

C4.3 Functional Analytic Methods for PDEs Lecture 10

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

- Morrey's inequality, $p=\infty$
- Friedrichs' inequality
- Statement of Rellich-Kondrachov's compactness theorem

- Proof of Rellich-Kondrachov's compactness theorem
- Poincaré's inequality
- Local behavior of Sobolev functions

Theorem (Rellich-Kondrachov's compactness theorem)

Let Ω be a bounded Lipschitz domain and $1 \leq p \leq \infty$. Suppose $1 \leq q < p^*$ when $p < n, 1 \leq q < \infty$ when p = n, and $1 \leq q \leq \infty$ when p > n. Then the embedding $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ is compact, i.e. every bounded sequence in $W^{1,p}(\Omega)$ contains a subsequence which converges in $L^q(\Omega)$.

We reiterate that, when p < n, the endpoint embedding $W^{1,p}(\Omega) \hookrightarrow L^{p^*}(\Omega)$ is not compact. When p > n, we have $W^{1,p}(\Omega) \hookrightarrow C^{0,1-\frac{n}{p}}(\Omega)$, so the above is a consequence of Ascoli-Arzelà's theorem. (Check this!) Proof of the case $q = p \leq n$.

- Suppose that (u_m) is bounded in W^{1,p}(Ω). We need to construct a subsequence (u_{mi}) which converges in L^p(Ω).
- As (u_m) is bounded in L^p(Ω), we would be done by Komolgorov-Riesz-Fréchet's theorem if (u_m) is equi-continuous in L^p sense.
- Last time we prove a continuity of translation operators in W^{1,p}(ℝⁿ). To make use of this result, we let E : W^{1,p}(Ω) → W^{1,p}(ℝⁿ) be a bounded linear extension operator. Then the family (Eu_m) is bounded in L^p(ℝⁿ) and is equi-continuous in L^p(ℝⁿ) sense. But as ℝⁿ is unbounded, we cannot apply Komolgorov-Riesz-Fréchet's theorem to this family.

Rellich-Kondrachov's theorem

Proof of the case $q = p \leq n$.

 We proceed as follows: Take a large ball B_R containing Ω and select a cut-off function ζ ∈ C[∞]_c(B_R) such that ζ ≡ 1 in Ω. Let

$$v_m = \zeta E u_m.$$

Clearly $v_m = u_m$ a.e. in Ω , $Supp(v_m) \subset B_R$ and (v_m) is bounded in $W^{1,p}(\mathbb{R}^n)$.

- We aim to apply Komolgorov-Riesz-Fréchet's theorem to (v_m|_{B_R}).
 - * It is clear that $(v_m|_{B_R})$ is bounded in $L^p(B_R)$.
 - \star Also, by the continuity of translation operators in $W^{1,p}$, we have

$$\|\tau_{y}v_{m}-v_{m}\|_{L^{p}(\mathbb{R}^{n})}\leq |y|\|Dv_{m}\|_{L^{p}(\mathbb{R}^{n})}\leq |y|\|v_{m}\|_{W^{1,p}(\mathbb{R}^{n})}.$$

Therefore, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $\|\tau_y v_m - v_m\|_{L^p(B_R)} \le \varepsilon$ for all m and all $|y| < \delta$, i.e. $(v_m|_{B_R})$ is equi-continuous in L^p sense. We're done.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Suppose that $1 \leq q < p^*$ if p < n, $1 \leq q < \infty$ if p = n. By the embedding theorems, we know that there exists $\hat{q} > q$ such that $W^{1,p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$.
- Suppose that (u_m) is bounded in W^{1,p}(Ω). We need to construct a subsequence (u_{m_i}) which converges in L^q(Ω).
- We knew from the previous case that there is a subsequence (u_{m_j}) which converges in L^p(Ω) to some u ∈ L^p(Ω). Passing to a subsequence if necessary, we may also assume that (u_{m_j}) converges to u a.e. in Ω.
- To conclude, we show that $u \in L^q(\Omega)$ and (u_{m_j}) converges in $L^q(\Omega)$ to u.
- If q ≤ p, the above follows from Hölder's inequality. We assume henceforth that q > p.

Proof of the general case for $p \leq n$.

- We now show that $u \in L^q(\Omega)$. In fact, we show that $u \in L^{\hat{q}}(\Omega)$.
 - * By the embedding $W^{1,p}(\Omega) \hookrightarrow L^{\hat{q}}(\Omega)$, we have that u_m is bounded in $L^{\hat{q}}(\Omega)$.
 - ★ By Fatou's lemma, we have

$$\int_{\Omega} |u|^{\hat{q}} dx \leq \liminf_{j \to \infty} \int_{\Omega} |u_{m_j}|^{\hat{q}} dx < \infty.$$

Hence $u \in L^{\hat{q}}(\Omega)$.

