
C4.3 Functional Analytic Methods for PDEs

Lecture 3

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2020

Luc Nguyen (University of Oxford) C4.3 – Lecture 3 MT 2020 1 / 24



In the last lecture

...

Continuity property of translation operators in Lp.

Young’s convolution inequality.
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This lecture

Differentiation rule for convolution.

Approximation of identity
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Some notations

If α = (α1, . . . , αn) ∈ Nn is a multi-index, we write
|α| = α1 + . . . + αn.

If f is a function and α = (α1, . . . , αn) is a multi-index, we write
∂αf = ∂α1

x1
. . . ∂αn

xn f .

For k ≥ 0, C k(Rn) =
{

continuous f : Rn →

R such that ∂αf exists and is continuous whenever|α| ≤ k
}

.

C k
c (Rn) =

{
f ∈ C k(Rn) which has compact support

}
. Recall

that, for a continuous function f ,

Supp(f ) = Support of f = {f (x) 6= 0}.
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Convolution with a function in C 0
c (Rn)

Lemma
If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ C 0

c (Rn), then f ∗ g ∈ C 0(Rn).

Proof:

Fix some x ∈ Rn. We need to show that
f ∗ g(x + z)− f ∗ g(x)→ 0 as z → 0.

We compute

f ∗ g(x + z)− f ∗ g(x)

=

∫
Rn

f (y)g(x + z − y) dy −
∫
Rn

f (y)g(x − y) dy

=

∫
Rn

f (y)[g(x + z − y)− g(x − y)] dy .
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Convolution with a function in C 0
c (Rn)

Proof:
f ∗ g(x + z)− f ∗ g(x) =

∫
Rn f (y)[g(x + z − y)− g(x − y)] dy .

Since g ∈ C 0
c (Rn), g ≡ 0 outside of some big ball BR centered

at 0. Then, for |z | < R ,

f ∗g(x+z)−f ∗g(x) =

∫
|x−y |≤2R

f (y)[g(x+z−y)−g(x−y)] dy .

Note that as g is continuous, it is uniformly continuous on B̄3R .
Thus, for any given ε > 0, there exists small δ ∈ (0,R) such that

|g(x + z − y)− g(x − y)| ≤ ε

whenever|z | ≤ δ and |x − y | ≤ 2R .

So when |z | ≤ δ, we have

|f ∗ g(x + z)− f ∗ g(x)| ≤ ε

∫
|x−y |≤2R

|f (y)| dy .
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Convolution with a function in C 0
c (Rn)

Proof:

So when |z | ≤ δ, we have

|f ∗ g(x + z)− f ∗ g(x)| ≤ ε‖f ‖L1({|x−y |≤2R})

≤ ε‖f ‖Lp(Rn)‖1‖Lp′ ({|x−y |≤2R})

= CnR
n/p′‖f ‖Lpε.

Since the right side can be made arbitrarily small, this precisely
means that f ∗ g(x + z)− f ∗ g(x)→ 0 as z → 0, i.e. f ∗ g is
continuous.
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Differentiation rule for convolution

Lemma

If f ∈ Lp(Rn), 1 ≤ p ≤ ∞, and g ∈ C k
c (Rn) for some k ≥ 1, then

f ∗ g ∈ C k(Rn) and

Dα(f ∗ g)(x) = (f ∗ Dαg)(x) for all multi-index α with |α| ≤ k .

Proof

We will only consider the case k = 1. The general case can be
proved by applying the case k = 1 repeatedly.
Suppose that g ∈ C 1

c (Rn). Fix a point x and consider
∂x1(f ∗ g)(x). We need to show that

lim
t→0

(f ∗ g)(x + te1)− f ∗ g(x)

t︸ ︷︷ ︸
=:D.Q.(x ,t)

= (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

We have

D.Q.(x , t) =

∫
Rn

f (y)
g(x − y + te1)− g(x − y)

t
dy .

