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In the last lecture

Morrey’s inequality, p =∞
Friedrichs’ inequality

Statement of Rellich-Kondrachov’s compactness theorem
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This lecture

Proof of Rellich-Kondrachov’s compactness theorem

Poincaré’s inequality

Local behavior of Sobolev functions
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Rellich-Kondrachov’s theorem

Theorem (Rellich-Kondrachov’s compactness theorem)

Let Ω be a bounded Lipschitz domain and 1 ≤ p ≤ ∞. Suppose
1 ≤ q < p∗ when p < n, 1 ≤ q <∞ when p = n, and 1 ≤ q ≤ ∞
when p > n. Then the embedding W 1,p(Ω) ↪→ Lq(Ω) is compact, i.e.
every bounded sequence in W 1,p(Ω) contains a subsequence which
converges in Lq(Ω).

We reiterate that, when p < n, the endpoint embedding
W 1,p(Ω) ↪→ Lp

∗
(Ω) is not compact.

When p > n, we have W 1,p(Ω) ↪→ C 0,1− n
p (Ω), so the above is a

consequence of Ascoli-Arzelà’s theorem. (Check this!)
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Rellich-Kondrachov’s theorem

Proof of the case q = p ≤ n.

Suppose that (um) is bounded in W 1,p(Ω). We need to
construct a subsequence (umj

) which converges in Lp(Ω).

As (um) is bounded in Lp(Ω), we would be done by
Komolgorov-Riesz-Fréchet’s theorem if (um) is equi-continuous
in Lp sense.

Last time we prove a continuity of translation operators in
W 1,p(Rn). To make use of this result, we let
E : W 1,p(Ω)→ W 1,p(Rn) be a bounded linear extension
operator. Then the family (Eum) is bounded in Lp(Rn) and is
equi-continuous in Lp(Rn) sense. But as Rn is unbounded, we
cannot apply Komolgorov-Riesz-Fréchet’s theorem to this family.
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Rellich-Kondrachov’s theorem

Proof of the case q = p ≤ n.

We proceed as follows: Take a large ball BR containing Ω̄ and
select a cut-off function ζ ∈ C∞c (BR) such that ζ ≡ 1 in Ω. Let

vm = ζEum.

Clearly vm = um a.e. in Ω, Supp(vm) ⊂ BR and (vm) is bounded
in W 1,p(Rn).
We aim to apply Komolgorov-Riesz-Fréchet’s theorem to
(vm|BR

).
? It is clear that (vm|BR

) is bounded in Lp(BR).
? Also, by the continuity of translation operators in W 1,p, we have

‖τyvm − vm‖Lp(Rn) ≤ |y |‖Dvm‖Lp(Rn) ≤ |y |‖vm‖W 1,p(Rn).

Therefore, for every ε > 0, there exists δ > 0 such that
‖τyvm − vm‖Lp(BR) ≤ ε for all m and all |y | < δ, i.e. (vm|BR

) is
equi-continuous in Lp sense. We’re done.
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.

Suppose that 1 ≤ q < p∗ if p < n, 1 ≤ q <∞ if p = n. By the
embedding theorems, we know that there exists q̂ > q such that
W 1,p(Ω) ↪→ Lq̂(Ω).

Suppose that (um) is bounded in W 1,p(Ω). We need to
construct a subsequence (umj

) which converges in Lq(Ω).

We knew from the previous case that there is a subsequence
(umj

) which converges in Lp(Ω) to some u ∈ Lp(Ω). Passing to
a subsequence if necessary, we may also assume that (umj

)
converges to u a.e. in Ω.

To conclude, we show that u ∈ Lq(Ω) and (umj
) converges in

Lq(Ω) to u.

If q ≤ p, the above follows from Hölder’s inequality. We assume
henceforth that q > p.
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.

We now show that u ∈ Lq(Ω). In fact, we show that u ∈ Lq̂(Ω).

