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In the last lecture

Divergence theorem and Integration by parts formula.

Definition of weak derivatives and

Sobolev spaces W k,p(Ω) and W k,p
0 (Ω) as Banach spaces.

Differentiation rule for convolution of Sobolev functions.
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This lecture

Density results for Sobolev spaces.

Extension theorems for Sobolev functions.

Trace (boundary value) of Sobolev functions.
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Approximation of identity in Sobolev spaces

Theorem (Approximation of identity)

Let % be a non-negative function in C∞c (Rn) such that
∫
Rn % = 1. For

ε > 0, let

%ε(x) =
1

εn
%
(x
ε

)
.

If f ∈ W k,p(Rn) for some k ≥ 0 and 1 ≤ p <∞, then
f ∗ %ε ∈ C∞(Rn) ∩W k,p(Rn) and

lim
ε→0
‖f ∗ %ε − f ‖W k,p(Rn) = 0.

In particular C∞(Rn) ∩W k,p(Rn) is dense in W k,p(Rn).
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Approximation of identity in Sobolev spaces

Proof
Let fε = f ∗ %ε.
? As %ε ∈ C∞c (Rn), we have fε ∈ C∞(Rn).
? As f ∈ Lp(Rn) and %ε ∈ L1(Rn), Young’s inequality gives that

fε ∈ Lp(Rn).
? The approximation of identity theorem in Lp gives that
‖fε − f ‖Lp → 0 as ε→ 0.

By the differentiation rule for convolution of Sobolev functions,
we have ∂αfε = (∂αf ) ∗ %ε for |α| ≤ k . Repeat the argument as
above, we have ∂αfε ∈ Lp(Rn) and ‖∂αfε − ∂αf ‖Lp → 0 as
ε→ 0.

We deduce that fε ∈ W k,p(Rn) and

‖fε − f ‖W k,p =
[ ∑
|α|≤k

‖∂αfε − ∂αf ‖pLp
]1/p ε→0−→ 0.
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Meyers-Serrin’s theorem

Theorem (Meyers-Serrin)

Suppose Ω is a domain in Rn, k ≥ 0 and 1 ≤ p <∞. Then
C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω). Namely, for every
u ∈ W k,p(Ω) there exists a sequence (um) ⊂ C∞(Ω) ∩W k,p(Ω) such
that um converges to u in W k,p(Ω).

Remark: No regularity on Ω is assumed.
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A question and an obstruction

Question

Is C∞(Ω̄) ∩W k,p(Ω) dense in W k,p(Ω)?

Answer: Not always.

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

u =
√

r

u = −
√

r

Consider u(x , y) =
√
r cos θ

2
where

(x , y) = (r cos θ, r sin θ).
u ∈ C∞(Ω).
u is discontinuous in Ω̄.
One computes

‖u‖2
L2 =

∫
Ω

u2 dx dy

=

∫ 1

0

∫ 2π

0

r cos2 θ

2
r dr dθ =

π

3
,
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A question and an obstruction

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

D = {x2 + y2 < 1}

u =
√

r

u = −
√

r

Consider u(x , y) =
√
r cos θ

2
.

u ∈ C∞(Ω) and u 6∈ C (Ω̄).
One computes ‖u‖2

L2 = π
3

,

|∇u|2 = (∂ru)2 +
1

r 2
(∂θu)2 =

1

4r
,

‖∇u‖2
L2 =

∫
Ω

|∇u|2 dx dy

=

∫ 1

0

∫ 2π

0

1

4r
r dr dθ =

π

2
,

So u ∈ W 1,2(Ω).
The jump discontinuity across θ = 0
is an obstruction to approximate u
by functions in C∞(Ω̄). It is in fact
not possible, as u 6∈ W 1,2(D).
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The segment condition

Ω: a domain in Rn.

Ω is said to satisfy the segment condition if every x0 ∈ ∂Ω has a
neighborhood Ux0 and a non-zero vector yx0 such that if
z ∈ Ω̄ ∩ Ux0 , then z + tyx0 ∈ Ω for all t ∈ (0, 1).

