

C4.3 Functional Analytic Methods for PDEs Lecture 9

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

• Morrey's inequality, n

- Morrey's inequality, $p=\infty$
- Friedrichs' inequality
- Rellich-Kondrachov's compactness theorem

Theorem (Morrey's inequality)

Assume that $n . Then every <math>u \in W^{1,p}(\mathbb{R}^n)$ has a $(1 - \frac{n}{p})$ -Hölder continuous representative. Furthermore there exists a constant $C_{n,p}$ such that

$$\|u\|_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \le C_{n,p} \|u\|_{W^{1,p}(\mathbb{R}^n)}.$$
 (*)

In particular, $W^{1,p}(\mathbb{R}^n) \hookrightarrow C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Note that when $p = \infty$ we can no longer use the previous proof, as $C^{\infty}(\mathbb{R}^n) \cap W^{1,\infty}(\mathbb{R}^n)$ is not dense in $W^{1,\infty}(\mathbb{R}^n)$.

Morrey's inequality

Proof when $p = \infty$.

- Suppose $u \in W^{1,\infty}(\mathbb{R}^n)$. Then $u \in W^{1,s}(B_R)$ for all $s < \infty$ and all ball B_R . By Morrey's inequality in the case of finite p, we thus have that u has a continuous representative, which we will assume to be u itself.
- By the improved integral mean value inequality, we have

$$\int_{B_r(x)} |u(y)-u(x)| dy \leq \frac{1}{n} r^n \int_{B_r(x)} \frac{|\nabla u(y)|}{|y-x|^{n-1}} dy.$$

• Step 2 and Step 3 of the proof in the case $p < \infty$ can now be repeated to get

$$|u(x)| \leq C \|u\|_{W^{1,\infty}(\mathbb{R}^n)}$$
 for all $x \in \mathbb{R}^n$. (**)

and

$$|u(x) - u(y)| \leq C ||u||_{W^{1,\infty}(\mathbb{R}^n)} |x - y|$$
 for all $x, y \in \mathbb{R}^n$. (***)

Proof when $p = \infty$.

• It follows that

$$||u||_{C^{0,1}(\mathbb{R}^n)} \leq C ||u||_{W^{1,\infty}(\mathbb{R}^n)}$$

and we are done.

Morrey's inequality on domains

We make a couple of remarks:

If Ω and p are such that there exists a bounded linear extension operator E : W^{1,p}(Ω) → W^{1,p}(ℝⁿ) (in particular Eu = u a.e. in Ω for all u ∈ W^{1,p}(Ω)), then

$$W^{1,p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}(\Omega).$$

- The same proof on the whole space work on balls without establishing the existence of an extension operator. (Check this!)
- For general domains, one only has

$$W^{1,p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}_{loc}(\Omega).$$

(Revisit the example of the disk in \mathbb{R}^2 with a line segment removed.)

We have the following important theorem for the space $W^{1,\infty}(\Omega)$:

Theorem Suppose that $\Omega \subset \mathbb{R}^n$ is a bounded Lipschitz domain. Then $W^{1,\infty}(\Omega) = C^{0,1}(\Omega).$

Theorem (Friedrichs' inequality)

Assume that Ω is a bounded open set and $1 \le p < \infty$. Then, there exists $C_{p,\Omega}$ such that

 $\|u\|_{L^p(\Omega)} \leq C_{p,\Omega} \|\nabla u\|_{L^p(\Omega)}$ for all $u \in W_0^{1,p}(\Omega)$.

Note that

- Only the derivatives of *u* appear on the right hand side.
- The function u belongs to W₀^{1,p}(Ω). The inequality is false for u ∈ W^{1,p}(Ω).
- By Friedrichs' inequality, when Ω is bounded, if we define $|||u||| = ||\nabla u||_{L^{p}(\Omega)}$, then $||| \cdot |||$ is a norm on $W_{0}^{1,p}(\Omega)$ which is equivalent to the norm $|| \cdot ||_{W^{1,p}(\Omega)}$.
- In some text, Friedrichs' inequality is referred to as Poincaré's inequality.

Luc Nguyen (University of Oxford)

Friedrichs' inequality

Proof

- We may assume that Ω is contain in the slab S := {(x', x_n) : 0 < x_n < L}.
- As usual, using the density of C[∞]_c(Ω) is dense in W^{1,p}₀(Ω), it suffices to prove

$$\|u\|_{L^p(\Omega)} \leq C_{p,\Omega} \|\nabla u\|_{L^p(\Omega)}$$

for
$$u \in C_c^{\infty}(\Omega)$$
.

