

C4.3 Functional Analytic Methods for PDEs Lecture 6

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

- Divergence theorem and Integration by parts formula.
- Definition of weak derivatives and
- Sobolev spaces $W^{k,p}(\Omega)$ and $W_0^{k,p}(\Omega)$ as Banach spaces.
- Differentiation rule for convolution of Sobolev functions.

- Density results for Sobolev spaces.
- Extension theorems for Sobolev functions.
- Trace (boundary value) of Sobolev functions.

Theorem (Approximation of identity)

Let ρ be a non-negative function in $C_c^{\infty}(\mathbb{R}^n)$ such that $\int_{\mathbb{R}^n} \rho = 1$. For $\varepsilon > 0$, let

$$\varrho_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \varrho\left(\frac{x}{\varepsilon}\right).$$

If $f \in W^{k,p}(\mathbb{R}^n)$ for some $k \ge 0$ and $1 \le p < \infty$, then $f * \varrho_{\varepsilon} \in C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ and

$$\lim_{\varepsilon\to 0} \|f*\varrho_{\varepsilon}-f\|_{W^{k,p}(\mathbb{R}^n)}=0.$$

In particular $C^{\infty}(\mathbb{R}^n) \cap W^{k,p}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$.

Approximation of identity in Sobolev spaces

Proof

Let
$$f_{\varepsilon} = f * \varrho_{\varepsilon}$$
.
* As $\varrho_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$, we have $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^{n})$.

- * As $f \in L^{p}(\mathbb{R}^{n})$ and $\varrho_{\varepsilon} \in L^{1}(\mathbb{R}^{n})$, Young's inequality gives that $f_{\varepsilon} \in L^{p}(\mathbb{R}^{n})$.
- ★ The approximation of identity theorem in L^p gives that $\|f_{\varepsilon} f\|_{L^p} \to 0$ as $\varepsilon \to 0$.
- By the differentiation rule for convolution of Sobolev functions, we have ∂^αf_ε = (∂^αf) * ρ_ε for |α| ≤ k. Repeat the argument as above, we have ∂^αf_ε ∈ L^p(ℝⁿ) and ||∂^αf_ε − ∂^αf||_{L^p} → 0 as ε → 0.
- We deduce that $f_{arepsilon}\in \mathcal{W}^{k,p}(\mathbb{R}^n)$ and

$$\|f_{\varepsilon}-f\|_{W^{k,p}}=\Big[\sum_{|lpha|\leq k}\|\partial^{lpha}f_{\varepsilon}-\partial^{lpha}f\|_{L^{p}}^{p}\Big]^{1/p}\stackrel{\varepsilon o 0}{\longrightarrow} 0.$$

Theorem (Meyers-Serrin)

Suppose Ω is a domain in \mathbb{R}^n , $k \ge 0$ and $1 \le p < \infty$. Then $C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$. Namely, for every $u \in W^{k,p}(\Omega)$ there exists a sequence $(u_m) \subset C^{\infty}(\Omega) \cap W^{k,p}(\Omega)$ such that u_m converges to u in $W^{k,p}(\Omega)$.

Remark: No regularity on Ω is assumed.

A question and an obstruction

Question

Is
$$C^{\infty}(\overline{\Omega}) \cap W^{k,p}(\Omega)$$
 dense in $W^{k,p}(\Omega)$?

Answer: Not always.

Consider
$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
 where
 $(x, y) = (r \cos \theta, r \sin \theta).$
 $u \in C^{\infty}(\Omega).$
 u is discontinuous in $\overline{\Omega}.$
One computes

$$|u||_{L^{2}}^{2} = \int_{\Omega} u^{2} dx dy$$

= $\int_{0}^{1} \int_{0}^{2\pi} r \cos^{2} \frac{\theta}{2} r dr d\theta = \frac{\pi}{3},$

Luc Nguyen (University of Oxford)

