

C4.3 Functional Analytic Methods for PDEs Lecture 5

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

• L^p spaces and their properties.

- Divergence theorem and Integration by parts formula.
- Weak derivatives.
- Sobolev spaces $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ as Banach spaces.
- Differentiation rule for convolution of Sobolev functions.

- Ω denotes a domain in \mathbb{R}^n .
- C^k(Ω) denotes the space of functions which are k-times continuously differentiable in Ω.
- C^k(Ω̄) denotes the subspace of C^k(Ω) consisting of functions which can be extended to a k-times continuously differentiable functions on some open set containing Ω̄.
- C^k_c(Ω) denotes the subspace of C^k(Ω) consisting of functions f such that Supp(f) = {f ≠ 0} is a bounded closed subset of Ω.

Frequently used terminologies/notations

• Ω is said to be a Lipschitz (resp. C^k) domain, or equivalently, $\partial \Omega$ is said to be Lipschitz (resp. C^k), if for every $x_0 \in \partial \Omega$ there exists a radius $r_0 > 0$ such that, after a relabeling of coordinate axes if necessary,

$$\Omega \cap B_{r_0}(x_0) = \{x \in B_{r_0}(x_0) : x_n > \gamma(x_1, \dots, x_{n-1})\}$$

for some Lipschitz (resp. C^k) function γ .

Let Ω be a bounded Lipschitz domain in \mathbb{R}^n . Fact: $\partial \Omega$ admits an 'outward pointing' unit normal *n*.

Theorem (Divergence theorem)

Let $F \in C^1(\overline{\Omega}; \mathbb{R}^n)$. Then

$$\int_{\Omega} div \ F \ dx = \int_{\partial \Omega} F \cdot n \ dS.$$

In particular, if $F \in C_c^1(\Omega; \mathbb{R}^n)$, then

$$\int_{\Omega} div \ F \ dx = 0.$$

Let Ω be a bounded Lipschitz domain in \mathbb{R}^n .

Theorem (Integration by parts formula)

Let $f,g\in C^1(\bar\Omega).$ Then

$$\int_{\Omega} f \, \partial_i g \, dx = \int_{\partial \Omega} fgn_i \, dS - \int_{\Omega} \partial_i f \, g \, dx.$$

In particular, if f or g has compact support in $\Omega,$ then

$$\int_{\Omega} f \,\partial_i g \,dx = -\int_{\Omega} \partial_i f \,g \,dx.$$

Let Ω be a domain in \mathbb{R}^n .

Definition

Let $f \in L^1_{loc}(\Omega)$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$ be a multi-index. A function $g \in L^1_{loc}(\Omega)$ is said to be a weak α -derivative of f if

$$\int_{\Omega} f \, \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} g \varphi \, dx \text{ for all } \varphi \in C^{\infty}_{c}(\Omega). \tag{1}$$

We write $g = \partial^{\alpha} f$ in the weak sense.

The function φ is called a *test function*.

Example of weak derivatives

- If f ∈ C¹(Ω), then its classical derivatives are also its weak derivatives.
- Suppose $\Omega = (-1, 1)$ and f(x) = |x|. Then, if $\varphi \in C_c^{\infty}(-1, 1)$, we have by IBP that

$$\int_{-1}^{1} f(x) \varphi'(x) dx = \int_{-1}^{0} (-x) \varphi'(x) dx + \int_{0}^{1} x \varphi'(x) dx$$
$$= -x \varphi(x) \Big|_{-1}^{0} - \int_{-1}^{0} (-1) \varphi(x) dx$$
$$+ x \varphi(x) \Big|_{0}^{1} - \int_{0}^{1} (1) \varphi(x) dx$$
$$= -\int_{-1}^{1} \operatorname{sign}(x) \varphi(x) dx.$$

So f'(x) = sign(x) in the weak sense.

Lemma

Let $f \in L^1_{loc}(\Omega)$ and $\alpha = (\alpha_1, \ldots, \alpha_n)$ be a multi-index. The weak α -derivative of f, if exists, is uniquely defined up to a set of measure zero.

