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In the last 2 lectures

@ Definition of Sobolev spaces
@ Extension theorems for Sobolev functions.

@ Trace (boundary value) of Sobolev functions.
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This lecture

@ Gagliardo-Nirenberg-Sobolev's inequality
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Embeddings

Let X; and X, be two Banach spaces.

@ We say Xj is embedded in X, if X; C X.

@ We say X is continuously embedded in X5 if X; is embedded in
X5 and the identity map / : X; — X5 is a bounded linear
operator, i.e. there exists a constant C such that
HXHX2 < C”XHXI' We write Xl — X2.

@ We say X is compactly embedded in X, if Xj is embedded in X,
and the identity map / : X; — X5 is a compact bounded linear
operator. This means that / is continuous and every bounded

sequence (x,) C Xi has a subsequence which is convergent with
respect to the norm on Xj.

Our interest: The possibility of embedding W** in L9 or C°.
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Gagliardo-Nirenberg-Sobolev's inequality

Theorem (Gagliardo—Niren berg—SoboIev's inequality)

Assume 1 < p < n and let p* . Then there exists a constant
Cn p such that

HUHLP*(R”) S C'LPHVUHLP(R") for all u € Wl’p(Rn).

In particular, WHP(R") — LP"(R").

The number p* = "Tpp is called the Sobolev conjugate of p. It

satisfies = %3 — %
The case p = 1 is referred to as Gagliardo-Nirenberg's inequality.

Luc Nguyen (University of Oxford) C4.3 — Lecture 7 MT 2020



GNS'’s inequality — Why p < n and why p*?

For what p and q does it hold

lullany < Copgll Vullowny for all u e C°(R")? (*)

This will be answered by a scaling argument:

e Fix a non-zero function u € CX(R"). Define uy(x) = u(Ax).
Then uy € CZ(R") and so

luxl[eagrny < Cop,ql [V Urll o). (**)

o We compute

luxllfe =

1 —n
)l o= 55 [ Ju)I7 dy = Xl
R" Rn

Luc Nguyen (University of Oxford) C4.3 — Lecture 7 MT 2020 6/25



GNS'’s inequality — Why p < n and why p*?

e uy(x) = u(Ax) and
lurllLaeny < Crpgll Vurlleon). (**)

o We compute |luyl[e = A™"9|u| 1a-

@ Next,
IV, = / AV u(A)P? dx
= [ [VunP dy = Il
Rn

That is HVU)\”LP = )\1—n/p”quLp_
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GNS'’s inequality — Why p < n and why p*?

e Putting in (**), we get
A ullis < Cop APVl o,

Rearranging, we have

@ Since the last inequality is valid for all A\, we must have that
—1+3—-2=0ie qg= P > =p". As g >0, we must also
have p < n.

@ We conclude that a necessary condition in order for the
inequality (*) to hold is that p < nand g=0p
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GNS'’s inequality — Can p = n?

@ Consider now the case p = n. Does it hold that

lullinny < Goll Vu

r(rey for all u e CZ(R")? (1)

* When n =1, this is true as

u(x|—‘/ J(s) ds‘</ ()] ds = [t/ 2z

* It turns out that () does not hold when n > 2. We will return
to this after the proof of GNS's inequality.

Luc Nguyen (University of Oxford) C4.3 — Lecture 7 MT 2020 9/25



Proof of GNS's inequality

np
n—p

@ Recall that we would like to show, for 1 < p < n and p* =
that

ull o (mny < CopllVul|ony for all u € WhP(R™). (#)

e Claim 1: If (#) holds for functions in C2°(IR"), then it holds for
functions in WP(R™).

* Take an arbitrary u € WLHP(R™). As p < co, C°(R") is dense
in WLHP(R"). Hence, we can select u,, € C=°(R") such that
Uy — uin WLP.

* If (#) holds for functions in C2°(R"), then
Il < Copl Vit

* As u,, — uin WHP, we have djup, — Oju in LP and so
|Vuml|e = [|Vulle.

* Warning: It is tempted to try to show ||um||; 0+ — [|ul|;e*-
However, this is false in general.
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Proof of GNS's inequality

@ Proof of Claim 1:

* Numll o < CopllVuml| e

* ||Vuml|lee = [|Vul|Le.