A question and an obstruction

Consider
$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
.
 $u \in C^{\infty}(\Omega)$ and $u \notin C(\overline{\Omega})$.
One computes $||u||_{L^2}^2 = \frac{\pi}{3}$,
 $||\nabla u||^2 = (\partial_r u)^2 + \frac{1}{r^2} (\partial_\theta u)^2 = \frac{1}{4r}$,
 $||\nabla u||_{L^2}^2 = \int_{\Omega} ||\nabla u|^2 dx dy$
 $= \int_0^1 \int_0^{2\pi} \frac{1}{4r} r dr d\theta = \frac{\pi}{2}$,

$$\begin{split} \Omega &= \{x^2 + y^2 < 1\} \setminus \{(x,0) | x \geq 0\} \\ &\bar{\Omega} = \{x^2 + y^2 \leq 1\} \\ &D &= \{x^2 + y^2 < 1\} \end{split}$$

So $u \in W^{1,2}(\Omega)$. The jump discontinuity across $\theta = 0$ is an obstruction to approximate uby functions in $C^{\infty}(\overline{\Omega})$. It is in fact not possible, as $u \notin W^{1,2}(D)$.

The segment condition

- Ω : a domain in \mathbb{R}^n .
- Ω is said to satisfy the segment condition if every $x_0 \in \partial \Omega$ has a neighborhood U_{x_0} and a non-zero vector y_{x_0} such that if $z \in \overline{\Omega} \cap U_{x_0}$, then $z + ty_{x_0} \in \Omega$ for all $t \in (0, 1)$.

• Note that if Ω is Lipschitz, then it satisfies the segment condition.

Luc Nguyen (University of Oxford)

Theorem (Global approximation by functions smooth up to the boundary)

Suppose $k \ge 1$ and $1 \le p < \infty$. If Ω satisfies the segment condition, then the set of restrictions to Ω of functions in $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\Omega)$. In particular $C^{\infty}(\overline{\Omega}) \cap W^{k,p}(\Omega)$ is dense in $W^{k,p}(\Omega)$.

- An important consequence of the theorem is the statement that $C_c^{\infty}(\mathbb{R}^n)$ is dense in $W^{k,p}(\mathbb{R}^n)$ when $1 \leq p < \infty$. In order words $W^{k,p}(\mathbb{R}^n) = W_0^{k,p}(\mathbb{R}^n)$.
- You will do the special when Ω is star-shaped in Sheet 2.

Extension by zero of functions in $W_0^{k,p}(\Omega)$

Lemma

Assume that $k \ge 0$ and $1 \le p < \infty$. If $u \in W_0^{k,p}(\Omega)$, then its extension by zero \overline{u} to \mathbb{R}^n belongs to $W_0^{k,p}(\mathbb{R}^n)$.

Proof

• Suppose $u \in W_0^{k,p}(\Omega)$ and let \overline{u} be its extension by zero to \mathbb{R}^n . It is tempted to say that, as $\overline{u} \equiv 0$ in $\mathbb{R}^n \setminus \Omega$,

$$\partial^{\alpha}\bar{u} = \begin{cases} \partial^{\alpha}u & \text{in }\Omega, \\ 0 & \text{in }\mathbb{R}^{n}\setminus\Omega \end{cases}$$
(*)

which belongs to $L^{p}(\mathbb{R}^{n})$, and call it the end of the proof. For this to work, we need to show first that \overline{u} is weakly differentiable!

Extension by zero of functions in $W_0^{k,p}(\Omega)$

Proof

• Let $(u_m) \subset C_c^{\infty}(\Omega)$ be such that $u_m \to u$ in $W^{k,p}(\Omega)$. Let \overline{u}_m be the extension by zero of u_m to \mathbb{R}^n . Then $\overline{u}_m \in C_c^{\infty}(\mathbb{R}^n)$ and

$$\|\bar{u}_m-\bar{u}_j\|_{W^{k,p}(\mathbb{R}^n)}=\|u_m-u_j\|_{W^{k,p}(\Omega)}\stackrel{m,j\to\infty}{\longrightarrow}0.$$

