

C4.3 Functional Analytic Methods for PDEs Lecture 8

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

In the last lecture

• Gagliardo-Nirenberg-Sobolev's inequality

This lecture

Morrey's inequality

Hölder and Lipschitz continuity

- Let D be a subset of \mathbb{R}^n .
- For $\alpha \in (0,1]$, we say that a function $u:D \to \mathbb{R}$ is (uniformly) α -Hölder continuous in D if there exists $C \ge 0$ such that

$$|u(x) - u(y)| \le C|x - y|^{\alpha}$$
 for all $x, y \in D$.

The set of all α -Hölder continuous functions in D is denoted as $C^{0,\alpha}(D)$.

• When $\alpha=1$, we use the term 'Lipschitz continuity' instead of '1-Hölder continuity'.

Hölder and Lipschitz continuity

• Note that, in our notation, when Ω is a bounded domain, $C^{0,\alpha}(\Omega)=C^{0,\alpha}(\bar{\Omega}).$ In some text $C^{0,\alpha}(\Omega)$ is used to denote the set of continuous functions in Ω which is α -Hölder continuous on every compact subsets of Ω . In this course, we will use instead $C^{0,\alpha}_{loc}(\Omega)$ to denote this latter set, if such occasion arises.

$C^{0,lpha}(D)$ is a Banach space

• For $u \in C^{0,\alpha}(D)$, let

$$[u]_{C^{0,\alpha}(D)} := \sup_{x,y \in D, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} < \infty.$$

and

$$||u||_{C^{0,\alpha}(D)} := \sup_{D} |u| + [u]_{C^{0,\alpha}(D)}.$$

Proposition

Let D be a subset of \mathbb{R}^n . Then $(C^{0,\alpha}(D), \|\cdot\|_{C^{0,\alpha}(D)})$ is a Banach space.

Hölder and Lipschitz continuity

Sketch of proof

- Piece 1: $\|\cdot\|_{C^{0,\alpha}(D)}$ is a norm.
 - * We will only give a proof for the statement that $[\cdot]_{C^{0,\alpha}(D)}$ satisfies the triangle inequality (i.e. it is a semi-norm). The rest is left as an exercise.
 - * Take $u, v \in C^{0,\alpha}(D)$. We want to show that $[u+v]_{C^{0,\alpha}(D)} \le a+b$ where $a=[u]_{C^{0,\alpha}(D)}$ and $b=[v]_{C^{0,\alpha}(D)}$.
 - * Indeed, for any $x \neq y \in D$, we have $|u(x) u(y)| \le a|x y|^{\alpha}$ and $|v(x) v(y)| \le b|x y|^{\alpha}$. It follows that

$$|(u+v)(x)-(u+v)(y)| \leq (a+b)|x-y|^{\alpha}.$$

Divide both sides by $|x-y|^{\alpha}$ and take supremum we get

$$[u+v]_{C^{0,\alpha}(D)} = \sup_{x \neq y \in D} \frac{|u(x)-u(y)|}{|x-y|^{\alpha}} \le a+b,$$

as wanted.

$C^{0,lpha}(D)$ is a Banach space

Sketch of proof

- Piece 2: $C^{0,\alpha}(D)$ is complete.
 - * Suppose that (u_m) is Cauchy in $C^{0,\alpha}(D)$.
 - * As $\|\cdot\|_{sup} \leq \|\cdot\|_{C^{0,\alpha}(D)}$, this implies that (u_m) is Cauchy in $C^0(\bar{D})$ and hence converges uniformly to some $u \in C^0(\bar{D})$.
 - * Claim: $u \in C^{0,\alpha}(D)$. Fix $\varepsilon > 0$. For every $x,y \in D$, we have

$$|(u_m - u_j)(x) - (u_m - u_j)(y)| \leq [u_m - u_j]_{C^{0,\alpha}(D)}|x - y|^{\alpha}$$

$$\leq \varepsilon |x - y|^{\alpha} \text{ for large } m, j.$$

Sending $j \to \infty$, we thus have

$$|(u_m-u)(x)-(u_m-u)(y)|\leq \varepsilon |x-y|^{\alpha}$$
 for large m .

Choose one such m we arrive at

$$|u(x)-u(y)| \leq ([u_m]_{C^{0,\alpha}(D)}+\varepsilon)|x-y|^{\alpha}.$$

So $u \in C^{0,\alpha}(D)$.