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- Finally, we show that $u_{m_i} \to u$ in $L^q(\Omega)$.
 - We observe that u_{mj} − u converges to 0 in L^p(Ω) and is bounded in L^{q̂}(Ω) with p < q < q̂.
 - Now we write, for $heta\in(0,1)$ to be fixed

$$||u_{m_j} - u||_{L^q}^q = \int_{\Omega} |u_{m_j} - u|^q \, dx = \int_{\Omega} |u_{m_j} - u|^{q\theta} |u_{m_j} - u|^{q(1-\theta)} \, dx$$

and apply Hölder's inequality with some pair of conjugate exponents r and r' to be fixed:

$$\|u_{m_j} - u\|_{L^q}^q \le \Big\{\int_{\Omega} |u_{m_j} - u|^{q\theta r} dx\Big\}^{1/r} \Big\{\int_{\Omega} |u_{m_j} - u|^{q(1-\theta)r'} dx\Big\}^{1/r'}$$

Rellich-Kondrachov's theorem

Proof of the general case for $p \leq n$.

- ...we are showing that $u_{m_i} \to u$ in $L^q(\Omega)$.
 - $u_{m_j} u \rightarrow 0$ in $L^p(\Omega)$ and $u_{m_j} u$ is bounded in $L^{\hat{q}}(\Omega)$ with $p < q < \hat{q}$.
 - $||u_{m_j} u||_{L^q} \le ||u_{m_j} u||^{\theta}_{L^{q(r)}} ||u_{m_j} u||^{1-\theta}_{L^{q(1-\theta)r'}}.$
 - Now, if we can chose $\theta \in (0,1)$ and r > 1 such that $q\theta r = p$ and $q(1-\theta)r' = \hat{q}$, then the first factor on the right hand side goes to zero and the second factor remains bounded, and so $u_{m_j} \to u$ in $L^q(\Omega)$ as wanted.
 - To solve for θ and r, we first eliminate r to obtain

$$1 = \frac{1}{r} + \frac{1}{r'} = \theta \frac{p}{q} + (1 - \theta) \frac{\hat{q}}{q}.$$

As $\frac{p}{q} < 1 < \frac{\hat{q}}{q}$, we can certainly select $\theta \in (0, 1)$ satisfying the above. The exponent r is given by $r = \frac{q}{p\theta}$. This concludes the proof.

Theorem (Poincaré's inequality)

Suppose that $1 \le p \le \infty$ and Ω is a bounded Lipschitz domain. There exists a constant $C_{n,p,\Omega} > 0$ such that

 $\|u-\bar{u}_{\Omega}\|_{L^{p}(\Omega)} \leq C_{n,p,\Omega} \|\nabla u\|_{L^{p}(\Omega)}$ for all $u \in W^{1,p}(\Omega)$,

where \bar{u}_{Ω} is the average of u in Ω :

$$\bar{u}_{\Omega}:=\frac{1}{|\Omega|}\int_{\Omega}u(x)\,dx.$$

When $p = \infty$, the theorem is a consequence of the fact that $W^{1,\infty}(\Omega) = C^{0,1}(\Omega)$. (Check this!)

Poincaré's inequality

Proof for $p < \infty$.

• We argue by contradiction. Suppose the conclusion is not true. Then there exists a sequence $(u_m) \subset W^{1,p}(\Omega)$ such that

$$\|u_m-\bar{u}_m\|_{L^p}>m\|\nabla u_m\|_{L^p},$$

where \bar{u}_m is the average of u_m in Ω .

- Replacing u_m by $u_m \bar{u}_m$, we may assume that u_m has zero average, so that $||u_m||_{L^p} > m||\nabla u_m||_{L^p}$.
- Replacing u_m by $\frac{1}{\|u_m\|_{L^p}}u_m$, we may assume that $\|u_m\|_{L^p} = 1$.
- The above implies that $\|\nabla u_m\|_{L^p} \leq \frac{1}{m}$ and so (u_m) is bounded in $W^{1,p}(\Omega)$.
- By Rellich-Kondrachov's compactness theorem, we can find a subsequence (u_{m_j}) which converges in L^p(Ω), say to u.

Poincaré's inequality

Proof for $p < \infty$.

• By the strong convergence of u_{m_i} to u, we have that

$$||u||_{L^p} = \lim_{j\to\infty} ||u_{m_j}||_{L^p} = 1,$$

and

$$\int_{\Omega} u \, dx = \lim_{j \to \infty} \int_{\Omega} u_{m_j} \, dx = 0.$$

• On the other hand, as $\|\nabla u_m\|_{L^p} < \frac{1}{m}$, we have for every $\varphi \in C_c^{\infty}(\Omega)$ that

$$\int_{\Omega} u \partial_i \varphi \, dx = \lim_{j \to \infty} \int_{\Omega} u_{m_j} \partial_i \varphi \, dx = -\lim_{j \to \infty} \int_{\Omega} \partial_i u_{m_j} \varphi \, dx = 0.$$

Hence *u* is weakly differentiable and $\nabla u = 0$ in Ω . In Sheet 2, we show that this implies *u* is constant.

