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In the last 2 lectures

Definition of Sobolev spaces

Extension theorems for Sobolev functions.

Trace (boundary value) of Sobolev functions.
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This lecture

Gagliardo-Nirenberg-Sobolev’s inequality
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Embeddings

Let X1 and X2 be two Banach spaces.

We say X1 is embedded in X2 if X1 ⊂ X2.

We say X1 is continuously embedded in X2 if X1 is embedded in
X2 and the identity map I : X1 → X2 is a bounded linear
operator, i.e. there exists a constant C such that
‖x‖X2 ≤ C‖x‖X1 . We write X1 ↪→ X2.

We say X1 is compactly embedded in X2 if X1 is embedded in X2

and the identity map I : X1 → X2 is a compact bounded linear
operator. This means that I is continuous and every bounded
sequence (xn) ⊂ X1 has a subsequence which is convergent with
respect to the norm on X2.

Our interest: The possibility of embedding W k,p in Lq or C 0.
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Gagliardo-Nirenberg-Sobolev’s inequality

Theorem (Gagliardo-Nirenberg-Sobolev’s inequality)

Assume 1 ≤ p < n and let p∗ = np
n−p . Then there exists a constant

Cn,p such that

‖u‖Lp∗ (Rn) ≤ Cn,p‖∇u‖Lp(Rn) for all u ∈ W 1,p(Rn).

In particular, W 1,p(Rn) ↪→ Lp
∗
(Rn).

The number p∗ = np
n−p is called the Sobolev conjugate of p. It

satisfies 1
p∗

= 1
p
− 1

n
.

The case p = 1 is referred to as Gagliardo-Nirenberg’s inequality.
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GNS’s inequality – Why p < n and why p∗?

Question
For what p and q does it hold

‖u‖Lq(Rn) ≤ Cn,p,q‖∇u‖Lp(Rn) for all u ∈ C∞c (Rn)? (*)

This will be answered by a scaling argument:

Fix a non-zero function u ∈ C∞c (Rn). Define uλ(x) = u(λx).
Then uλ ∈ C∞c (Rn) and so

‖uλ‖Lq(Rn) ≤ Cn,p,q‖∇uλ‖Lp(Rn). (**)

We compute

‖uλ‖qLq =

∫
Rn

|u(λx)|q dx =
1

λn

∫
Rn

|u(y)|q dy = λ−n‖u‖qLq .
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GNS’s inequality – Why p < n and why p∗?

uλ(x) = u(λx) and

‖uλ‖Lq(Rn) ≤ Cn,p,q‖∇uλ‖Lp(Rn). (**)

We compute ‖uλ‖Lq = λ−n/q‖u‖Lq .

Next,

‖∇uλ‖pLp =

∫
Rn

|λ∇u(λx)|p dx

= λp−n
∫
Rn

|∇u(y)|p dy = λp−n‖∇u‖pLp .

That is ‖∇uλ‖Lp = λ1−n/p‖∇u‖Lp .
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GNS’s inequality – Why p < n and why p∗?

Putting in (**), we get

λ−n/q‖u‖Lq ≤ Cn,p,qλ
1−n/p‖∇u‖Lp .

Rearranging, we have

λ−1+ n
p
− n

q ≤ Cn,p,q‖∇u‖Lp
‖u‖Lq

.

Since the last inequality is valid for all λ, we must have that
−1 + n

p
− n

q
= 0, i.e. q = np

n−p = p∗. As q > 0, we must also
have p ≤ n.

We conclude that a necessary condition in order for the
inequality (*) to hold is that p ≤ n and q = p∗.
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GNS’s inequality – Can p = n?

Consider now the case p = n. Does it hold that

‖u‖L∞(Rn) ≤ Cn‖∇u‖Ln(Rn) for all u ∈ C∞c (Rn)? (†)

? When n = 1, this is true as

|u(x)| =
∣∣∣ ∫ x

−∞
u′(s) ds

∣∣∣ ≤ ∫ ∞
−∞
|u′(s)| ds = ‖u′‖L1(R).