? By the embedding W 1,p(Ω) ↪→ Lq̂(Ω), we have that um is
bounded in Lq̂(Ω).

? By Fatou’s lemma, we have∫
Ω
|u|q̂ dx ≤ lim inf

j→∞

∫
Ω
|umj |

q̂ dx <∞.

Hence u ∈ Lq̂(Ω).
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.

Finally, we show that umj
→ u in Lq(Ω).

We observe that umj − u converges to 0 in Lp(Ω) and is

bounded in Lq̂(Ω) with p < q < q̂.
Now we write, for θ ∈ (0, 1) to be fixed

‖umj − u‖qLq =

∫
Ω
|umj − u|q dx =

∫
Ω
|umj − u|qθ|umj − u|q(1−θ) dx

and apply Hölder’s inequality with some pair of conjugate
exponents r and r ′ to be fixed:

‖umj − u‖qLq ≤
{∫

Ω
|umj − u|qθr dx

}1/r{∫
Ω
|umj − u|q(1−θ)r ′ dx

}1/r ′

.
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Rellich-Kondrachov’s theorem

Proof of the general case for p ≤ n.
...we are showing that umj

→ u in Lq(Ω).

umj − u → 0 in Lp(Ω) and umj − u is bounded in Lq̂(Ω) with
p < q < q̂.
‖umj − u‖Lq ≤ ‖umj − u‖θLqθr ‖umj − u‖1−θ

Lq(1−θ)r′ .

Now, if we can chose θ ∈ (0, 1) and r > 1 such that qθr = p
and q(1− θ)r ′ = q̂, then the first factor on the right hand side
goes to zero and the second factor remains bounded, and so
umj → u in Lq(Ω) as wanted.
To solve for θ and r , we first eliminate r to obtain

1 =
1

r
+

1

r ′
= θ

p

q
+ (1− θ)

q̂

q
.

As p
q < 1 < q̂

q , we can certainly select θ ∈ (0, 1) satisfying the

above. The exponent r is given by r = q
pθ . This concludes the

proof.
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Poincaré’s inequality

Theorem (Poincaré’s inequality)

Suppose that 1 ≤ p ≤ ∞ and Ω is a bounded Lipschitz domain.
There exists a constant Cn,p,Ω > 0 such that

‖u − ūΩ‖Lp(Ω) ≤ Cn,p,Ω‖∇u‖Lp(Ω) for all u ∈ W 1,p(Ω),

where ūΩ is the average of u in Ω:

ūΩ :=
1

|Ω|

∫
Ω

u(x) dx .

When p =∞, the theorem is a consequence of the fact that
W 1,∞(Ω) = C 0,1(Ω). (Check this!)
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Poincaré’s inequality

Proof for p <∞.

We argue by contradiction. Suppose the conclusion is not true.
Then there exists a sequence (um) ⊂ W 1,p(Ω) such that

‖um − ūm‖Lp > m‖∇um‖Lp ,

where ūm is the average of um in Ω.

Replacing um by um − ūm, we may assume that um has zero
average, so that ‖um‖Lp > m‖∇um‖Lp .

Replacing um by 1
‖um‖Lp

um, we may assume that ‖um‖Lp = 1.

The above implies that ‖∇um‖Lp ≤ 1
m

and so (um) is bounded in
W 1,p(Ω).

By Rellich-Kondrachov’s compactness theorem, we can find a
subsequence (umj

) which converges in Lp(Ω), say to u.
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Poincaré’s inequality

Proof for p <∞.

By the strong convergence of umj
to u, we have that

‖u‖Lp = lim
j→∞
‖umj
‖Lp = 1,

and ∫
Ω

u dx = lim
j→∞

∫
Ω

umj
dx = 0.

On the other hand, as ‖∇um‖Lp < 1
m

, we have for every
ϕ ∈ C∞c (Ω) that∫

Ω

u∂iϕ dx = lim
j→∞

∫
Ω

umj
∂iϕ dx = − lim

j→∞

∫
Ω

∂iumj
ϕ dx = 0.