- We thus have that (\bar{u}_m) is Cauchy in $W^{k,p}(\mathbb{R}^n)$ and thus converges in $W^{k,p}$ to some $\bar{u}_* \in W^{k,p}(\mathbb{R}^n)$.
- To conclude, we show that $\bar{u}_* = \bar{u}$ a.e. in \mathbb{R}^n .
 - * As \bar{u}_m converges to \bar{u}_* in $L^p(\mathbb{R}^n)$, there is a subsequence \bar{u}_{m_j} which converges a.e. to \bar{u}_* in \mathbb{R}^n . This implies that $\bar{u}_* = 0$ a.e. in $\mathbb{R}^n \setminus \Omega$ and u_{m_i} converges a.e. to \bar{u}_* in Ω .
 - * Likewise, as u_{m_j} converges to u in $L^p(\Omega)$, we can extract yet another subsequence $u_{m_{j_l}}$ which converges a.e. to u in Ω . It follows that $\bar{u}_* = u$ a.e. in Ω .

$$\star$$
 So $\bar{u} = \bar{u}_*$ a.e. in \mathbb{R}^n .

Theorem (Stein's extension theorem)

Assume that Ω is a bounded Lipschitz domain. Then there exists a linear operator E sending functions defined a.e. in Ω to functions defined a.e. in \mathbb{R}^n such that for every $k \ge 0$, $1 \le p < \infty$ and $u \in W^{k,p}(\Omega)$ it hold that Eu = u a.e. in Ω and

$$\|Eu\|_{W^{k,p}(\mathbb{R}^n)} \leq C_{k,p,\Omega} \|u\|_{W^{k,p}(\Omega)}$$

The operator E is called a total extension for Ω . You will have the opportunity to see how to construct such extension in a very specific case in Sheet 2.

More on extension

There exists domain Ω for which there is no bounded linear operator E : W^{k,p}(Ω) → W^{k,p}(ℝⁿ) such that Eu = u a.e. in Ω.

We knew that the function

$$u(x, y) = \sqrt{r} \cos \frac{\theta}{2}$$
 satisfies
 $\star \ u \in C^{\infty}(\Omega) \cap W^{1,2}(\Omega).$
 $\star \ u \notin W^{1,2}(D).$

So no extension of u belongs to $W^{1,2}(\mathbb{R}^2)$.

- As prompted at the beginning of the course, in our later applications in the analysis of PDEs, solutions will live in a Sobolev space.
- When discussing PDEs on a domain, one needs to specify boundary conditions.
- A complication arises:
 - On one hand, Sobolev 'functions' are equivalent classes of functions which are equal almost everywhere. Thus one can redefine the value of a Sobolev function on set of measure zero at will without changing the equivalent class it represents.
 - On the other hand, the boundary of a domain usually has measure zero. So the boundary value of a Sobolev function cannot simply be defined by restricting as is the case for continuous functions.

Remark

Suppose $1 \le p < \infty$, Ω is a bounded smooth domain and let $(X, \|\cdot\|)$ be a normed vector space which contains $C(\partial\Omega)$. There is NO <u>bounded</u> linear operator $T : L^p(\Omega) \to X$ such that $Tu = u|_{\partial\Omega}$ for all $u \in C(\overline{\Omega})$.

Proof

 Suppose by contradiction that such *T* exists. Consider *f_m* ∈ *C*(Ω̄) defined by

$$f_m(x) = \begin{cases} m \operatorname{dist}(x, \partial \Omega) & \text{if } \operatorname{dist}(x, \partial \Omega) < 1/m, \\ 1 & \text{if } \operatorname{dist}(x, \partial \Omega) \ge 1/m. \end{cases}$$

Theorem

Suppose $1 \le p < \infty$, and that Ω is a bounded Lipschitz domain. Then there exists a <u>bounded</u> linear operator $T : W^{1,p}(\Omega) \to L^p(\partial\Omega)$, called the trace operator, such that $Tu = u|_{\partial\Omega}$ if $u \in W^{1,p}(\Omega) \cap C(\overline{\Omega})$.