As u has zero average, we must then have u = 0 in Ω, which contradicts the assertion that ||u||_{L^p} = 1.

Local differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^n and $n . Assume that <math>u \in W^{1,p}(\Omega) \cap C(\Omega)$. Then u is differentiable a.e. in Ω and its derivatives equal its weak derivatives a.e. in Ω .

Proof

- We will only consider the case $p < \infty$. The case $p = \infty$ is a consequence.
- By Lebesgue's differentiation theorem, there is a set $Z\subset \Omega$ of measure zero such that

$$\lim_{r\to 0}\frac{1}{r^n}\int_{B_r(x)}|\nabla u(y)-\nabla u(x)|^p\,dy=0\text{ for all }x\in\Omega\setminus Z.$$

We aim to show that u is differentiable at those $x \in \Omega \setminus Z$.

Local differentiability of Sobolev functions

Proof

• Fix some $x \in \Omega \setminus Z$ and consider the function

$$v(y) = u(y) - u(x) - \nabla u(x) \cdot (y - x)$$
 for $y \in \Omega$.

Then $v \in W^{1,p}(\Omega) \cap C(\Omega)$, v(x) = 0 and $\nabla v(y) = \nabla u(y) - \nabla u(x)$.

• By Morrey's inequality, we have for every ball $B_r(x) \in \Omega$ and $y \in \partial B_r(x)$ that

$$\begin{split} |v(y)| &= |v(y) - v(x)| \leq [v]_{C^{0,1-\frac{n}{p}}(B_r(x))} |x - y|^{1-\frac{n}{p}} \\ &\leq Cr^{1-\frac{n}{p}} \|\nabla v\|_{L^p(B_r(x))} \\ &= Cr^{1-\frac{n}{p}} \Big\{ \int_{B_r(x)} |\nabla u(y) - \nabla u(x)|^p \, dx \Big\}^{1/p}. \end{split}$$

Local differentiability of Sobolev functions

Proof

• So we have
*
$$\lim_{r \to 0} \frac{1}{r^n} \int_{B_r(x)} |\nabla u(y) - \nabla u(x)|^p \, dy = 0, \text{ and}$$
*
$$|v(y)| \le Cr^{1-\frac{n}{p}} \Big\{ \int_{B_r(x)} |\nabla u(y) - \nabla u(x)|^p \, dy \Big\}^{1/p} \text{ whenever}$$

$$|y - x| = r.$$

Putting the two together, we see that

$$\lim_{y \to x} \frac{1}{|y-x|} |u(y) - u(x) - \nabla u(x) \cdot (y-x)| = \lim_{y \to x} \frac{1}{|y-x|} |v(y)| = 0.$$

This means that u is differentiable at x and its classical gradient at x is the same at its weak gradient at x.

L^p differentiability of Sobolev functions

Theorem

Suppose Ω is a domain in \mathbb{R}^n and $1 \leq p < n$. Assume that $u \in W^{1,p}(\Omega)$. Then for almost all $x \in \Omega$ it holds that

$$\lim_{r\to 0}\frac{1}{r^{1+\frac{n}{p}}}\Big\{\int_{B_r(x)}|u(y)-u(x)-\nabla u(x)\cdot (y-x)|^p\,dy\Big\}^{1/p}=0.$$

Discussion of proof

 As in the case p > n, we start by picking a set Z ⊂ Ω of measure zero such that

$$\lim_{r\to 0}\frac{1}{r^n}\int_{B_r(x)}|\nabla u(y)-\nabla u(x)|^p\,dy=0\text{ for all }x\in\Omega\setminus Z.$$

L^p differentiability of Sobolev functions

Discussion of proof

• We consider again the function

$$v(y) = u(y) - u(x) - \nabla u(x) \cdot (y - x)$$
 for $y \in \Omega$,

so that $v \in W^{1,p}(\Omega)$ and $\nabla v(y) = \nabla u(y) - \nabla u(x)$. Note that however the meaning of v(x) = 0 is rather obscure since v does not have enough regularity.