Hence u is weakly differentiable and ∇u = 0 in Ω. In Sheet 2,
we show that this implies u is constant.
As u has zero average, we must then have u = 0 in Ω, which
contradicts the assertion that ‖u‖Lp = 1.
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Local differentiability of Sobolev functions

Theorem
Suppose Ω is a domain in Rn and n < p ≤ ∞. Assume that
u ∈ W 1,p(Ω) ∩ C (Ω). Then u is differentiable a.e. in Ω and its
derivatives equal its weak derivatives a.e. in Ω.

Proof

We will only consider the case p <∞. The case p =∞ is a
consequence.

By Lebesgue’s differentiation theorem, there is a set Z ⊂ Ω of
measure zero such that

lim
r→0

1

rn

∫
Br (x)

|∇u(y)−∇u(x)|p dy = 0 for all x ∈ Ω \ Z .

We aim to show that u is differentiable at those x ∈ Ω \ Z .
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Local differentiability of Sobolev functions

Proof

Fix some x ∈ Ω \ Z and consider the function

v(y) = u(y)− u(x)−∇u(x) · (y − x) for y ∈ Ω.

Then v ∈ W 1,p(Ω) ∩ C (Ω), v(x) = 0 and
∇v(y) = ∇u(y)−∇u(x).

By Morrey’s inequality, we have for every ball Br (x) ∈ Ω and
y ∈ ∂Br (x) that

|v(y)| = |v(y)− v(x)| ≤ [v ]
C

0,1− n
p (Br (x))

|x − y |1−
n
p

≤ Cr 1− n
p ‖∇v‖Lp(Br (x))

= Cr 1− n
p

{∫
Br (x)

|∇u(y)−∇u(x)|p dx
}1/p

.
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Local differentiability of Sobolev functions

Proof

So we have

? lim
r→0

1

rn

∫
Br (x)

|∇u(y)−∇u(x)|p dy = 0, and

? |v(y)| ≤ Cr1− n
p

{∫
Br (x)

|∇u(y)−∇u(x)|p dy
}1/p

whenever

|y − x | = r .

Putting the two together, we see that

lim
y→x

1

|y − x |
|u(y)−u(x)−∇u(x) · (y−x)| = lim

y→x

1

|y − x |
|v(y)| = 0.

This means that u is differentiable at x and its classical gradient
at x is the same at its weak gradient at x .
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Lp differentiability of Sobolev functions

Theorem
Suppose Ω is a domain in Rn and 1 ≤ p < n. Assume that
u ∈ W 1,p(Ω). Then for almost all x ∈ Ω it holds that

lim
r→0

1

r 1+ n
p

{∫
Br (x)

|u(y)− u(x)−∇u(x) · (y − x)|p dy
}1/p

= 0.

Discussion of proof

As in the case p > n, we start by picking a set Z ⊂ Ω of
measure zero such that

lim
r→0

1

rn

∫
Br (x)

|∇u(y)−∇u(x)|p dy = 0 for all x ∈ Ω \ Z .

Luc Nguyen (University of Oxford) C4.3 – Lecture 10 MT 2020 17 / 24



Lp differentiability of Sobolev functions

Discussion of proof

We consider again the function

v(y) = u(y)− u(x)−∇u(x) · (y − x) for y ∈ Ω,

so that v ∈ W 1,p(Ω) and ∇v(y) = ∇u(y)−∇u(x). Note that
however the meaning of v(x) = 0 is rather obscure since v does
not have enough regularity.

If we have the Poincaré-type inequality

‖v‖Lp(Br (x)) ≤ Cr‖∇v‖Lp(Br (x)), (*)

then, by recalling that r−n‖∇v‖pLp(Br (x)) → 0 as r → 0, we can
obtain the conclusion as in the case p > n considered previously.
However, (*) is general not valid for arbitrary functions
v ∈ W 1,p.
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Lp differentiability of Sobolev functions

Discussion of proof

The proof is actually much more involved and goes through
approximation of u by smooth functions.