Ω

x0

Ux0

yx0

zz + yx0

Note that if Ω is Lipschitz, then it satisfies the segment
condition.
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Approximation by functions in C∞(Ω̄)

Theorem (Global approximation by functions smooth up
to the boundary)

Suppose k ≥ 1 and 1 ≤ p <∞. If Ω satisfies the segment condition,
then the set of restrictions to Ω of functions in C∞c (Rn) is dense in
W k,p(Ω). In particular C∞(Ω̄) ∩W k,p(Ω) is dense in W k,p(Ω).

An important consequence of the theorem is the statement that
C∞c (Rn) is dense in W k,p(Rn) when 1 ≤ p <∞. In order words
W k,p(Rn) = W k,p

0 (Rn).

You will do the special when Ω is star-shaped in Sheet 2.
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Extension by zero of functions in W k ,p
0 (Ω)

Lemma

Assume that k ≥ 0 and 1 ≤ p <∞. If u ∈ W k,p
0 (Ω), then its

extension by zero ū to Rn belongs to W k,p
0 (Rn).

Proof

Suppose u ∈ W k,p
0 (Ω) and let ū be its extension by zero to Rn.

It is tempted to say that, as ū ≡ 0 in Rn \ Ω,

∂αū =

{
∂αu in Ω,
0 in Rn \ Ω

(*)

which belongs to Lp(Rn), and call it the end of the proof. For
this to work, we need to show first that ū is weakly differentiable!
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Extension by zero of functions in W k ,p
0 (Ω)

Proof

Let (um) ⊂ C∞c (Ω) be such that um → u in W k,p(Ω). Let ūm be
the extension by zero of um to Rn. Then ūm ∈ C∞c (Rn) and

‖ūm − ūj‖W k,p(Rn) = ‖um − uj‖W k,p(Ω)
m,j→∞−→ 0.

We thus have that (ūm) is Cauchy in W k,p(Rn) and thus
converges in W k,p to some ū∗ ∈ W k,p(Rn).

To conclude, we show that ū∗ = ū a.e. in Rn.
? As ūm converges to ū∗ in Lp(Rn), there is a subsequence ūmj

which converges a.e. to ū∗ in Rn. This implies that ū∗ = 0 a.e.
in Rn \ Ω and umj converges a.e. to ū∗ in Ω.

? Likewise, as umj converges to u in Lp(Ω), we can extract yet
another subsequence umjl

which converges a.e. to u in Ω. It
follows that ū∗ = u a.e. in Ω.

? So ū = ū∗ a.e. in Rn.
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More on extension

Theorem (Stein’s extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a
linear operator E sending functions defined a.e. in Ω to functions
defined a.e. in Rn such that for every k ≥ 0, 1 ≤ p <∞ and
u ∈ W k,p(Ω) it hold that Eu = u a.e. in Ω and

‖Eu‖W k,p(Rn) ≤ Ck,p,Ω‖u‖W k,p(Ω)

The operator E is called a total extension for Ω.
You will have the opportunity to see how to construct such extension
in a very specific case in Sheet 2.
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More on extension

There exists domain Ω for which there is no bounded linear
operator E : W k,p(Ω)→ W k,p(Rn) such that Eu = u a.e. in Ω.

Ω = {x2 + y2 < 1} \ {(x, 0)|x ≥ 0}

Ω̄ = {x2 + y2 ≤ 1}

D = {x2 + y2 < 1}

u =
√

r

u = −
√

r

We knew that the function
u(x , y) =

√
r cos θ

2
satisfies

? u ∈ C∞(Ω) ∩W 1,2(Ω).

? u /∈ W 1,2(D).

So no extension of u belongs to
W 1,2(R2).
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Values of Sobolev functions on the boundary

As prompted at the beginning of the course, in our later
applications in the analysis of PDEs, solutions will live in a
Sobolev space.

When discussing PDEs on a domain, one needs to specify
boundary conditions.