$C^{0,lpha}(D)$ is a Banach space

Sketch of proof

- Piece 2: $C^{0,\alpha}(D)$ is complete.
 - * Finally, we show that $u_m \to u$ in $C^{0,\alpha}(D)$. As u_m converges to u uniformly, it remains to show that $[u_m u]_{C^{0,\alpha}(D)} \to 0$.
 - * Fix $\varepsilon > 0$. Recall from the previous slide that, for $x, y \in D$, we have

$$|(u_m - u)(x) - (u_m - u)(y)| \le \varepsilon |x - y|^{\alpha}$$
 for large m .

Divide both sides by $|x-y|^{\alpha}$ and take supremum, we have

$$[u_m - u]_{C^{0,\alpha}(D)} \le \varepsilon$$
 for large m .

 \star As ε is arbitrary, we conclude that $[u_m - u]_{C^{0,\alpha}(D)} \to 0$.

An integral mean value inequality

Lemma

Let Ω be a domain in \mathbb{R}^n and suppose $u \in C^1(\Omega)$. Then

$$\int_{B_r(x)} |u(y)-u(x)| dy \leq \frac{1}{n} r^n \int_{B_r(x)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} \, dy \, \text{ for all } B_r(x) \subset \Omega.$$

Proof

- It suffices to consider the case x=0. We write $y=s\theta$ where $s\in [0,r)$ and $\theta\in \mathbb{S}^{n-1}\in \mathbb{R}^n$.
- By the fundamental theorem of calculus, we have

$$u(s\theta) - u(0) = \int_0^s \frac{d}{dt} u(t\theta) dt = \int_0^s \theta_i \partial_i u(t\theta) dt.$$

It follows that $|u(s\theta) - u(0)| \le \int_0^s |\nabla u(t\theta)| dt$.

An integral mean value inequality

Proof

- $|u(s\theta) u(0)| \leq \int_0^s |\nabla u(t\theta)| dt$.
- ullet Integrating over heta and using Tonelli's theorem, we get

$$\begin{split} \int_{\partial B_1(0)} |u(s\theta) - u(0)| \, d\theta &\leq \int_0^s \int_{\partial B_1(0)} |\nabla u(t\theta)| \, d\theta \, dt \\ &= \int_0^s \int_{\partial B_t(0)} |\nabla u(y)| \, \frac{dS(y)}{t^{n-1}} \, dt \\ &= \int_{B_s(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} \, dy. \end{split}$$

An integral mean value inequality

Proof

- $\bullet \int_{\partial B_1(0)} |u(s\theta)-u(0)| d\theta \leq \int_{B_s(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} dy.$
- Multiplying both sides by s^{n-1} and integrating over s, we get

$$\begin{split} \int_{B_{r}(0)} |u(y) - u(0)| \, dy &= \int_{0}^{r} \int_{\partial B_{1}(0)} |u(s\theta) - u(0)| \, d\theta s^{n-1} ds \\ &\leq \int_{B_{r}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} \, dy \int_{0}^{r} s^{n-1} \, ds \\ &= \frac{1}{n} r^{n} \int_{B_{r}(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} \, dy. \end{split}$$

This gives the desired integral mean value inequality.

A corollary of the integral mean value inequality

Corollary

Suppose $u \in C^1(\Omega) \cap W^{1,p}(\Omega)$ for some p > n. Then

$$\int_{B_r(x)} |u(y)-u(x)| \ dy \leq C_{n,p} \|\nabla u\|_{L^p(B_r(x))} r^{\frac{n(p-1)}{p}+1} \ \text{ for all } B_r(x) \subset \Omega,$$

where the constant $C_{n,p}$ depends only on n and p.