 Take an arbitrary u ∈ C[∞]_c(Ω) and extend u by zero outside of Ω so that u ∈ C[∞]_c(S).

Friedrichs' inequality

Proof

• Now, for every fixed x', we have

$$\begin{aligned} |u(x',x_n)| &\leq \int_0^{x_n} |\partial_n u(x',t)| \, dt \leq \left\{ \int_0^{x_n} |\partial_n u(x',t)|^p \, dt \right\}^{1/p} x_n^{1/p'} \\ &\leq \left\{ \int_0^L |\partial_n u(x',t)|^p \, dt \right\}^{1/p} x_n^{\frac{p-1}{p}}. \end{aligned}$$

Friedrichs' inequality

Proof

•
$$|u(x',x_n)| \leq \left\{ \int_0^L |\partial_n u(x',t)|^p dt \right\}^{1/p} x_n^{\frac{p-1}{p}}.$$

• It follows that

$$\int_0^L |u(x',x_n)|^p dx_n \leq \frac{1}{p} L^p \int_0^L |\partial_n u(x',t)|^p dt.$$

• Integrating over x' then gives

$$\begin{aligned} \|u\|_{L^{p}(\Omega)}^{p} &= \int_{\mathbb{R}^{n-1}} \int_{0}^{L} |u(x', x_{n})|^{p} dx_{n} dx' \\ &\leq \frac{1}{p} L^{p} \int_{\mathbb{R}^{n-1}} \int_{0}^{L} |Du(x', t)|^{p} dt dx' = \frac{1}{p} L^{p} \|\nabla u\|_{L^{p}(\Omega)}^{p}. \end{aligned}$$

We are done.

Theorem (Friedrichs-type inequality)

Assume that Ω is a bounded open set and $1 \le p < \infty$. Suppose that $1 \le q \le p^*$ if p < n, $1 \le q < \infty$ if p = n, and $1 \le q < \infty$ if p > n. Then there exists $C_{n,p,q,\Omega}$ such that

$$\|u\|_{L^q(\Omega)} \leq C_{n,p,q,\Omega} \|
abla u\|_{L^p(\Omega)}$$
 for all $u \in W^{1,p}_0(\Omega).$

Proof

- Extend u by zero to \mathbb{R}^n .
- If *p* < *n*, we have by Gagliardo-Nirenberg-Sobolev's inequality, that

$$\|u\|_{L^{p^{*}}(\Omega)} = \|u\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq C \|\nabla u\|_{L^{p}(\mathbb{R}^{n})} = C \|\nabla u\|_{L^{p}(\Omega)}$$

As Ω has finite measure, $\|u\|_{L^q(\Omega)} \leq C \|u\|_{L^{p^*}(\Omega)}$, and so we're done in this case.

Luc Nguyen (University of Oxford)

Proof

- Note that, as Ω has finite measure, W^{1,n}(Ω) → W^{1,p̂}(Ω) for any p̂ < p. The case p = n thus follows from the previous case.
- When p > n, we have by Morrey's inequality that

$$\|u\|_{L^{\infty}(\Omega)} = \|u\|_{L^{\infty}(\mathbb{R}^n)} \leq C \|u\|_{W^{1,p}(\mathbb{R}^n)} = C \|u\|_{W^{1,p}(\Omega)}.$$

By Friedrichs' inequality, we have $||u||_{W^{1,p}(\Omega)} \leq C ||\nabla u||_{L^p(\Omega)}$. Also, as Ω has finite measure, $||u||_{L^q(\Omega)} \leq C ||u||_{L^{\infty}(\Omega)}$. Putting these together we're also done in this case.

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \le p \le \infty$. Suppose $1 \le q < p^*$ when $p < n, 1 \le q < \infty$ when p = n, and $1 \le q \le \infty$ when p > n. Then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact, i.e. every bounded sequence in $W^{1,p}(\Omega)$ contains a subsequence which converges in $L^q(\Omega)$.

Critical embedding is not compact

Remark

For $1 \leq p < n$, the embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ is not compact.