This follows from the definition of weak derivative and the following:

Lemma (Fundamental lemma of the Calculus of Variations)

Let
$$g \in L^1_{loc}(\Omega)$$
. If $\int_{\Omega} g\varphi = 0$ for all $\varphi \in C^{\infty}_c(\Omega)$, then $g = 0$ a.e. in Ω .

Uniqueness of weak derivatives

Proof

- We will only consider the case Ω is a bounded domain and g ∈ L¹(Ω). The general case is left as an exercise.
- In Sheet 1, you showed that C[∞]_c(Ω) is dense in L¹(Ω). Thus, for any ε > 0, we can select h ∈ C[∞]_c(Ω) such that ||g h||_{L¹} ≤ ε. Furthermore, by triangle inequality ||h||_{L¹} ≥ ||g||_{L¹} ε.
- For $\delta > 0$, let $h_{\delta} = \frac{h}{\sqrt{\delta^2 + h^2}}$ so that $h_{\delta} \in C_c^{\infty}(\Omega)$ and $|h_{\delta}| \leq 1$.

• By hypotheses,
$$\int_\Omega g h_\delta \, dx = 0.$$

- By construction, $\left|\int_{\Omega}(g-h)h_{\delta}\,dx\right| \leq \|g-h\|_{L^{1}}\|h_{\delta}\|_{L^{\infty}} \leq \varepsilon.$
- It follows that

$$arepsilon \geq \int_\Omega gh_\delta\,dx - \int_\Omega (g-h)h_\delta\,dx = \int_\Omega hh_\delta\,dx.$$

Proof

• Recalling the expression of h_{δ} , we have

$$\varepsilon \geq \int_{\Omega} \frac{h^2}{\sqrt{\delta^2 + h^2}} \, dx.$$

• The integrand on the right hand side converges monotonically increasingly to |h|. Thus, by Lebesgue's monotone convergence theorem,

$$\varepsilon \geq \int_{\Omega} |h| \, dx = \|h\|_{L^1}.$$

 Recall that ||h||_{L¹} ≥ ||g||_{L¹} − ε, we obtain that 2ε ≥ ||g||_{L¹}. Sending ε → 0, we obtain ||g||_{L¹} = 0, i.e. g = 0 a.e. in Ω.

Remark

Suppose that

() $f \in L^1(\Omega)$ is weakly differentiable with weak derivatives $\partial_1^w f$, ..., $\partial_n^w f$,

(and, for some subdomain $\omega \subset \Omega$, f is classically differentiable in ω with classical derivatives $\partial_1^c f$, ..., $\partial_n^c f$.

Then

$$\partial_i^{w} f = \partial_i^{c} f$$
 a.e. in ω for all $i = 1, \ldots, n$.

Sketch of proof

- Using the definition of weak derivatives, f|_ω is weakly differentiable with weak derivatives ∂^w₁f|_ω, ..., ∂^w_nf|_ω.
- As f is classically differentiable in ω, its classical derivatives are also weak derivatives of f|_ω.
- By the uniqueness of weak derivatives, the conclusion follows.

Example of non-existence of weak derivatives

If $\Omega = (-1, 1)$ and u(x) = sign(x), then u has no weak derivative. Proof

• Suppose otherwise that $u'=g\in L^1_{loc}(-1,1).$ Then, for $\varphi\in C^\infty_c(-1,1),$

$$\int_{-1}^{1} g(x)\varphi(x) \, dx = \int_{-1}^{0} \varphi'(x) \, dx - \int_{0}^{1} \varphi'(x) \, dx$$
$$= [\varphi(0) - \varphi(-1)] - [\varphi(1) - \varphi(0)]$$
$$= 2\varphi(0).$$

In particular, if we take φ∈ C[∞]_c(-1,0), we have ∫⁰₋₁g(x)φ(x) dx = 0. So g = 0 a.e. in (-1,0). Likewise, g = 0 a.e. in (0,1). So g = 0 a.e. in (-1,1).
We thus have 0 = ∫¹₋₁g(x)φ(x) dx = 2φ(0) for all φ ∈ C[∞]_c(-1,1), which is impossible.

