

C4.3 Functional Analytic Methods for PDEs Lecture 12

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

In the last lecture

- Linear elliptic equations of second order
- Classical and weak solutions
- Energy estimates
- First existence theorem: Riesz represenation theorem

This lecture

- First existence theorem: Direct method of the calculus of variation.
- Second existence theorem: Fredholm alternative.

Theorem

Suppose that $a, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω , and $L = -\partial_i(a_{ij}\partial_j) + c$ (i.e. $b \equiv 0$). Then for every $f \in L^2(\Omega)$, $g \in L^2(\Omega)$ and $u_0 \in H^1(\Omega)$, the Dirichlet boundary value problem

$$\begin{cases}
Lu = f + \partial_i g_i & \text{in } \Omega, \\
u = u_0 & \text{on } \partial\Omega
\end{cases}$$
(BVP)

has a unique weak solution $u \in H^1(\Omega)$.

Theorem

Suppose that $a, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, $c \geq 0$ a.e. in Ω , and $L = -\partial_i(a_{ij}\partial_j) + c$ (i.e. $b \equiv 0$). Then $L|_{H^1_0(\Omega)}$ is a bijection from $H^1_0(\Omega)$ into $H^{-1}(\Omega)$.

First proof: Riesz representation theorem.

• The equation Lu = T with $T \in H^{-1}(\Omega)$ is equivalent to

$$B(u, v) = Tv$$
 for all $v \in H_0^1(\Omega)$.

• The bilinear form $B(\cdot, \cdot)$ defines an inner product on $H_0^1(\Omega)$, which is equivalent to the standard inner product of $H_0^1(\Omega)$. The conclusion is reached using the Riesz representation theorem.

Second proof: Direct method of the calculus of variation.

We'll use the fact that $H_0^1(\Omega)$ is weakly closed in $H^1(\Omega)$. This is a consequence of the following general theorem:

Theorem (Mazur)

Let K be a closed convex subset of a normed vector space X, (x_n) be a sequence of points in K converging weakly to x. Then $x \in K$.

Second proof

• Fix $T \in H^{-1}(\Omega)$ and define the 'variational energy':

$$I[v] = \frac{1}{2}B(v,v) - Tv \text{ for } v \in X := H_0^1(\Omega).$$

The key point of the proof is the fact that: $u \in X$ solves Lu = T if u is a minimizer or I on X i.e. $I[u] \leq I[v]$ for all $v \in X$.

- Step 1: Boundedness of minimizing sequence. Let $\alpha = \inf_X I \in \mathbb{R} \cup \{-\infty\}$. Note that I[0] = 0 and so $\alpha \leq 0$. Pick $u_m \in X$ such that $I[u_m] \to \alpha$. We show that the sequence (u_m) is bounded in $H^1(\Omega)$.
 - \star By the ellipticity and the non-negativity of c, we have

$$B(u_m, u_m) = \int_{\Omega} [a_{ij}\partial_j u_m \partial_i u_m + c u_m^2] dx \ge \lambda \int_{\Omega} |\nabla u_m|^2 dx.$$

Second proof

- Step 1: Boundedness of minimizing sequence (u_m) .
 - * Hence, by Friedrichs' inequality, $B(u_m, u_m) \geq \frac{1}{C} ||u_m||_X^2$.
 - * It follows that

$$I[u_m] = \frac{1}{2}B(u_m, u_m) - Tu_m \ge \frac{1}{2C}\|u_m\|_X^2 - \|T\|\|u_m\|_X$$

$$\ge \frac{1}{4C}\|u_m\|_X^2 - C\|T\|^2.$$

- * On the other hand, as $I[u_m] \to \alpha \le 0$, we have $(I[u_m])$ is bounded from above. Therefore (u_m) is bounded in X.
- Step 2: The weak convergence of (u_m) along a subsequence to a minimizer of I.
 - * Since $H^1(\Omega)$ is reflexive, the bounded sequence (u_m) has a weakly convergent subsequence.
 - * We still denote this subsequence (u_m) so that $u_m \rightharpoonup u$ in $H^1(\Omega)$.