As t → 0, the integrand converges to f (y)∂x1g(x − y). We
would like to show that the above integral converges to∫

Rn

f (y)∂x1g(x − y) dy = (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

As before, if the support of g is contained in BR , then, for
|t| < R ,

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)
g(x − y + te1)− g(x − y)

t
dy .

When |x − y | ≤ 2R and |t| < R , we have |x − y + te1| ≤ 3R .
Hence

|g(x − y + te1)− g(x − y)|
|t|

≤ max
B̄3R

|∂x1g | =: M .

So the integrand above satisfies

|integrand| ≤ M |f (y)|.
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Differentiation rule for convolution

Proof

So we have, for |t| ≤ R ,

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)
g(x − y + te1)− g(x − y)

t
dy

where
? integrand→ f (y)∂x1g(x − y) as t → 0.
? |integrand| ≤ M|f (y)|, which belongs to L1({|x − y | ≤ 2R}), as

f ∈ Lp(Rn).

By Lebesgue’s dominated convergence theorem, we thus have

lim
t→0

D.Q.(x , t) =

∫
|x−y |≤2R

f (y)∂x1g(x − y) dy

=

∫
Rn

f (y)∂x1g(x − y) dy = (f ∗ ∂x1g)(x).
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Differentiation rule for convolution

Proof

We conclude that ∂x1(f ∗ g) exists and is equal to f ∗ ∂x1g .

By the previous lemma, we have that f ∗ ∂x1g is continuous. So
∂x1(f ∗ g) is continuous. Applying this to all partial derivatives,
we conclude that f ∗ g ∈ C 1(Rn).
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Approximation of identity

A family of “kernels” {%ε : Rn → R}ε>0 is called an
approximation of identity if

f ∗ %ε“→ ”f as ε→ 0,

where the meaning of the convergence depends on the context.

Loosely speaking, it means that the operators Tε defined by
Tεf = f ∗ %ε “approximates” the identity operator.
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Approximation of identity in continuous settings

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ C (Rn), then f ∗ %ε converges uniformly on compact subsets of
Rn to f .

More on terminologies:

A family (%ε) as in the statement is called a family of ‘mollifiers’.

The family (f ∗ %ε) is called a regularization of f by mollification.
Note that since %ε ∈ C∞c (Rn), we have that f ∗ %ε ∈ C∞(Rn).
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Approximation of identity in continuous settings

Proof:

Let us first consider pointwise convergence, i.e. for every x there
holds:

(f ∗ %ε)(x) =

∫
Rn

f (y)%ε(x − y) dy
ε→0−→ f (x).

The idea is to convert f (x) into an integral as well. For this we
use the identity∫

Rn

%ε(x − y) dy =

∫
Rn

%ε(z) dz =

∫
Rn

%(w) dw = 1.

Hence

f (x) =

∫
Rn

f (x)%ε(x − y) dy .
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Approximation of identity in continuous settings

Proof:

So we need to show∫
Rn

[f (x)− f (y)]%ε(x − y) dy
ε→0−→ 0.

By hypotheses, % vanishes outside of some ball BR centered at
the origin. So %ε(x − y) = 0 when |x − y | ≥ εR . It follows that∣∣∣ ∫

Rn

[f (x)− f (y)]%ε(x − y) dy
∣∣∣

≤ sup
{y :|x−y |≤εR}

|f (x)− f (y)|
∫
|x−y |≤εR

%ε(x − y) dy

= sup
{y :|x−y |≤εR}

|f (x)− f (y)| ε→0−→ 0.

Luc Nguyen (University of Oxford) C4.3 – Lecture 3 MT 2020 16 / 24



Approximation of identity in continuous settings

Proof:

Now we turn to prove the uniform convergence on compact sets,
i.e. for every given compact set K , we need to show

sup
x∈K

∣∣∣(f ∗ %ε)(x)− f (x)
∣∣∣ ε→0−→ 0.