A complication arises:

? On one hand, Sobolev ‘functions’ are equivalent classes of
functions which are equal almost everywhere. Thus one can
redefine the value of a Sobolev function on set of measure zero
at will without changing the equivalent class it represents.

? On the other hand, the boundary of a domain usually has
measure zero. So the boundary value of a Sobolev function
cannot simply be defined by restricting as is the case for
continuous functions.
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Values of Sobolev functions on the boundary

Remark
Suppose 1 ≤ p <∞, Ω is a bounded smooth domain and let
(X , ‖ · ‖) be a normed vector space which contains C (∂Ω). There is
NO bounded linear operator T : Lp(Ω)→ X such that Tu = u|∂Ω for
all u ∈ C (Ω̄).

Proof

Suppose by contradiction that such T exists. Consider
fm ∈ C (Ω̄) defined by

fm(x) =

{
mdist(x , ∂Ω) if dist(x , ∂Ω) < 1/m,
1 if dist(x , ∂Ω) ≥ 1/m.

Then ‖fm − 1‖pLp(Ω) ≤ |{dist(x , ∂Ω) < 1/m}| ≤ C
m

and so

fm → 1 in Lp(Ω).

Now as Tfm = 0 6→ 1 = T1 in X , T cannot be bounded.
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Values of Sobolev functions on the boundary

Theorem
Suppose 1 ≤ p <∞, and that Ω is a bounded Lipschitz domain.
Then there exists a bounded linear operator T : W 1,p(Ω)→ Lp(∂Ω),
called the trace operator, such that Tu = u|∂Ω if
u ∈ W 1,p(Ω) ∩ C (Ω̄).

We will only proof a weaker statement in a simpler situation:

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

We would like to define the trace operator
relative to Γ: There exists a bounded linear
operator TΓ : W 1,p(Ω)→ Lp(Γ) such that

TΓu = u|Γ for all u ∈ C 1(Ω̄).
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

ζ ≡ 1

ζ ≡ 0

0 ≤ ζ ∈ C∞c (B3/2) such that ζ ≡ 1 in B1

We first prove the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

? We have∫
Γ

|u|p dx ′≤
∫

Γ̂

ζ|u|p dx ′= −
∫

Γ̂

[ ∫ 2

0

∂xn(ζ|u|p) dxn
]
dx ′

= −
∫

Ω

∂xn(ζ|u|p) dx≤ Cp,ζ

∫
Ω

[|u|p + |Du||u|p−1] dx .
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

ζ ≡ 1

ζ ≡ 0

ζ ∈ C∞c (B3/2) such that ζ ≡ 1 in B1.

We first prove the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

? We have

∫
Γ
|u|p dx ′ ≤ Cp,ζ

∫
Ω

[|u|p + |Du||u|p−1] dx .

? Using the inequality |a||b|p−1 ≤ 1
p |a|

p + p−1
p |b|

p,1 we obtain∫
Γ
|u|p dx ′ ≤ Cp,ζ

∫
Ω

[|u|p + |Du|p] dx

This proves (*).
1In the lecture, I said incorrectly that the last term was |b|p′

.
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Values of Sobolev functions on the boundary

Γ̂ = {x = (x′, 0) : |x′| < 2}
Γ = {x = (x′, 0) : |x′| < 1}

Ω = {x = (x′, xn) : |x′| < 2,

0 < xn < 2}

We have proved the key estimate

‖u‖Lp(Γ) ≤ Cp‖u‖W 1,p(Ω) for all u ∈ C 1(Ω̄). (*)

It follows that the map u 7→ u|Γ =: Au is a bounded linear
operator from (C 1(Ω̄), ‖ · ‖W 1,p) into Lp(Γ).
As Ω is Lipschitz, C∞(Ω̄) and hence C 1(Ω̄) is dense in W 1,p(Ω).
Thus there exists a unique bounded linear operator
TΓ : W 1,p(Ω)→ Lp(Γ) which extends A, i.e. TΓu = u|Γ for all
u ∈ C 1(Ω̄).
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IBP formula revisited

Proposition (Integration by parts)

Suppose that 1 ≤ p <∞, Ω is a bounded Lipschitz domain, n be the
outward unit normal to ∂Ω, T : W 1,p(Ω)→ Lp(Ω) is the trace
operator, and u ∈ W 1,p(Ω). Then∫

Ω

∂iu v dx =

∫
∂Ω

Tu v ni dS −
∫

Ω

u ∂iv dx for all v ∈ C 1(Ω̄).