? It turns out that (†) does not hold when n ≥ 2. We will return
to this after the proof of GNS’s inequality.
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Proof of GNS’s inequality

Recall that we would like to show, for 1 ≤ p < n and p∗ = np
n−p

that

‖u‖Lp∗ (Rn) ≤ Cn,p‖∇u‖Lp(Rn) for all u ∈ W 1,p(Rn). (#)

Claim 1: If (#) holds for functions in C∞c (Rn), then it holds for
functions in W 1,p(Rn).

? Take an arbitrary u ∈W 1,p(Rn). As p <∞, C∞c (Rn) is dense
in W 1,p(Rn). Hence, we can select um ∈ C∞c (Rn) such that
um → u in W 1,p.

? If (#) holds for functions in C∞c (Rn), then
‖um‖Lp∗ ≤ Cn,p‖∇um‖Lp .

? As um → u in W 1,p, we have ∂ium → ∂iu in Lp and so
‖∇um‖Lp → ‖∇u‖Lp .

? Warning: It is tempted to try to show ‖um‖Lp∗ → ‖u‖Lp∗ .
However, this is false in general.
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Proof of GNS’s inequality

Proof of Claim 1:

? ‖um‖Lp∗ ≤ Cn,p‖∇um‖Lp .
? ‖∇um‖Lp → ‖∇u‖Lp .
? As um → u in W 1,p, we have um → u in Lp, and so, we can

extract a subsequence (umj ) which converges a.e. in Rn to u.
By Fatou’s lemma, we have∫

Rn

|u|p∗ dx ≤ lim inf
j→∞

∫
Rn

|umj |
p∗ dx .

? So

‖u‖Lp∗ ≤ lim inf
j→∞

‖umj‖Lp∗ ≤ Cn,p lim inf
j→∞

‖∇umj‖Lp = Cn,p‖∇u‖Lp .

So (#) holds.
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Proof of GNS’s inequality

Claim 2: If (#) holds for p = 1, then it holds for all 1 < p < n.

? Take an arbitrary non-trivial u ∈ C∞c (Rn) and consider the
function v = |u|γ with γ > 1 to be fixed. Clearly
v ∈ L1(Rn) ∩ L∞(Rn).

? In Sheet 3, you will show that |u| is weakly differentiable and

∇|u| =


∇u in {x : u(x) > 0},
−∇u in {x : u(x) < 0},
0 in {x : u(x) = 0}.

? It follows that ∇v = γ|u|γ−1∇|u| ∈ L1(Rn). So v ∈W 1,1(Rn).
? Applying (#) in W 1,1 we get ‖v‖

L
n

n−1
≤ Cn‖∇v‖L1 .

? On the left side, we have

‖v‖
L

n
n−1

=
{∫

Rn

|v |
n

n−1 dx
} n−1

n
= ‖u‖γ

L
nγ
n−1

.
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Proof of GNS’s inequality

Claim 2: If (#) holds for p = 1, then it holds for all 1 < p < n.

? ‖v‖
L

n
n−1
≤ Cn‖∇v‖L1 .

? On the left side, we have ‖v‖
L

n
n−1

= ‖u‖γ
L

nγ
n−1

.

? On the right side, we use the inequality |∇|u|| ≤ |∇u| and
compute using Hölder’s inequality:

‖∇v‖L1 ≤
∫
Rn

γ|u|γ−1|∇u| dx ≤ γ
{∫

Rn

|u|(γ−1)p′ dx
} 1

p′
{∫

Rn

|∇u|p dx
} 1

p

= γ‖u‖γ−1

L(γ−1)p′‖∇u‖Lp .

? Now we select γ such that (γ − 1)p′ = nγ
n−1 , i.e. γ = (n−1)p

n−p and
obtain

‖u‖γ
Lp∗
≤ Cnγ‖u‖γ−1

Lp∗
‖∇u‖Lp .

As u 6≡ 0, we can divide both side by ‖u‖γ−1
Lp∗

, and conclude
Step 2.
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Proof of GNS’s inequality

In view of Claim 1 and Claim 2, it thus remains to show GNS’s
inequality for smooth functions when p = 1. To better present
the idea of the proof, I will only give the proof when n = 2, i.e.

‖u‖L2(R2) ≤ C‖∇u‖L1(R2) for all u ∈ C∞c (R2). (♦)

(The case n ≥ 3 can be dealt with in the same way (check
this!).)