Proof

• As in the previous proof, we assume without loss of generality that x=0. We start with the integral mean value inequality:

$$\int_{B_r(0)} |u(y) - u(0)| \ dy \le \frac{r^n}{n} \int_{B_r(0)} \frac{|\nabla u(y)|}{|y|^{n-1}} \ dy.$$

A corollary of the integral mean value inequality

Proof

• By Hölder's inequality this gives

$$\begin{split} \int_{B_r(0)} |u(y) - u(0)| \, dy &\leq \frac{r^n}{n} \|\nabla u\|_{L^p(B_r(0))} \Big\{ \int_{B_r(0)} \frac{1}{|y|^{(n-1)p'}} \, dy \Big\}^{1/p'} \\ &= C_n r^n \|\nabla u\|_{L^p(B_r(0))} \Big\{ \int_0^r s^{-(n-1)(p'-1)} \, ds \Big\}^{1/p'}. \end{split}$$

• As p > n, we have that $p' < \frac{n}{n-1}$ and so (n-1)(p'-1) < 1. Hence the integral in the curly braces converges to $C_{n,p}r^{-(n-1)(p'-1)+1}$. After a simplification, this gives

$$\int_{B_r(0)} |u(y) - u(0)| \, dy \leq C_{n,p} \|\nabla u\|_{L^p(B_r(0))} r^{\frac{n}{p'}+1},$$

which is the conclusion.

Theorem (Morrey's inequality)

Assume that $n . Then every <math>u \in W^{1,p}(\mathbb{R}^n)$ has a $(1 - \frac{n}{p})$ -Hölder continuous representative. Furthermore there exists a constant $C_{n,p}$ such that

$$||u||_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \le C_{n,p}||u||_{W^{1,p}(\mathbb{R}^n)}.$$
 (*)

In particular, $W^{1,p}(\mathbb{R}^n) \hookrightarrow C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof when $p < \infty$. The case $p = \infty$ will be dealt with in the next lecture.

- Step 1: Reduction to the case $u \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$.
 - * Suppose that (*) holds for functions in $C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$. We show that this implies the theorem.

Proof when $p < \infty$.

- Step 1: Reduction to the case $u \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$.
 - * Let $u \in W^{1,p}(\mathbb{R}^n)$. As $p < \infty$, we can find $u_m \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$ such that $u_m \to u$ in $W^{1,p}$.
 - * Applying (*) to $u_m u_j$ we have

$$||u_m-u_j||_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)}\leq C_{n,p}||u_m-u_j||_{W^{1,p}(\mathbb{R}^n)}\stackrel{m,j\to\infty}{\longrightarrow} 0.$$

This means that (u_m) is Cauchy in $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$, and hence converges in $C^{0,1-\frac{n}{p}}$ to some $u_* \in C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

- * On the other hand, as $u_m \to u$ in L^p , a subsequence of it converges a.e. in \mathbb{R}^n to u.
- * It follows that $u = u_*$ a.e. in \mathbb{R}^n , i.e. u has a continuous representative.

Proof when $p < \infty$.

- Step 1: Reduction to the case $u \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$.
 - * We may thus assume henceforth that u is continuous, so that u_m converges to u in both $W^{1,p}$ and $C^{0,1-\frac{n}{p}}$.
 - \star Now, applying (*) to u_m we have

$$||u_m||_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \leq C_{n,p}||u_m||_{W^{1,p}(\mathbb{R}^n)}.$$

Sending $m \to \infty$, we hence have

$$||u||_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \leq C_{n,p}||u||_{W^{1,p}(\mathbb{R}^n)},$$

as wanted.

Proof when $p < \infty$.

• Step 2: Proof of the C^0 bound in (*). We show that, for $u \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$, it holds that

$$|u(x)| \le C ||u||_{W^{1,p}(\mathbb{R}^n)} \text{ for all } x \in \mathbb{R}^n.$$
 (**)

⋆ By triangle inequality, we have

$$|B_1(x)||u(x)| \leq \int_{B_1(x)} |u(y) - u(x)| dy + \int_{B_1(x)} |u(y)| dy.$$

- * By Hölder's inequality, the last integral is bounded by $C_{n,p} \|u\|_{L^p(B_1(x))}$.
- * On the other hand, by the corollary to the integral mean value inequality, the first integral on the right hand side is bounded by $C_{n,p}\|\nabla u\|_{L^p(B_1(x))}$. The inequality (**) follows.

Proof when $p < \infty$.