Example by 'concentration'

- This example is by scaling. It is related to the argument in Lecture 7 to inspect for which p and q the space W^{1,p}(Rⁿ) is embedded L^q(Rⁿ).
- We may assume that the origin lies inside Ω and $B_{r_0} \subset \Omega$. Take an arbitrary non-zero function $u \in C_c^{\infty}(\mathbb{R}^n)$ with $Supp(u) \subset B_{r_0}$. We define, for $\lambda > 0$, $u_{\lambda}(x) = u(\lambda x)$.
- We knew that

$$\|u_{\lambda}\|_{L^{q}} = \lambda^{-n/q} \|u\|_{L^{q}}$$
 and $\|\nabla u_{\lambda}\|_{L^{p}} = \lambda^{1-n/p} \|\nabla u\|_{L^{p}}.$

Example by 'concentration'

• Hence, if we let $\hat{u}_{\lambda} = \lambda^{-1+n/p} u_{\lambda}$, then

$$\begin{split} \|\hat{u}_{\lambda}\|_{L^{p}} &= \lambda^{-1} \|u\|_{L^{p}}, \\ \|\hat{u}_{\lambda}\|_{L^{p^{*}}} &= \|u\|_{L^{p^{*}}}, \\ \|\nabla \hat{u}_{\lambda}\|_{L^{p}} &= \|\nabla u\|_{L^{p}}. \end{split}$$

In particular, as $\lambda \to \infty$,

 $\|\hat{u}_{\lambda}\|_{W^{1,p}} \leq \|u\|_{W^{1,p}} \text{ and } \|\hat{u}_{\lambda}\|_{L^{p^*}} = \|u\|_{L^{p^*}} > 0.$

Example by 'concentration'

- Now if the embedding W^{1,p}(Ω) → L^{p*}(Ω) was compact, then as (û_λ) is bounded in W^{1,p}, we could select a sequence λ_k → ∞ such that (û_{λ_k}) converges in L^{p*}(Ω) to some limit u_{*} ∈ L^{p*}(Ω).
- This would imply that

$$\|u_*\|_{L^{p^*}} = \lim_{k \to \infty} \|\hat{u}_{\lambda_k}\|_{L^{p^*}} = \|u\|_{L^{p^*}} > 0.$$

• On the other hand, $Supp(\hat{u}_{\lambda}) \subset B_{r_0/\lambda}$ and so $\hat{u}_{\lambda} \to 0$ a.e. in Ω as $\lambda \to \infty$. This would give that $u_* = 0$ a.e. which contradicts the above.

Remark

For $1 \leq p < n$, the embedding $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$ is not compact.

Example by 'translations'

- Take again an arbitrary non-zero function u ∈ C[∞]_c(ℝⁿ) and fix some unit vector e. Let u_s(x) = u(x + se) = τ_{se}u(x).
- Then $||u_s||_{W^{1,p}} = ||u||_{W^{1,p}}$, $||u_s||_{L^{p^*}} = ||u||_{L^{p^*}}$. Also $Supp(u_s) = \{x - se : x \in Supp(u)\}$ and so $u_s \to 0$ a.e. on \mathbb{R}^n as $s \to \infty$.
- By the same reasoning, there is no sequence $s_k \to \infty$ such that u_{s_k} is convergent in L^{p^*} .

Pre-compactness criterion in $L^p(\Omega)$

Let us now do some preparation for the proof of Rellich-Kondrachov's theorem. Recall:

Theorem (Komolgorov-Riesz-Fréchet's theorem)

Let $1 \leq p < \infty$ and Ω be an open bounded subset of \mathbb{R}^n . Suppose that a sequence (f_i) of $L^p(\Omega)$ satisfies

(Boundedness) $\sup_i \|f_i\|_{L^p(\Omega)} < \infty$,

(Equi-continuity in L^p) For every $\varepsilon > 0$, there exists $\delta > 0$ such that $\|\tau_y \tilde{f}_i - \tilde{f}_i\|_{L^p(\Omega)} < \varepsilon$ for all $|y| < \delta$, where \tilde{f}_i is the extension by zero of f_i to all of \mathbb{R}^n .

Then, there exists a subsequence (f_{i_i}) which converges in $L^p(\Omega)$.

In the case we are considering, boundedness follows from the embedding theorems. Let us now consider equi-continuity.

Continuity of translation operators in $W^{1,p}$

Lemma

Let $1 \le p < \infty$. For every $v \in W^{1,p}(\mathbb{R}^n)$ and $y \in \mathbb{R}^n$, it holds that

$$|\tau_{\mathbf{y}}\mathbf{v}-\mathbf{v}||_{L^{p}(\mathbb{R}^{n})}\leq |\mathbf{y}|||\nabla\mathbf{v}||_{L^{p}(\mathbb{R}^{n})}.$$

