C4.3 Functional Analytic Methods for PDEs
Lecture 9

Luc Nguyen
luc.nguyen@maths

University of Oxford

MT 2020

Luc Nguyen (University of Oxford) C4.3 — Lecture 9 MT 2020



In the last lecture

@ Morrey's inequality, n < p < o©

Luc Nguyen (University of Oxford) C4.3 — Lecture 9 MT 2020 2/25



This lecture

@ Morrey's inequality, p = oo
@ Friedrichs’ inequality

@ Rellich-Kondrachov's compactness theorem
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Morrey's inequality

Theorem (Morrey's inequality)

Assume that n < p < co. Then every u € WHP(R") has a
(1 — 2)-Holder continuous representative. Furthermore there exists a
constant C, , such that

Hu”co’l‘%(]{gn) < Gopllullwron.- *)

In particular, WHP(R") — C%'~5(R").

Note that when p = co we can no longer use the previous proof, as
C>=(R") N Wh>=(IR") is not dense in W1>°(R").
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Morrey's inequality

Proof when p = oo.

@ Suppose u € WL°(R"). Then u € W*(Bg) for all s < oo and
all ball Bg. By Morrey's inequality in the case of finite p, we
thus have that u has a continuous representative, which we will
assume to be v itself.

@ By the improved integral mean value inequality, we have

1 [Vu(y)l
u(y) — u(x dyg—r”/ ——="dy.
/Br(X)| ( ) ( )| n B:(x) |y_X|n71

@ Step 2 and Step 3 of the proof in the case p < oo can now be
repeated to get

lu(x)] < Cl|lul|wr.oo(rny for all x € R". (**)

and

u(x) = u(y)| < Clullwsgunlx — | for all x,y € R7. (¥+%)
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Morrey's inequality

Proof when p = .

o |t follows that

|ull cormm < Cllul[ oo (mn)

and we are done.
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Morrey's inequality on domains

We make a couple of remarks:

e If Q and p are such that there exists a bounded linear extension
operator £ : WHP(Q) — WP(R") (in particular Eu = u a.e. in
Q for all u € WP(Q)), then

WP(Q) — C®'75(Q).

@ The same proof on the whole space work on balls without
establishing the existence of an extension operator. (Check this!)

@ For general domains, one only has

WhP(Q) < Co P (Q).

loc

(Revisit the example of the disk in R? with a line segment
removed.)
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More on W1

We have the following important theorem for the space W>°(Q):

Suppose that 2 C R" is a bounded Lipschitz domain. Then

Wi=(Q) = CO(Q).
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Friedrichs’ inequality

Theorem (Friedrichs' inequality)

Assume that € is a bounded open set and 1 < p < oco. Then, there
exists Cp o such that

ullee) < CoallVul| (o) for all u e Wol’p(Q).

Note that

@ Only the derivatives of u appear on the right hand side.

@ The function u belongs to Wy (). The inequality is false for
ue WhHr(Q).

@ By Friedrichs’ inequality, when Q is bounded, if we define
[|ul|] = [Vullra), then ||| - ||| is a norm on W,P(Q) which is
equivalent to the norm || - || 1.r(q)-

@ In some text, Friedrichs' inequality is referred to as Poincaré’s
inequality.
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Friedrichs' inequality

Proof _ o
@ We may assume that €2 is contain in

. the slab S := {(x/, x,) : 0 < x, < L}.

I IS — @ As usual, using the density of C°(Q2)
is dense in W, P(Q), it suffices to
s prove

3 luller@) < GoallVullie(a)

for u € C°(Q).