• Step 3: Proof of the $C^{0,1-\frac{n}{p}}$ semi-norm bound in (*). We show that, for $u \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$, it holds that

$$|u(x)-u(y)| \le C||u||_{W^{1,p}(\mathbb{R}^n)}|x-y|^{1-\frac{n}{p}} \text{ for all } x,y \in \mathbb{R}^n.$$
 (***)

- * If x = y, there is nothing to show. Suppose henceforth that r = |x - y| > 0and let $W = B_r(x) \cap B_r(y)$.
- \star Let a be the average of u in W, i.e.

$$a = \frac{1}{|W|} \int_W u(z) dz$$
. Then

$$|u(x) - u(y)| \le |u(x) - a| + |u(y) - a|.$$

Proof when $p < \infty$.

- Step 3: Proof of the $C^{0,1-\frac{n}{p}}$ semi-norm bound in (*).
 - * We estimate |u(x) a| as follows:

$$|u(x) - a| \le \frac{1}{|W|} \int_{W} |u(x) - u(z)| dz$$

$$\le \frac{C_n}{r^n} \int_{B_r(x)} |u(x) - u(z)| dz.$$

By the corollary to the mean value inequality, the right hand side is bounded by $C_{n,p} \|\nabla u\|_{L^p(B_r(x))} r^{1-\frac{n}{p}}$. So

$$|u(x)-a| \le C_{n,p} ||\nabla u||_{L^p(B_r(x))} r^{1-\frac{n}{p}}$$

- * Similarly, $|u(y) a| \leq C_{n,p} \|\nabla u\|_{L^p(B_r(y))} r^{1-\frac{n}{p}}$.
- * Putting these together and recalling that r = |x y|, we arrive at (***).

Morrey's inequality on domain for n

Theorem (Morrey's inequality)

Suppose that $n and <math>\Omega$ is a bounded Lipschitz domain. Then every $u \in W^{1,p}(\Omega)$ has a $(1-\frac{n}{p})$ -Hölder continuous representative and

$$||u||_{C^{0,1-\frac{n}{p}}(\Omega)} \leq C_{n,p,\Omega}||u||_{W^{1,p}(\Omega)}.$$

Indeed, let $E:W^{1,p}(\Omega)\to W^{1,p}(\mathbb{R}^n)$ be an extension operator. Then Eu has a continuous representative and

$$||Eu||_{C^{0,1-\frac{n}{p}}(\Omega)} \le ||Eu||_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \le C_{n,p}||Eu||_{W^{1,p}(\mathbb{R}^n)} \le C_{n,p,\Omega}||u||_{W^{1,p}(\Omega)}.$$

An improved integral mean value inequality

Lemma

Suppose $u \in C(\overline{B_R(0)}) \cap W^{1,p}(B_R(0))$ for some p > n. Then, for every ball $B_r(x) \subset \mathbb{R}^n$, there holds

$$\int_{B_{r}(x)} |u(y) - u(x)| dy \leq \frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{|\nabla u(y)|}{|y - x|^{n-1}} dy.$$

Proof

• Replacing p by any $\tilde{p} \in (n,p)$, we may assume that p is finite. Then we can find $u_m \in C^{\infty}(B_R(0)) \cap W^{1,p}(B_R(0))$ such that $u_m \to u$ in $W^{1,p}$. Furthermore, arguing as in Step 1 in the proof of Morrey's inequality, we also have that $u_m \to u$ in $C^{0,1-\frac{n}{p}}(\overline{B_R(0)})$.

An improved integral mean value inequality

Proof

- $u_m \to u$ in $W^{1,p}(B_R(0))$ and in $C^{0,1-\frac{n}{p}}(\overline{B_R(0)})$.
- ullet By the integral mean value inequality for C^1 functions, we have

$$\int_{B_{r}(x)} |u_{m}(y) - u_{m}(x)| dy \leq \frac{1}{n} r^{n} \int_{B_{r}(x)} \frac{|\nabla u_{m}(y)|}{|y - x|^{n-1}} dy.$$

- The left hand side converges to $\int_{B_r(x)} |u(y) u(x)| dy$ since $u_m \to u$ uniformly.
- The right hand side converges to $\frac{1}{n}r^n\int_{B_r(x)}\frac{|\nabla u(y)|}{|y-x|^{n-1}}\,dy$ since $\nabla u_m \to \nabla u$ in L^p and since the function $y\mapsto \frac{1}{|y-x|^{n-1}}$ belongs to $L^{p'}$ (as noted in the proof of the corollary to the integral mean value inequality). The conclusion follows.