The Sobolev spaces $W^{k,p}(\Omega)$

so that W^{k,p}(Ω) is a normed vector space (check this!).
For p = 2, we also write H^k(Ω) for W^{k,2}(Ω). These are inner product spaces (check this!) with inner product

$$\langle u, v \rangle_{W^{k,2}(\Omega)} = \sum_{|\alpha| \leq k} \langle \partial^{\alpha} u, \partial^{\alpha} v \rangle_{L^{2}(\Omega)}.$$

Let $\Omega = (-1, 1)$ and f(x) = |x|.

- We have that $f'(x) = \operatorname{sign}(x)$ and so $f \in W^{1,p}(-1,1)$ for every $p \in [1,\infty]$.
- The function f'(x) = sign(x) has no weak derivatives, and so f ∉ W^{2,p}(-1,1) for any p ∈ [1,∞].

Completeness of $W^{k,p}(\Omega)$

Theorem

For $k \ge 0$ and $1 \le p \le \infty$, $W^{k,p}(\Omega)$ is a Banach space. When p = 2, $W^{k,2}(\Omega)$ is a Hilbert space.

Proof

- We have seen that $W^{k,p}$ is a normed vector space and $W^{k,2}$ is an inner product space. It remains to show that $W^{k,p}$ is complete.
- Suppose that (u_m) is a Cauchy sequence in $W^{k,p}$. We need to show that there exists $u \in W^{k,p}$ such that $||u_m u||_{W^{k,p}} \to 0$.
- For $|lpha| \leq k$, $(\partial^{lpha} u_m)$ is Cauchy in L^p , as

$$\|\partial^{\alpha} u_m - \partial^{\alpha} u_j\|_{L^p} \leq \|u_m - u_j\|_{W^{k,p}}.$$

By Riesz-Fischer's theorem, we have that $(\partial^{\alpha} u_m)$ converges in L^p to some $v_{\alpha} \in L^p$.

Completeness of $W^{k,p}(\Omega)$

Proof

- (u_m) is Cauchy in $W^{k,p}$.
- For $|\alpha| \leq k$, $(\partial^{\alpha} u_m)$ converges in L^p to some $v_{\alpha} \in L^p$.
- To conclude, we show that $u := v_{(0,...,0)}$ belongs to $W^{k,p}$ and $u_m \to u$ in $W^{k,p}$.
 - $\star\,$ By definition of weak derivatives, we have for $|\alpha|\leq k$ that

$$\int_{\Omega} u_m \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} \partial^{\alpha} u_m \varphi \, dx \text{ for all } \varphi \in C^{\infty}_c(\Omega),$$

 \star Now we would like to pass $m \to \infty$. By Hölder's inequality

$$\left|\int_{\Omega}(u_m-u)\partial^{\alpha}\varphi\,dx\right|\leq \|u_m-u\|_{L^p}\|\partial^{\alpha}\varphi\|_{L^{p'}}\to 0.$$

So
$$\int_{\Omega} u_m \partial^{\alpha} \varphi \, dx \to \int_{\Omega} u \partial^{\alpha} \varphi \, dx$$
.
* Similarly, $\int_{\Omega} \partial^{\alpha} u_m \varphi \, dx \to \int_{\Omega} v_{\alpha} \varphi \, dx$.

Completeness of $W^{k,p}(\Omega)$

Proof

- (u_m) is Cauchy in $W^{k,p}$.
- For $|\alpha| \leq k$, $(\partial^{\alpha} u_m)$ converges in L^p to some $v_{\alpha} \in L^p$.
- ★ We thus have

$$\int_{\Omega} u \partial^{\alpha} \varphi = (-1)^{|\alpha|} \int_{\Omega} v_{\alpha} \, \varphi \text{ for all } \varphi \in \mathit{C}^{\infty}_{c}(\Omega).$$

So v_{α} is the weak α -derivative of u. So $u \in W^{k,p}$. \star Now

$$\begin{aligned} \|u_m - u\|_{W^{k,p}}^p &= \sum_{|\alpha| \le k} \|\partial^{\alpha} u_m - \partial^{\alpha} u\|_{L^p}^p \\ &= \sum_{|\alpha| \le k} \|\partial^{\alpha} u_m - v_{\alpha}\|_{L^p}^p \stackrel{m \to \infty}{\longrightarrow} 0. \end{aligned}$$

So $u_m \rightarrow u$ in $W^{k,p}$. • We conclude that $W^{k,p}$ is complete.