? The starting point is the argument we saw a bit earlier in the
lecture. We have

|u(x)| =
∣∣∣ ∫ x1

−∞
∂x1u(y1, x2) dy1

∣∣∣ ≤ ∫ ∞
−∞
|∇u(y1, x2)| dy1.

Likewise,

|u(x)| ≤
∫ ∞
−∞
|∇u(x1, y2)| dy2.
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Proof of GNS’s inequality

We are proving

‖u‖L2(R2) ≤ C‖∇u‖L1(R2) for all u ∈ C∞c (R2). (♦)

? We have |u(x)| ≤
∫∞
−∞ |∇u(y1, x2)| dy1 and

|u(x)| ≤
∫∞
−∞ |∇u(x1, y2)| dy2.

? Multiplying the two inequalities gives

|u(x1, x2)|2 ≤
{∫ ∞
−∞
|∇u(y1, x2)| dy1

}{∫ ∞
−∞
|∇u(x1, y2)| dy2

}
.

? Now note that the first integral on the right hand side is
independent of x1, and if one integrates the second integral on
the right hand side with respect to x1, one gets ‖∇u‖L1 . Thus,
by integrating both side in x1, we get∫ ∞
−∞
|u(x1, x2)|2 dx1 ≤

{∫ ∞
−∞
|∇u(y1, x2)| dy1

}
‖∇u‖L1 .
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Proof of GNS’s inequality

We are proving

‖u‖L2(R2) ≤ C‖∇u‖L1(R2) for all u ∈ C∞c (R2). (♦)

? We have shown∫ ∞
−∞
|u(x1, x2)|2 dx1 ≤

{∫ ∞
−∞
|∇u(y1, x2)| dy1

}
‖∇u‖L1

By the same line of argument, integrating the above in x2 gives∫ ∞
−∞

∫ ∞
−∞
|u(x1, x2)|2 dx1 dx2 ≤ ‖∇u‖2

L1 ,

which gives exactly (♦) with C = 1.
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An improved Gagliardo-Nirenberg’s inequality

Remark
By inspection, note that when p = 1, we actually prove the following
slightly stronger inequality:

‖u‖n
L

n
n−1 (Rn)

≤
n∏

i=1

‖∂iu‖L1(Rn).
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GNS’s inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev’s inequality)

Assume that Ω is a bounded Lipschitz domain and 1 ≤ p < n. Then,
for every q ∈ [1, p∗], there exists Cn,p,q,Ω such that

‖u‖Lq(Ω) ≤ Cn,p,q,Ω‖u‖W 1,p(Ω) for all u ∈ W 1,p(Ω).

In particular, W 1,p(Ω) ↪→ Lq(Ω).

Proof

Let E : W 1,p(Ω)→ W 1,p(Rn) be an extension operator. Then

‖u‖Lp∗(Ω) ≤ ‖Eu‖Lp∗(Rn) ≤ Cn,p‖Eu‖W 1,p(Rn) ≤ Cn,p‖u‖W 1,p(Ω).

By Hölder inequality, we have ‖u‖Lq(Ω) ≤ ‖u‖Lp∗ (Ω)|Ω|
1
q
− 1

p∗ .

We conclude the proof with Cn,p,q,Ω = Cn,p|Ω|
1
q
− 1

p∗ .
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GNS’s inequality – The case p = n revisited

We proved earlier that the inequality

‖u‖L∞(Rn) ≤ Cn‖∇u‖Ln(Rn) for all u ∈ C∞c (Rn) (†)

is valid when n = 1 and mentioned that it is invalid when n ≥ 2. Let
us now prove the latter.

We know that if (†) holds then W 1,n(Rn) ↪→ L∞(Rn). Thus it
suffices to exhibit a function u ∈ W 1,n(Rn) \ L∞(Rn).

It is enough to find f ∈ W 1,n(B2) \ L∞(B1). The desired u then
takes the form u = f ζ for any ζ ∈ C∞c (B2) with ζ ≡ 1 in B1.