Proof

We knew that C∞(Ω̄) is dense in W 1,p(Ω). Thus there exists
um ∈ C∞(Ω̄) such that um → u in W 1,p.

Fix some v ∈ C 1(Ω̄). We have∫
Ω

∂ium v dx =

∫
∂Ω

um v ni dS −
∫

Ω

um ∂iv dx .
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IBP formula revisited

Proof∫
Ω
∂ium v dx =

∫
∂Ω

um v ni dS −
∫

Ω
um ∂iv dx .

Note that ∂ium → ∂iu, um → u in Lp(Ω) and
um|∂Ω = Tum → Tu in Lp(∂Ω). We can thus argue using
Hölder’s inequality to send m→∞ to obtain∫

Ω

∂iu v dx =

∫
∂Ω

Tu v ni dS −
∫

Ω

u ∂iv dx

as wanted.
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Functions of zero trace

Theorem (Trace-zero functions in W 1,p)

Suppose that 1 ≤ p <∞, Ω is a bounded Lipschitz domain,
T : W 1,p(Ω)→ Lp(Ω) is the trace operator, and u ∈ W 1,p(Ω). Then
u ∈ W 1,p

0 (Ω) if and only if Tu = 0.

Proof

(⇒) Suppose u ∈ W 1,p
0 (Ω). By definition, there exists

um ∈ C∞c (Ω) such that um → u in W 1,p. Clearly Tum = 0 and
so by continuity, Tu = 0.

(⇐) We will only consider the case Ω is the unit ball B . This
proof can be generalised fairly quickly to star-shaped domains.
The proof for Lipschitz domains is more challenging.
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Functions of zero trace

Proof

(⇐) Suppose that u ∈ W 1,p(B) and Tu = 0. We would like to
construct a sequence um ∈ C∞c (B) such that um → u in W 1,p.

? Let ū be the extension by zero of u to Rn.
? As Tu = 0, we have by the IBP formula that∫

B
∂iu v dx = −

∫
B
u ∂iv dx for all v ∈ C 1(B̄).

It follows that∫
B
∂iu v dx = −

∫
B
ū ∂iv dx for all v ∈ C∞c (Rn).

By definition of weak derivatives, this means

∂i ū =

{
∂iu in B
0 elsewhere

in the weak sense.

So ū ∈W 1,p(Rn).
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Functions of zero trace

Proof

(⇐) We would like to construct a sequence um ∈ C∞c (B) such
that um → u in W 1,p(B).

? Let ūλ(x) = ū(λx). Observe that Supp(ūλ) ⊂ B1/λ.
? In Sheet 1, you showed that ūλ → ū in Lp as λ→ 1.

Noting also that ∂i ūλ(x) = λ∂iu(λx), we also have that
∂i ūλ → ∂i ū in Lp as λ→ 1.
Hence ūλ → ū in W 1,p as λ→ 1.

? Fix λm > 1 such that ‖ūλm − ū‖W 1,p(Rn) ≤ 1/m.
? Let (%ε) be a family of mollifiers: %ε(x) = ε−n%(x/ε) with
% ∈ C∞c (B),

∫
Rn % = 1. Then ūλm ∗ %ε → ūλm in W 1,p as ε→ 0.

Also, Supp(ūλm ∗ %ε) ⊂ Bλ−1
m +ε. Thus, we can select εm

sufficiently small such that um := ūλm ∗ %εm ∈ C∞c (B) and
‖um − ūλm‖W 1,p(Rn) ≤ 1/m.

? Now ‖um − u‖W 1,p(B) ≤ 2/m and so we are done.
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