We will only proof a weaker statement in a simpler situation:

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$ We would like to define the trace operator relative to Γ : There exists a bounded linear operator $\mathcal{T}_{\Gamma} : W^{1,p}(\Omega) \to L^{p}(\Gamma)$ such that

$$T_{\Gamma}u = u|_{\Gamma}$$
 for all $u \in C^1(\overline{\Omega})$.

$$\Omega = \{x = (x', x_n) : |x'| < 2, \\ 0 < x_n < 2\}$$

$$0\leq \zeta\in \mathit{C}^\infty_c(\mathit{B}_{3/2})$$
 such that $\zeta\equiv 1$ in B_1

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$

• We first prove the key estimate

$$\|u\|_{L^p(\Gamma)} \leq C_p \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in C^1(\overline{\Omega})$. (*)

★ We have

$$\begin{split} \int_{\Gamma} |u|^{p} dx' &\leq \int_{\widehat{\Gamma}} \zeta |u|^{p} dx' = -\int_{\widehat{\Gamma}} \left[\int_{0}^{2} \partial_{x_{n}}(\zeta |u|^{p}) dx_{n} \right] dx' \\ &= -\int_{\Omega} \partial_{x_{n}}(\zeta |u|^{p}) dx \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx. \end{split}$$

$$\Omega = \{x = (x', x_n) : |x'| < 2, \\ 0 < x_n < 2$$

$$\zeta\in \mathit{C}^\infty_c(\mathit{B}_{3/2})$$
 such that $\zeta\equiv 1$ in $\mathit{B}_1.$

 $\hat{\Gamma} = \{x = (x', 0) : |x'| < 2\}$ $\Gamma = \{x = (x', 0) : |x'| < 1\}$

• We first prove the key estimate

$$\begin{aligned} \|u\|_{L^{p}(\Gamma)} &\leq C_{p} \|u\|_{W^{1,p}(\Omega)} \text{ for all } u \in C^{1}(\bar{\Omega}). \end{aligned} (*) \\ &\star \text{ We have } \int_{\Gamma} |u|^{p} dx' \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du||u|^{p-1}] dx. \\ &\star \text{ Using the inequality } |a||b|^{p-1} \leq \frac{1}{p} |a|^{p} + \frac{p-1}{p} |b|^{p},^{1} \text{ we obtain} \\ &\int_{\Gamma} |u|^{p} dx' \leq C_{p,\zeta} \int_{\Omega} [|u|^{p} + |Du|^{p}] dx \end{aligned}$$

This proves (*).

¹In the lecture, I said incorrectly that the last term was $|b|^{p'}$

• We have proved the key estimate

$$\|u\|_{L^p(\Gamma)} \leq C_p \|u\|_{W^{1,p}(\Omega)}$$
 for all $u \in C^1(\overline{\Omega}).$ (*)

- It follows that the map u → u|_Γ =: Au is a bounded linear operator from (C¹(Ω), || · ||_{W^{1,p}}) into L^p(Γ).
- As Ω is Lipschitz, C[∞](Ω̄) and hence C¹(Ω̄) is dense in W^{1,p}(Ω). Thus there exists a unique bounded linear operator T_Γ : W^{1,p}(Ω) → L^p(Γ) which extends A, i.e. T_Γu = u|_Γ for all u ∈ C¹(Ω̄).

Proposition (Integration by parts)

Suppose that $1 \leq p < \infty$, Ω is a bounded Lipschitz domain, n be the outward unit normal to $\partial\Omega$, $T : W^{1,p}(\Omega) \to L^p(\Omega)$ is the trace operator, and $u \in W^{1,p}(\Omega)$. Then

$$\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} T u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx \, \text{ for all } v \in C^1(\bar{\Omega}).$$

Proof

- We knew that $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$. Thus there exists $u_m \in C^{\infty}(\overline{\Omega})$ such that $u_m \to u$ in $W^{1,p}$.
- Fix some $v \in C^1(\overline{\Omega})$. We have

$$\int_{\Omega} \partial_i u_m \, v \, dx = \int_{\partial \Omega} u_m \, v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.$$

٠

Proof

•
$$\int_{\Omega} \partial_i u_m v \, dx = \int_{\partial \Omega} u_m v \, n_i \, dS - \int_{\Omega} u_m \, \partial_i v \, dx.$$

• Note that $\partial_i u_m \to \partial_i u$, $u_m \to u$ in $L^p(\Omega)$ and $u_m|_{\partial\Omega} = Tu_m \to Tu$ in $L^p(\partial\Omega)$. We can thus argue using Hölder's inequality to send $m \to \infty$ to obtain

$$\int_{\Omega} \partial_i u \, v \, dx = \int_{\partial \Omega} T u \, v \, n_i \, dS - \int_{\Omega} u \, \partial_i v \, dx$$

as wanted.