We impose that f is rotationally symmetric so that
f (x) = f (|x |) = f (r). Then we need to find a function
f : (0, 2)→ R such that∫ 2

0

[|f |n + |f ′|n] rn−1 dr <∞ but ess sup
(0,1)

|f | =∞.
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GNS’s inequality – The case p = n revisited

Then we need to find a function f : (0, 2)→ R such that∫ 2

0

[|f |n + |f ′|n] rn−1 dr <∞ but ess sup
(0,1)

|f | =∞.

The fact that |f ′|nrn−1 is integrable implies that, near r = 0, f ′

is ‘smaller’ than 1
r
, so f is ‘smaller’ than ln r .

If we try f = (ln 4
r
)α, then |f ′|nrn−1 = αn

r
(ln 4

r
)n(α−1) is

integrable for α ≤ n−1
n

. Also, |f |nrn−1 is continuous in [0, 2] and
hence integrable. So f ∈ W 1,n(B2) when α ≤ n−1

n
.

On the other hand, if α > 0, then ess sup(0,1) |f | =∞.
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Trudinger’s inequality

Theorem (Trudinger’s inequality)

There exists a small constant cn > 0 and a large constant Cn > 0

such that if u ∈ W 1,n(Rn), then exp
[(

cn|u|
‖u‖W 1,n(Rn)

) n
n−1
]
∈ L1

loc(Rn) and

sup
x0∈Rn

∫
B1(x0)

exp
[( cn|u|
‖u‖W 1,n(Rn)

) n
n−1
]
dx ≤ Cn.
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A non-embedding theorem for unbounded domains

Theorem
Suppose 1 ≤ p <∞ and Ω ⊂ Rn be an unbounded domain with
finite volume. Then W 1,p(Ω) does not embed into Lq(Ω) whenever
q > p.

Sketch of proof

Ω

r1 r2 r3

1
2

1
4

1
8

We may assume |Ω| = 1. We need
to construct a function
f ∈ W 1,p(Ω) \ Lq(Ω).

Let r0 = 0 and select rk such that
Ωk := Ω ∩ {rk ≤ |x | < rk+1} has
volume 1

2k+1 .

Luc Nguyen (University of Oxford) C4.3 – Lecture 7 MT 2020 22 / 25



A non-embedding theorem for unbounded domains

Sketch of proof

The function f will be of the form f (x) = f (|x |) which is
increasing in |x |. If we let bk = f (rk), then

‖f ‖pLp =
∑
k

∫
Ωk

|f |p dx ≤
∑
k

bpk+1|Ωk | =
∑
k

bpk+12−k−1.

Likewise, ‖f ‖qLq ≥
∑
k

bqk2−k−1.

To make ‖f ‖Lq =∞, we then require that bk = 2k/q infinitely
many times.
If we also impose that bk ≤ 2k/q for all k , then

‖f ‖pLp ≤
∑
k

2−k(1− p
q

) <∞.
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A non-embedding theorem for unbounded domains

Sketch of proof

bk = 2k/q infinitely many times ⇒ ‖f ‖Lq =∞,
bk ≤ 2k/q for all k ⇒ ‖f ‖Lp <∞.

Consider now ‖∇f ‖Lp .

? On each Ωk , we can arrange so that |∇f | ∼ bk+1−bk
rk+1−rk .

? It is important to note that, for any fixed ε > 0, the inequality
that rk+1 − rk > 2−εk must hold infinitely frequently. (As
otherwise, rk 6→ ∞.) Label them as k1 < k2 < . . .

? In Ωkj , we have |∇f | ∼
bkj+1−bkj
rkj+1−rkj

≤ 2kj (1/q+ε).

? In Ωk with k 6= kj , we control |∇f | by imposing bk+1 = bk so
that |∇f | = 0.

? To meet the requirement in the first bullet point, we ask
bkj = 2kj/q.
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A non-embedding theorem for unbounded domains

Sketch of proof

‖f ‖Lq =∞ and ‖f ‖Lp <∞.

Consider ‖∇f ‖Lp .

? Putting things together, we have

‖∇f ‖pLp =
∑
j

∫
Ωkj

|∇f |p dx

≤
∑
j

2kj (1/q+ε)p2−kj−1 ≤
∑
j

2−kj (1− p
q
−εp)

.

Choosing ε < 1
p −

1
q , we see that this sum is finite.

We conclude that f ∈ W 1,p(Ω) but f /∈ Lq(Ω).
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