• If we have the Poincaré-type inequality

$$\|v\|_{L^{p}(B_{r}(x))} \leq Cr \|\nabla v\|_{L^{p}(B_{r}(x))},$$
 (*)

then, by recalling that $r^{-n} \|\nabla v\|_{L^p(B_r(x))}^p \to 0$ as $r \to 0$, we can obtain the conclusion as in the case p > n considered previously. However, (*) is general not valid for arbitrary functions $v \in W^{1,p}$. Discussion of proof

- The proof is actually much more involved and goes through approximation of *u* by smooth functions.
- It should be clear that the conclusion hold when $u \in C^1(\Omega)$ as

$$u(y) - u(x) - \nabla u(x) \cdot (y - x) = o(|y - x|)$$
 as $y \to x$.

We will be content with the following estimate for C^1 functions:

Lemma

Let Ω be a domain in \mathbb{R}^n and suppose $u \in C^1(\Omega)$. Then, for all $B_r(x) \subset \Omega$,

$$\begin{split} \int_{B_r(x)} |u(y) - u(x) - \nabla u(x) \cdot (y - x)|^p \, dy \\ &\leq r^{p+n-1} \int_0^r \frac{1}{s^n} \int_{B_s(x)} |\nabla u(y) - \nabla u(x)|^p \, dy \, ds. \end{split}$$

It should be noted that the term $\int_{B_s(x)} |\nabla u(y) - \nabla u(x)|^p dy$ is of order $o(s^n)$ as $u \in C^1$. This remains true for a.e. x if $u \in W^{1,p}$. Therefore, the right hand side is of order $o(r^{p+n})$. The theorem about L^p -differentiability thus makes sense.

By letting $v(y) = u(y) - u(x) - \nabla u(x) \cdot (y - x)$, we obtain the following equivalent form:

Lemma

Let Ω be a domain in \mathbb{R}^n and suppose $v \in C^1(\Omega)$. Then, for all $B_r(x) \subset \Omega$,

$$\int_{B_r(x)} |v(y) - v(x)|^p \, dy \le r^{p+n-1} \int_0^r \frac{1}{s^n} \int_{B_s(x)} |\nabla v(y)|^p \, dy \, ds.$$

Proof

• By the converse to Hölder's inequality, we need to show that

$$\int_{B_r(x)} (v(y) - v(x)) g(y) \, dy \leq \left\{ r^{p+n-1} \int_0^r \frac{1}{s^n} \int_{B_s(x)} |\nabla v(y)|^p \, dy \, ds \right\}^{1/p}$$

for all
$$g\in L^{p'}(B_r(x))$$
 with $\|g\|_{L^{p'}}=1.$

Proof

• We may assume that x = 0. We have

$$v(y)-v(x)=\int_0^1\frac{d}{dt}v(ty)\,dt=\int_0^1y_i\partial_iv(ty)\,dt.$$

• Multiplying by g(y) and integrating over $y \in \partial B_s(0)$ give

$$\int_{\partial B_s(0)} (v(y)-v(x))g(y)\,dS(y) \leq \int_0^1 \int_{\partial B_s(0)} s|\nabla v(ty)||g(y)|dS(y)\,dt.$$

• Integrating over s then gives

$$\int_{B_r(0)} (v(y)-v(x))g(y)\,dy \leq \int_0^r \int_0^1 \int_{\partial B_s(0)} s|\nabla v(ty)||g(y)|dS(y)\,dt\,ds.$$

Proof

• Swapping the order of integration yields

$$\begin{split} \int_{B_r(0)} & (v(y) - v(x))g(y) \, dy \leq r \int_0^1 \int_0^r \int_{\partial B_s(0)} \!\!\!|\nabla v(ty)|| g(y) | dS(y) \, ds \, dt \\ & = r \int_0^1 \int_{B_r(0)} |\nabla v(ty)|| g(y) | dy \, dt. \end{split}$$

• Using Hölder's inequality and note that $\|g\|_{L^{p'}} = 1$, we thus have

$$\begin{split} \int_{B_r(0))} (v(y) - v(x)) g(y) \, dy &\leq r \int_0^1 \Big\{ \int_{B_r(0)} |\nabla v(ty)|^p \, dy \Big\}^{1/p} \, dt \\ &\leq r \Big\{ \int_0^1 \int_{B_r(0)} |\nabla v(ty)|^p \, dy \, dt \Big\}^{1/p}. \end{split}$$

Proof

It follows that

$$\begin{split} \int_{B_r(0))} (v(y) - v(x)) g(y) \, dy &\leq r \Big\{ \int_0^1 \frac{1}{t^n} \int_{B_{tr}(0)} |\nabla v(z)|^p \, dz \, dt \Big\}^{1/p} \\ &= r \Big\{ r^{n-1} \int_0^r \frac{1}{s^n} \int_{B_s(0)} |\nabla v(z)|^p \, dz \, ds \Big\}^{1/p} \end{split}$$

As explained before, this together with the converse to Hölder's inequality gives the conclusion.