Theorem (Trace-zero functions in $W^{1,p}$)

Suppose that $1 \le p < \infty$, Ω is a bounded Lipschitz domain, $T: W^{1,p}(\Omega) \to L^p(\Omega)$ is the trace operator, and $u \in W^{1,p}(\Omega)$. Then $u \in W_0^{1,p}(\Omega)$ if and only if Tu = 0.

Proof

- (\Rightarrow) Suppose $u \in W_0^{1,p}(\Omega)$. By definition, there exists $u_m \in C_c^{\infty}(\Omega)$ such that $u_m \to u$ in $W^{1,p}$. Clearly $Tu_m = 0$ and so by continuity, Tu = 0.
- (⇐) We will only consider the case Ω is the unit ball B. This proof can be generalised fairly quickly to star-shaped domains. The proof for Lipschitz domains is more challenging.

Functions of zero trace

Proof

- (\Leftarrow) Suppose that $u \in W^{1,p}(B)$ and Tu = 0. We would like to construct a sequence $u_m \in C_c^{\infty}(B)$ such that $u_m \to u$ in $W^{1,p}$.
 - * Let \bar{u} be the extension by zero of u to \mathbb{R}^n .
 - $\star\,$ As $\mathit{Tu}=0,$ we have by the IBP formula that

$$\int_B \partial_i u \, v \, dx = - \int_B u \, \partial_i v \, dx$$
 for all $v \in C^1(ar B).$

It follows that

$$\int_B \partial_i u \, v \, dx = - \int_B \bar{u} \, \partial_i v \, dx \text{ for all } v \in C^\infty_c(\mathbb{R}^n).$$

By definition of weak derivatives, this means

$$\partial_i \bar{u} = \begin{cases} \partial_i u & \text{in } B \\ 0 & \text{elsewhere} \end{cases} \text{ in the weak sense.}$$

So $\bar{u} \in W^{1,p}(\mathbb{R}^n)$.

Functions of zero trace

Proof

- (\Leftarrow) We would like to construct a sequence $u_m \in C_c^{\infty}(B)$ such that $u_m \to u$ in $W^{1,p}(B)$.
 - \star Let $ar{u}_\lambda(x)=ar{u}(\lambda x).$ Observe that $Supp(ar{u}_\lambda)\subset B_{1/\lambda}.$
 - * In Sheet 1, you showed that $\bar{u}_{\lambda} \to \bar{u}$ in L^{p} as $\lambda \to 1$. Noting also that $\partial_{i}\bar{u}_{\lambda}(x) = \lambda \partial_{i}u(\lambda x)$, we also have that $\partial_{i}\bar{u}_{\lambda} \to \partial_{i}\bar{u}$ in L^{p} as $\lambda \to 1$. Hence $\bar{u}_{\lambda} \to \bar{u}$ in $W^{1,p}$ as $\lambda \to 1$.
 - * Fix $\lambda_m > 1$ such that $\|\bar{u}_{\lambda_m} \bar{u}\|_{W^{1,p}(\mathbb{R}^n)} \leq 1/m$.
 - * Let (ϱ_{ε}) be a family of mollifiers: $\varrho_{\varepsilon}(x) = \varepsilon^{-n}\varrho(x/\varepsilon)$ with $\varrho \in C_{c}^{\infty}(B)$, $\int_{\mathbb{R}^{n}} \varrho = 1$. Then $\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon} \to \bar{u}_{\lambda_{m}}$ in $W^{1,p}$ as $\varepsilon \to 0$. Also, $Supp(\bar{u}_{\lambda_{m}} * \varrho_{\varepsilon}) \subset B_{\lambda_{m}^{-1}+\varepsilon}$. Thus, we can select ε_{m} sufficiently small such that $u_{m} := \bar{u}_{\lambda_{m}} * \varrho_{\varepsilon_{m}} \in C_{c}^{\infty}(B)$ and $\|u_{m} - \bar{u}_{\lambda_{m}}\|_{W^{1,p}(\mathbb{R}^{n})} \leq 1/m$. * Now $\|u_{m} - u\|_{W^{1,p}(B)} \leq 2/m$ and so we are done.