* As Uy, — uin WP, we have u,, — v in LP, and so, we can
extract a subsequence (um,) which converges a.e. in R" to u.
By Fatou's lemma, we have

lulP” dx < lim inf/ |um:|P" dx.
R j—oo  JRrn J
* So

s < iminf lum o+ < Cop liminf [ Ve 1r = Copl| Ve

So (#) holds.
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Proof of GNS's inequality

e Claim 2: If (#) holds for p =1, then it holds for all 1 < p < n.

*

%

Take an arbitrary non-trivial u € C2°(R") and consider the
function v = |u|” with v > 1 to be fixed. Clearly

v € LYR™) N L®(R").

In Sheet 3, you will show that |u| is weakly differentiable and

Vu in {x:u(x) >0},
Viuf=4¢ —Vu in{x:u(x) <0},
0 in {x: u(x) = 0}.

It follows that Vv = ~v|u[""1V|u| € LI(R”) So v € WLHRM).
Applying (#) in W we get ||v|| 2, < Cof| V||
On the left side, we have

n—1
_ ot n_ Y
Mz ={ [ 17T 8} ™ = ol g,
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Proof of GNS's inequality

e Claim 2: If (#) holds for p =1, then it holds for all 1 < p < n.
AVl e < Gl Vv
* On the left side, we have [|v|| », = HUW%

* On the right side, we use the inequality |V|u|| < |Vul| and

compute using Holder's inequality:
1
{/ |V ulP dx}p
Rn

1
7

||VVHL1</ ~y|ul"™ 1|Vu|dx<7 / |u|(7 ”dx}

=l o IVl

* Now we select 7y such that (y —1)p’ =
obtain
-1
lullpe < Cavllull),

As u # 0, we can divide both side by |ul|7".
Step 2.

Lp* , and conclude
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Proof of GNS's inequality

@ In view of Claim 1 and Claim 2, it thus remains to show GNS's
inequality for smooth functions when p = 1. To better present
the idea of the proof, | will only give the proof when n =2, i.e.

HLI||L2(R2) < C||Vu||L1(R2) for all u € C:_?O(]Rz). ()

(The case n > 3 can be dealt with in the same way (check
this!).)
* The starting point is the argument we saw a bit earlier in the
lecture. We have

X1 00
Wl =] [ dnutnydn| < [ [Futno)ldn.

Likewise,

)l < [ [Vua, )] dre

—0o0
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Proof of GNS's inequality

@ We are proving
HLI||L2(R2) < Cl|Vul|prey for all u € C>(R?). ()

* We have |u(x)| < [ |Vu(y1,x2)| dy1 and

lu(x)[ < f Vu( X1,)/2)’ dy>.
* Multiplying the two inequalities gives

) < { [ Vutom)ldaf{ [ Vata )l de ).

* Now note that the first integral on the right hand side is
independent of xj, and if one integrates the second integral on
the right hand side with respect to x;, one gets ||Vu||;:. Thus,
by integrating both side in x1, we get

| )P o < { [ 19utn ) ds bl

— 00 —0o0
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Proof of GNS's inequality

@ We are proving

||U||L2(R2) < C||Vu||L1(Rz) for all u € C?(]Rz). ()
* We have shown

| )P oo < { [ 19utn ) s bl

—0o0 —00

By the same line of argument, integrating the above in x» gives

/ / X1,X2 ’ dxy dxo < HVUHU,

which gives exactly () with C = 1.
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An improved Gagliardo-Nirenberg's inequality

By inspection, note that when p = 1, we actually prove the following
slightly stronger inequality:

1017 g ey < H 010y
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GNS'’s inequality for bounded domains

Theorem (Gagliardo-Nirenberg-Sobolev's inequality)

Assume that Q is a bounded Lipschitz domain and 1 < p < n. Then,
for every q € [1, p*], there exists C, , q.q such that

HU”Lq(Q) S Cn’p7q7Q”U”W1,p(Q) fOI’ all u € Wl’p(Q).

In particular, WHP(Q) — L9(Q).

Proof
o Let E: WLP(Q) — WLP(R") be an extension operator. Then

lullir(@) < [|Eulloe@ny < CopllEullwrngny < Copllullwsge).
o By Halder inequality, we have ||ul|rqq) < ||u||LP*(Q)\Q|%_pL*.