@ Take an arbitrary u € C2°(2) and extend u by zero outside of
so that u € C2°(S).
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Friedrichs' inequality

Proof

@ Now, for every fixed x’, we have

o) < [t olde < { [
0 0

L 1/p p=1
< {/ Ol D dt} a7
0

Xn

1/p ,
19u(X, t)|P dt} xL/P

Luc Nguyen (University of Oxford) C4.3 — Lecture 9 MT 2020 11/



Friedrichs' inequality

Proof

p—1

L 1/
o |u(x %) < {/ Ol D dt} 7
0

o |t follows that

L 1 L
/ (X, 0[P dxy < —Lp/ (X, £)|P dt.
0 P 0

@ Integrating over x’ then gives

lulloey / / (X' x0)|P ity 0

§ - / / |Du(x', t)|P dt dx’ = —Lp||Vu||
p Rn—1

We are done.
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Friedrichs-type inequality

Theorem (Friedrichs-type inequality)

Assume that Q) is a bounded open set and 1 < p < co. Suppose that
1<g<pifp<nl<g<ocoifp=nandl <qg<ooifp>n.
Then there exists C, 5 4.0 such that

ullLa) < Copa0

IV ul|oa for all u € WyP(Q).
Proof
e Extend u by zero to R”".

@ If p < n, we have by Gagliardo-Nirenberg-Sobolev's inequality,
that

HUHLP*(Q) = HUHLP*(R") < C||VU||LP(R") = C||VU||LP(Q)-

As 2 has finite measure, ||ul| o) < C|lul[s(q), and so we're
done in this case.
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Friedrichs-type inequality

Proof

@ Note that, as Q has finite measure, W1"(Q) — W1P(Q) for
any p < p. The case p = n thus follows from the previous case.

@ When p > n, we have by Morrey's inequality that

[ulli@) = Nlull i @ny < Cllullwre@ey = Cllullwe)-

By Friedrichs’ inequality, we have ||u|lwirq) < C||Vul|ir(q)-
Also, as Q has finite measure, ||u|o) < C|lul|L=(0)-
Putting these together we're also done in this case.
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Rellich-Kondrachov's theorem

Theorem (Rellich-Kondrachov's compactness theorem)

Let Q be a bounded Lipschitz domain and 1 < p < co. Suppose
1<g<p*whenp<n l1l1<g<oowhenp=n,andl <qg<oo
when p > n. Then the embedding WP(Q) — L9(Q) is compact, i.e.
every bounded sequence in WYP(Q) contains a subsequence which
converges in L9(2).
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Critical embedding is not compact

For 1 < p < n, the embedding W'P(Q2) < LP"(Q) is not compact.

Example by ‘concentration’

@ This example is by scaling. It is related to the argument in
Lecture 7 to inspect for which p and q the space W'P(R") is
embedded L9(R").

@ We may assume that the origin lies inside 2 and B, C 2. Take
an arbitrary non-zero function u € C°(R") with Supp(u) C B,,.
We define, for A > 0, ux(x) = u(Ax).

@ We knew that

”UAHLQ = Ain/qHUHLq and HVUAHLP = Alin/pHVU”Lp.
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Critical embedding is not compact

Example by ‘concentration’

@ Hence, if we let &y, = A\~"1+"/Py,, then

1axllee = A ulle,
x| o = llull i

IVax|[e = [[Vul e
In particular, as A\ — oo,

laxllwee < [lullwre and [[ax]| e+ = [[ul] - > 0.
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Critical embedding is not compact

Example by ‘concentration’

@ Now if the embedding W1P(Q2) — LP"(Q) was compact, then as
(Gy) is bounded in WP, we could select a sequence A\, — oo
such that (dy,) converges in LP"(Q) to some limit u, € LP (Q).

@ This would imply that
[ll e = Jim {[dx,[[ oo = [lufl o > O.
—00
@ On the other hand, Supp(iy) C By,/» and so iy — 0 a.e. in Q

as A — oo. This would give that u, = 0 a.e. which contradicts
the above.
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Critical embedding is not compact

For 1 < p < n, the embedding W1P(R") — LP"(R") is not compact.