As before, this is equivalent to

sup
x∈K

∣∣∣ ∫
Rn

[f (x)− f (y)]%ε(x − y) dy
∣∣∣ ε→0−→ 0,

which can be turned into

sup
x∈K

∣∣∣ ∫
{y :|x−y |≤εR}

[f (x)− f (y)]%ε(x − y) dy
∣∣∣ ε→0−→ 0,
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Approximation of identity in continuous settings

Proof:

We need to show

Aε := sup
x∈K

∣∣∣ ∫
{y :|x−y |≤εR}

[f (x)− f (y)]%ε(x − y) dy
∣∣∣ ε→0−→ 0,

In the same way as before, we have

Aε ≤ sup
x∈K

sup
{y :|x−y |≤εR}

|f (x)− f (y)|.

Note that if K ⊂ BR′ , ε ≤ 1, x ∈ K and |x − y | ≤ εR , then
? |x | ≤ R ′ ≤ R + R ′,
? |y | ≤ |x |+ |y − x | ≤ R + R ′.

So
Aε ≤ sup

{|x |,|y |≤R+R′,|x−y |≤εR}
|f (x)− f (y)| ε→0−→ 0,

in view of the uniform continuity of f on BR+R′ .
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Approximation of identity in Lipschitz settings

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ C 0,1(Rn), i.e. there exists L ≥ 0 such that

|f (x)− f (y)| ≤ L|x − y | for all x , y ∈ Rn,

then, for some constant C > 0 depending only on the choice of %,

sup
x∈Rn
|f ∗ %ε(x)− f (x)| ≤ CLε.
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Approximation of identity in Lipschitz settings

Proof: Following the same argument as before, we have

sup
x∈Rn

∣∣∣(f ∗ %ε)(x)− f (x)| = sup
x∈Rn

∣∣∣ ∫
Rn

[f (x)− f (y)]%ε(x − y) dy
∣∣∣

≤ sup
x∈Rn

sup
{y :|x−y |≤εR}

|f (x)− f (y)|

≤ sup
x∈Rn

sup
{y :|x−y |≤εR}

L|x − y |

≤ LεR .
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Approximation of identity in Lp settings

Theorem (Approximation of identity)

Let % be a non-negative function in L1(Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ Lp(Rn) for some 1 ≤ p <∞, then

lim
ε→0
‖f ∗ %ε − f ‖Lp(Rn) = 0.
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f ∗ %ε 6→ f in L∞

Remark
There exist f ∈ L∞(Rn) and % ∈ C∞c (B1(0)) such that f ∗ %ε does
not converge to f in L∞.

Take f = χB1(0).

Then

f ∗ %ε(x) =

∫
B1(0)

%ε(x − y) dy

=

∫
B1(x)

%ε(z) dz

=

∫
B1(x)∩Bε(0)

%ε(z) dz .
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f ∗ %ε 6→ f in L∞

f ∗ %ε(x) =
∫
B1(x)∩Bε(0)

%ε(z) dz .

|x | < 1− ε |x | > 1 + ε |x | = 1

ε

0 1x

ε

0 1x

ε

0 1x

f ∗ %ε(x) = 1 f ∗ %ε(x) = 0 f ∗ %ε(x) ∈ [0, 1]
→ 1

2
in symmetry,

i.e. % = %(|x |)

Luc Nguyen (University of Oxford) C4.3 – Lecture 3 MT 2020 23 / 24



f ∗ %ε 6→ f in L∞

We now take some % of the form %(x) = %(|x |) such that, in
addition to the condition ‖%‖L1 = 1, we have∫

B1/4(p)

%(z) dz = c0 ∈ (0, 1) for all |p| = 1/2.

Consider 1 < |x | < 1 + ε/4.

ε

0 1x

? B1(x) ∩ Bε(0) contains a ball
Bε/4(pε) with |pε| = ε/2.

? So f ∗ %ε(x) ≥
∫
Bε/4(pε)

%ε(z) dz =

c0 ∈ (0, 1).

? As f (x) = 0 here, we thus have

‖f ∗ %ε − f ‖L∞ ≥ c0 6→ 0.
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