Reflexivity of $W^{k,p}(\Omega)$

Theorem

For $k \ge 0$ and $1 , <math>W^{k,p}(\Omega)$ is reflexive.

Proof

- We will only consider the case k = 1. The general case requires some minor changes.
- By Eberlein's theorem, we only need to show that every bounded sequence in $W^{1,p}$ has a weakly convergent subsequence.
- Suppose (u_m) ⊂ W^{1,p} is bounded. Then, (u_m) and (∂_iu_m) are bounded in L^p.
- By the weak sequential compactness property of L^p for $1 , there exists a subsequence <math>(u_{m_j})$ such that (u_{m_j}) and $(\partial_i u_{m_j})$ are weakly convergent in L^p . Let u be the L^p weak limit of (u_{m_j}) .

Reflexivity of $W^{k,p}(\Omega)$

- To conclude, we show that u belongs to $W^{1,p}$ and $u_{m_j} \rightharpoonup u$ in $W^{1,p}$.
- The proof that u ∈ W^{1,p} is similar to the one we did moment ago, but also has some subtle difference: By definition of weak derivatives, we have

$$\int_{\Omega} u_{m_j} \partial_i \varphi = - \int_{\Omega} \partial_i u_{m_j} \varphi \text{ for all } \varphi \in C^\infty_c(\Omega),$$

Sending $j \to \infty$ by using the definition weak convergence, we obtain

$$\int_{\Omega} u \partial_i \varphi = - \int_{\Omega} v_i \varphi \text{ for all } \varphi \in C^{\infty}_c(\Omega).$$

So $v_i = \partial_i u$ in the weak sense. So $u \in W^{1,p}$.

Reflexivity of $W^{k,p}(\Omega)$

- It remains to show that, if $A \in (W^{1,p})^*$, then $Au_{m_i} \to Au$.
 - * Define $E: W^{1,p}(\Omega) \to (L^p(\Omega))^{n+1}$ by $Ef = (f, \partial_1 f, \dots, \partial_n f)$. Then E is an isometry.
 - * Let $X := E(W^{1,p}(\Omega))$ and $Y := (L^p(\Omega))^{n+1}$. Define $\tilde{A} : X \to \mathbb{R}$ by $\tilde{A}p = AE^{-1}p$ for $p \in X$. Then $\tilde{A} \in X^*$. By Hahn-Banach's theorem, it has an extension $\hat{A} \in Y^*$.
 - ★ It follows that

$$\begin{aligned} Au_{m_j} &= \tilde{A}Eu_{m_j} = \hat{A}Eu_{m_j} \\ &= \hat{A}(u_{m_j}, 0, \dots, 0) + \sum_i \hat{A}(0, 0, \dots, 0, \partial_i u_{m_j}, 0, \dots, 0) \\ &=: B(u_{m_j}) + \sum_i B_i(\partial_i u_{m_j}) \\ &\to B(u) + \sum_i B_i(\partial_i u) = Au. \end{aligned}$$

This concludes the proof.

The Sobolev spaces $W_0^{k,p}(\Omega)$

- Ω : a domain of \mathbb{R}^n .
- For $k \ge 0$ and $1 \le p < \infty$, define

4

 $W_0^{k,p}(\Omega) =$ the closure of $C_c^{\infty}(\Omega)$ in $W^{k,p}(\Omega)$.

When p = 2, we also write $H_0^k(\Omega)$ for $W_0^{k,2}(\Omega)$.