It should be clear that the conclusion hold when u ∈ C 1(Ω) as

u(y)− u(x)−∇u(x) · (y − x) = o(|y − x |) as y → x .
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Towards Lp differentiability of Sobolev functions

We will be content with the following estimate for C 1 functions:

Lemma
Let Ω be a domain in Rn and suppose u ∈ C 1(Ω). Then, for all
Br (x) ⊂ Ω,∫

Br (x)

|u(y)− u(x)−∇u(x) · (y − x)|p dy

≤ rp+n−1

∫ r

0

1

sn

∫
Bs(x)

|∇u(y)−∇u(x)|p dy ds.

It should be noted that the term
∫
Bs(x)
|∇u(y)−∇u(x)|p dy is of

order o(sn) as u ∈ C 1. This remains true for a.e. x if u ∈ W 1,p.
Therefore, the right hand side is of order o(rp+n). The theorem
about Lp-differentiability thus makes sense.
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Towards Lp differentiability of Sobolev functions

By letting v(y) = u(y)− u(x)−∇u(x) · (y − x), we obtain the
following equivalent form:

Lemma
Let Ω be a domain in Rn and suppose v ∈ C 1(Ω). Then, for all
Br (x) ⊂ Ω,∫

Br (x)

|v(y)− v(x)|p dy ≤ rp+n−1

∫ r

0

1

sn

∫
Bs(x)

|∇v(y)|p dy ds.

Proof

By the converse to Hölder’s inequality, we need to show that∫
Br (x)

(v(y)−v(x))g(y) dy ≤
{
rp+n−1

∫ r

0

1

sn

∫
Bs(x)

|∇v(y)|p dy ds
}1/p

for all g ∈ Lp
′
(Br (x)) with ‖g‖Lp′ = 1.
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Towards Lp differentiability of Sobolev functions

Proof

We may assume that x = 0. We have

v(y)− v(x) =

∫ 1

0

d

dt
v(ty) dt =

∫ 1

0

yi∂iv(ty) dt.

Multiplying by g(y) and integrating over y ∈ ∂Bs(0) give∫
∂Bs(0)

(v(y)− v(x))g(y) dS(y) ≤
∫ 1

0

∫
∂Bs(0)

s|∇v(ty)||g(y)|dS(y) dt.

Integrating over s then gives∫
Br (0)

(v(y)−v(x))g(y) dy ≤
∫ r

0

∫ 1

0

∫
∂Bs(0)

s|∇v(ty)||g(y)|dS(y) dt ds.
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Towards Lp differentiability of Sobolev functions

Proof

Swapping the order of integration yields∫
Br (0)

(v(y)− v(x))g(y) dy ≤ r

∫ 1

0

∫ r

0

∫
∂Bs(0)

|∇v(ty)||g(y)|dS(y) ds dt

= r

∫ 1

0

∫
Br (0)

|∇v(ty)||g(y)|dy dt.

Using Hölder’s inequality and note that ‖g‖Lp′ = 1, we thus have∫
Br (0))

(v(y)− v(x))g(y) dy ≤ r

∫ 1

0

{∫
Br (0)

|∇v(ty)|p dy
}1/p

dt

≤ r
{∫ 1

0

∫
Br (0)

|∇v(ty)|p dy dt
}1/p

.
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Towards Lp differentiability of Sobolev functions

Proof

It follows that∫
Br (0))

(v(y)− v(x))g(y) dy ≤ r
{∫ 1

0

1

tn

∫
Btr (0)

|∇v(z)|p dz dt
}1/p

= r
{
rn−1

∫ r

0

1

sn

∫
Bs(0)

|∇v(z)|p dz ds
}1/p

.

As explained before, this together with the converse to Hölder’s
inequality gives the conclusion.
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