1

1
e We conclude the proof with C, 50 = G, ,|Q|a 7.
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GNS'’s inequality — The case p = n revisited

We proved earlier that the inequality
]| eomny < Gol|Vul|pagrny for all u e C°(R") (1)

is valid when n = 1 and mentioned that it is invalid when n > 2. Let
us now prove the latter.

@ We know that if (1) holds then W1"(IR") < L>°(R"). Thus it
suffices to exhibit a function u € Wh"(R™) \ L>(R").

e It is enough to find f € W"(B,) \ L*°(By). The desired u then
takes the form u = f( for any ¢ € C°(B,) with ( =1 in By.

@ We impose that f is rotationally symmetric so that
f(x) = f(|x|) = f(r). Then we need to find a function
f :(0,2) — R such that

/ [1F]"+ |f'|"] r"*dr < oo but esssup |f| =
(0,1)
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GNS'’s inequality — The case p = n revisited

@ Then we need to find a function f : (0,2) — R such that

2
/ [1F]" + |f'|"] r" * dr < oo but esssup |f| = co.
0 (0,1)

@ The fact that |f'|"r""! is integrable implies that, near r = 0, f’
is ‘smaller’ than 1, so f is ‘smaller’ than Inr.

o If we try f = (In%)*, then |f/|"r"~1 = & (In 2)n(e=1) js
integrable for & < 2=%. Also, |f|"r"~! is continuous in [0,2] and
hence integrable. So f € W'"(B,) when a < =1,

@ On the other hand, if a > 0, then esssupq 1) |f| = co.
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Trudinger's inequality

Theorem (Trudinger's inequality)

There exists a small constant ¢, > 0 and a large constant C, > 0
such that if u € WYH(R"), then exp [(%) "_1] € L} _(R") and

”“”WLH(R" loc

Ch 1
sup / exp [(¢> 1] dx < C,.
x0€ER" J B (x0) ”u”Wl’"(R")
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A non-embedding theorem for unbounded domains

Suppose 1 < p < oo and Q C R" be an unbounded domain with
finite volume. Then W'P(Q) does not embed into L9(Q2) whenever
q>p.

Sketch of proof
NN e We may assume |Q2| = 1. We need
Vo to construct a function
— | feWhr(Q)\ LI(Q).
2 |
L= @ Let rp =0 and select r, such that
A //I Qk =QnN {I’k < ‘X| < rk+1} has
ners volume .
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A non-embedding theorem for unbounded domains

Sketch of proof

@ The function f will be of the form f(x) = f(|x|) which is
increasing in |x|. If we let b, = f(ry), then

171 = 3 [ 1P o< 3 el = 3 02
k k k P

Likewise, [|f]|f, > ) " bf2~*1.
k

e To make ||f]|.« = oo, we then require that b, = 2%/9 infinitely
many times.
If we also impose that by < 2*/9 for all k, then

)5 < Y2749 < .
k
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A non-embedding theorem for unbounded domains

Sketch of proof

o by = 2K/9 infinitely many times = ||f]|.s = oo,
b < 2K/9 for all k = ||f||r < c0.

e Consider now ||V f||.».

* On each Qy, we can arrange so that |Vf| ~ %.

* It is important to note that, for any fixed € > 0, the inequality
that i1 — re > 27K must hold infinitely frequently. (As
otherwise, ry /» 00.) Label them as k; < kp < ...

by..1—by.
* In Q. we have |VF| ~ 121 < 2ki(1/ate),

Mi+1—rk; —
* In Qi with k # k;, we control |Vf| by imposing bii1 = by so
that |[Vf| = 0.
* To meet the requirement in the first bullet point, we ask
bkj = 2ki/a,

Luc Nguyen (University of Oxford) C4.3 — Lecture 7 MT 2020 24 /25



A non-embedding theorem for unbounded domains

Sketch of proof

o ||f]|e =00 and ||f]|r < 0.
e Consider ||V f]|e.
* Putting things together, we have

IV =S /Q VFIP dx
J kj

< Z oki(1/q+e)pg—ki—1 < Zz—kj(l—g—ap).
J J

Choosing ¢ < % — %, we see that this sum is finite.

e We conclude that f € WYP(Q) but f ¢ L9(Q).
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