- In other words, $u \in W_0^{k,p}(\Omega)$ if there exist $u_m \in C_c^{\infty}(\Omega)$ such that $||u_m u||_{W^{k,p}} \to 0$.
- When k = 0, 1 ≤ p < ∞, and Ω is a bounded domain, we have seen in Sheet 1 that W₀^{0,p}(Ω) = W^{0,p}(Ω) = L^p(Ω). In general, this is not true for k ≥ 1. Roughly speaking, W₀^{k,p}(Ω) consists of functions f in W^{k,p}(Ω) such that

$$\partial^{\alpha} f = 0$$
 on $\partial \Omega'$ for all $|\alpha| \leq k - 1$.

IBP formula for Sobolev functions

Proposition (Integration by parts)

Let $u \in W^{k,p}(\Omega)$ and $v \in W_0^{k,p'}(\Omega)$ with $k \ge 0$, $1 and <math>\frac{1}{p} + \frac{1}{p'} = 1$. Then

$$\int_\Omega \partial^lpha$$
uv d $x = (-1)^{|lpha|} \int_\Omega u \partial^lpha$ v d x for all $|lpha| \le k$.

Proof

- By definition of $W_0^{k,p'}$, there exists $v_m \in C_c^{\infty}(\Omega)$ such that $v_m \to v$ in $W^{k,p'}$. In particular, $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \leq k$.
- By the definition of weak derivatives,

$$\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx \text{ for all } |\alpha| \leq k.$$

IBP formula for Sobolev functions

Proof

- $\partial^{\alpha} v_m \to \partial^{\alpha} v$ in $L^{p'}$ for all $|\alpha| \leq k$.
- $\int_{\Omega} \partial^{\alpha} u v_m \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v_m \, dx$ for all $|\alpha| \leq k$.
- We can now pass $m \to \infty$ as in the proof of the completeness of Sobolev spaces.
 - ★ By Hölder's inequality

$$\Big|\int_{\Omega} \partial^{\alpha} u(\mathbf{v}_m - \mathbf{v}) \, dx\Big| \leq \|\partial^{\alpha} u\|_{L^p} \|\mathbf{v}_m - \mathbf{v}\|_{L^{p'}} \to 0.$$

So $\int_{\Omega} \partial^{\alpha} uv_m \, dx \to \int_{\Omega} \partial^{\alpha} uv \, dx$. * Similarly, $\int_{\Omega} u \partial^{\alpha} v_m \, dx \to \int_{\Omega} u \partial^{\alpha} v \, dx$. * We conclude that

$$\int_{\Omega} \partial^{\alpha} u v \, dx = (-1)^{|\alpha|} \int_{\Omega} u \partial^{\alpha} v \, dx.$$

Differentiation rule for convolution of Sobolev functions

- Suppose $k \ge 0$ and $1 \le p < \infty$.
- Let $f \in L^p(\mathbb{R}^n)$ and $g \in C^k_c(\mathbb{R}^n)$. We knew that $f * g \in C^k(\mathbb{R}^n)$ and

$$\partial^{\alpha}(f * g) = f * (\partial^{\alpha}g)$$
 for all $|\alpha| \leq k$.

Lemma

Assume $f \in W^{k,p}(\mathbb{R}^n)$ and $g \in C_c^k(\mathbb{R}^n)$ for some $k \ge 0$ and $1 \le p < \infty$, then

$$\partial^{\alpha}(f * g) = (\partial^{\alpha}f) * g \text{ for all } |\alpha| \leq k.$$

Differentiation rule for convolution of Sobolev functions

Proof

• We will only consider the case k = 1. We aim to prove that

$$\partial_{x_1}(f * g) = (\partial_{x_1}f) * g$$

• We compute

$$\partial_{x_1}(f * g)(x) = f * (\partial_{x_1}g)(x) = \int_{\mathbb{R}^n} f(y) \,\partial_{x_1}g(x - y) \,dy$$

$$= -\int_{\mathbb{R}^n} f(y) \,\partial_{y_1}g(x - y) \,dy$$
$$= \int_{\mathbb{R}^n} \partial_{y_1}f(y) \,g(x - y) \,dy = ((\partial_{x_1}f) * g)(x).$$

So we are done.