Proof

- Using the density of $C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$ in $W^{1,p}(\mathbb{R}^n)$ for $p < \infty$, it suffices to consider $v \in C^{\infty}(\mathbb{R}^n) \cap W^{1,p}(\mathbb{R}^n)$.
- By the mean value theorem and Hölder's inequality, we have

$$egin{aligned} |v(y+x)-v(x)| &\leq \int_{0}^{1} |rac{d}{dt}v(ty+x)| \, dt = \int_{0}^{1} |y_{i}\partial_{i}v(ty+x)| \, dt \ &\leq |y| \Big\{ \int_{0}^{1} |
abla v(ty+x)|^{p} \, dt \Big\}^{1/p}. \end{aligned}$$

Continuity of translation operators in $W^{1,p}$

Proof

•
$$|v(y+x)-v(x)|^{p} \leq |y|^{p} \int_{0}^{1} |\nabla v(ty+x)|^{p} dt.$$

• Integrating over x gives

$$\begin{split} \|\tau_{y}v - v\|_{L^{p}}^{p} &= \int_{\mathbb{R}^{n}} |v(y + x) - v(x)|^{p} dx \\ &\leq |y|^{p} \int_{\mathbb{R}^{n}} \int_{0}^{1} |\nabla v(ty + x)|^{p} dt dx \\ &= |y|^{p} \int_{0}^{1} \int_{\mathbb{R}^{n}} |\nabla v(ty + x)|^{p} dx dt \\ &= |y|^{p} \|\nabla v\|_{L^{p}(\mathbb{R}^{n})}^{p}. \end{split}$$

So we have $\|\tau_y v - v\|_{L^p} \leq |y| \|\nabla v\|_{L^p(\mathbb{R}^n)}$ as wanted.

Continuity of translation operators in $W^{1,p}$

Remark

We remarked in Lecture 2 that the map $h \mapsto \tau_h$ is not a continuous map from \mathbb{R}^n into $\mathscr{L}(L^p(\mathbb{R}^n), L^p(\mathbb{R}^n))$. The above lemma implies that $h \mapsto \tau_h$ is not a continuous map from \mathbb{R}^n into $\mathscr{L}(W^{1,p}(\mathbb{R}^n), L^p(\mathbb{R}^n))$.

Proof

• Let $X = \mathscr{L}(W^{1,p}(\mathbb{R}^n), L^p(\mathbb{R}^n))$. The statement amounts to $\tau_y \to Id$ in X as $y \to 0$. So we need to show that

$$0 = \lim_{y \to 0} \|\tau_y - Id\|_X = \lim_{y \to 0} \sup_{u \in W^{1,p}(\mathbb{R}^n) : \|u\|_{W^{1,p}} \le 1} \|\tau_y u - u\|_{L^p}.$$

• By the lemma, we have $\|\tau_y u - u\|_{L^p} \le |y| \|\nabla u\|_{L^p} \le |y|$ whenever $\|u\|_{W^{1,p}} \le 1$. So the point above is clear.

Characterisation of $W^{1,p}$ using translation operators

Theorem

Assume that $1 and <math>v \in L^{p}(\mathbb{R}^{n})$. Suppose that there exist small r > 0 and large C such that

$$\| au_y \mathbf{v} - \mathbf{v}\|_{L^p(\mathbb{R}^n)} \leq C|y|$$
 for all $|y| \leq r$.

Then

$$v \in W^{1,p}(\mathbb{R}^n)$$
 and $\|\nabla v\|_{L^p(\mathbb{R}^n)} \leq C$.

Sketch of proof

• Fix a direction e_i . By hypothesis $q_t := \frac{1}{t}[\tau_{te_i}v - v]$ is bounded in L^p for $|t| \le r$. By the weak sequential compactness property in L^p , we have along a sequence $t_k \to 0$ that q_{t_k} converges weakly in L^p to some $w_i \in L^p(\mathbb{R}^n)$.

Characterisation of $W^{1,p}$ using translation operators

Sketch of proof

•
$$q_{t_k} = \frac{1}{|t_k|} [\tau_{t_k e_i} v - v] \rightharpoonup w_i$$
 in L^p .

• The key point is the following identity

$$\int_{\mathbb{R}^n} [\tau_{t_k e_i} v - v] \varphi \, dx = - \int_{\mathbb{R}^n} v [\varphi - \tau_{-t_k e_i} \varphi] \, dx.$$

• Now divide both side by t_k and sending $k \to \infty$, we then get

$$\int_{\mathbb{R}^n} w_i \varphi \, dx = - \int_{\mathbb{R}^n} v \partial_i \varphi \, dx \text{ for all } \varphi \in C^\infty_c(\mathbb{R}^n).$$

This proves $\partial_i v = w_i \in L^p(\mathbb{R}^n)$. The conclusion follows.