Example by ‘translations’

o Take again an arbitrary non-zero function u € C°(R") and fix
some unit vector e. Let us(x) = u(x + se) = 7eou(x).

o Then |lusllwre = [[ullwre, [|usllie = [ull o Also
Supp(us) = {x — se : x € Supp(u)} and so us — 0 a.e. on R”
as s — 00,

@ By the same reasoning, there is no sequence s, — oo such that
u, is convergent in LP".
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Pre-compactness criterion in LP()

Let us now do some preparation for the proof of Rellich-Kondrachov's
theorem. Recall:

Theorem (Komolgorov-Riesz-Fréchet's theorem)

Let 1 < p < oo and §2 be an open bounded subset of R". Suppose
that a sequence (f;) of LP(Q2) satisfies

@ (Boundedness) sup; ||fi| o) < o0,

@ ( Equi-continuity in LP ) For every € > 0, there exists § > 0 such
that |7, f; — fil|r() < € for all |y| < §, where f; is the extension
by zero of f; to all of R".

Then, there exists a subsequence (f;,) which converges in LP(2).

In the case we are considering, boundedness follows from the
embedding theorems. Let us now consider equi-continuity.

Luc Nguyen (University of Oxford) C4.3 — Lecture 9 MT 2020 20/25



Continuity of translation operators in WP

Let 1 < p < co. For every v.e WLP(R™) and y € R", it holds that

Iy v = Viw@n) < yIIVV] ).

Proof

@ Using the density of C*(R") N W'P(R") in W1P(R™) for
p < oo, it suffices to consider v € C>*°(R") N WLP(R").
@ By the mean value theorem and Holder's inequality, we have

1 d 1
lv(y +x) — v(x)| < / |av(ty+x)]dt :/ lyiOiv(ty + x)| dt
0 0

! 1/p
<l [ 19vtey 01 ae}
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Continuity of translation operators in W1?

Proof
1
o [y +2) = vIP < 1P [ Vvl + )P o
0
@ Integrating over x gives
v =it = [ 1y +x) = vl e
Rn
1
§]y\p/ / |Vv(ty + x)|P dt dx
R Jo

1
— P / Vv(ty + x)|° dx dt
0 Rn
= PV

So we have ||7,v — v|[zr < |y|||VV]|Lprr) as wanted.
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Continuity of translation operators in WP

We remarked in Lecture 2 that the map h — 7, is not a continuous
map from R" into Z(LP(R"), LP(R")).

The above lemma implies that h — T, is not a continuous map from
R" into L(WP(R™), LP(R™)).

Proof

o Let X = Z(WHP(R"), LP(R™)). The statement amounts to
7, — Id in X as y — 0. So we need to show that

0= lim |7, — Id]|x = lim sup lTyu — ul|Le.
y=0 Y0 e WLp®) ul yrp<l

@ By the lemma, we have |7 u — ul[e < |y|||Vuller < y|
whenever ||u||y1» < 1. So the point above is clear.
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Characterisation of WP using translation

operators

Assume that 1 < p < oo and v € LP(R"). Suppose that there exist
small r > 0 and large C such that

|7y v — v||ewey < Cly| for all |y| <r.

Then

S Wl’p(Rn) and “VV“[_P(RH) < C.

Sketch of proof
o Fix a direction e;. By hypothesis g; := %[Tte,v — v] is bounded in
LP for |t| < r. By the weak sequential compactness property in

LP, we have along a sequence t, — 0 that g, converges weakly
in LP to some w; € LP(R").
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Characterisation of WP using translation

operators

Sketch of proof
° g, = ﬁ[ﬁke’.v —v] = w; in LP.

@ The key point is the following identity

n

[Ttk(:‘iv - V]SO dx = _/ V[SD - T—tke,-SO] dx.

RN

@ Now divide both side by t; and sending kK — oo, we then get

/ wip dx = —/ vO;p dx for all p € CZ°(R").

This proves 0;v = w; € LP(R"). The conclusion follows.
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