°(B1(0)) such that f  o. does
not converge to f in L*°.

o Take f = X By (0)-
@ Then
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f*xop.7 fin L[>

o fx0.(x) = [5,0n5.(0) 0=(2) d2.
x| <1—¢ x| >1+¢ x| =
fxo(x)=1 f*o-(x fxo.(x) €[0,1]
— % in symmetry,
ie. 0= o(|x])
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f*xop.7 fin L[>

@ We now take some g of the form o(x) = o(|x|) such that, in
addition to the condition ||o||;» = 1, we have

/' o(2) dz = co € (0,1) for all |p| = 1/2.
B1,4(p)

o Consider 1 < |x| <1+ ¢/4.
* Bi(x) N B-(0) contains a ball
B./a(p-) with |p.| = ¢/2.

D * So f * g.(x >fB/4(ps)g5( z)dz =
o G € (0 ].)
* As f(x) = 0 here, we thus have

|f % 0. — fllie > co /2 0.
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