Second proof

- Step 2: The weak convergence of (u_m) along a subsequence to a minimizer of I.
 - $\star u_m \rightharpoonup u \text{ in } H^1.$
 - \star As X is weakly closed in H^1 and $(u_m) \in X$, we have that $u \in X$.
 - \star By definition of weak convergence, we have $Tu_m \to Tu$. We claim that

$$\liminf_{m\to\infty} B(u_m, u_m) \ge B(u, u). \tag{*}$$

Once this is shown, we have that $I[u] \leq \liminf I[u_m] = \alpha$ and so $I[u] = \alpha$.

Second proof

- Step 2: The convergence of (u_m) along a subsequence to a minimizer of I.
 - * We now prove (*), i.e. $\liminf_{m\to\infty} B(u_m,u_m) \geq B(u,u)$.
 - \star To illustrate the idea, let us consider for now the case c=0 and $a_{ij}=\delta_{ij}$. Then

$$B(u_m, u_m) - B(u, u) = \int_{\Omega} [|\nabla u_m|^2 - |\nabla u|^2] dx$$

=
$$\int_{\Omega} |\nabla (u_m - u)|^2 dx + 2 \int_{\Omega} \nabla (u_m - u) \cdot \nabla u dx.$$

The first term is non-negative. The second term converges to 0 as $\nabla(u_m - u) \rightharpoonup 0$ in L^2 . Hence

$$\liminf_{m\to\infty} [B(u_m, u_m) - B(u, u)] = \liminf_{m\to\infty} \int_{\Omega} |\nabla (u_m - u)|^2 dx \ge 0.$$

Second proof

- Step 2: The convergence of (u_m) along a subsequence to a minimizer of I.
 - * The proof in the general case is similar. We compute

$$B(u_m, u_m) - B(u, u) = \int_{\Omega} [a_{ij}\partial_i(u_m - u)\partial_j(u_m - u) + c(u_m - u)^2]$$

$$+ \int_{\Omega} [a_{ij}\partial_i(u_m - u)\partial_j u + a_{ij}\partial_i u\partial_j(u_m - u)$$

$$+ 2c(u_m - u)u] dx.$$

Again, the first integral is non-negative while the second term tends to zero. The claim (*) follows, and we conclude Step 2.

Second proof

- Step 3: We show that u solves Lu = T, i.e. $B(u, \varphi) = T\varphi$ for $\overline{\text{all } \varphi \in X}$.
 - \star For $t \in \mathbb{R}$, let $H(t) = I[u + t\varphi]$.
 - * As shown in Step 2, $I[u] \le I[u + t\varphi]$ for all t. Hence H has a global minimum at t = 0.
 - * Now note that H(t) is a quadratic polynomial in t:

$$\begin{split} H(t) &= \frac{1}{2}B(u + t\varphi, u + t\varphi) - T(u + t\varphi) \\ &= I[u] + \frac{1}{2}t(B(u, \varphi) + B(\varphi, u) - 2T\varphi) + \frac{1}{2}t^2B(\varphi, \varphi). \end{split}$$

* We deduce that

$$0 = H'(0) = \frac{1}{2}(B(u,\varphi) + B(\varphi,u) - 2T\varphi).$$

 \star Since B is symmetric, we deduce that $B(u,\varphi) = T\varphi$ as wanted.

Second proof

- Step 4: We prove the uniqueness: If \bar{u} also solves $L\bar{u}=T$, then $\bar{u}=u$.
 - * It suffices to show that if Lu = 0, then u = 0.
 - * Lu = 0 means $B(u, \varphi) = 0$ for all $\varphi \in X$. In particular B(u, u) = 0.
 - * But we showed in Step 1 that $B(u,u) \ge \frac{1}{C} ||u||_X^2$. Therefore u=0.

We now consider a motivating example for our next discussion:

$$\begin{cases}
Lu = -u'' - u = f, \\
u(0) = u(\pi) = 0.
\end{cases}$$
(\infty)

- This problem has no uniqueness, as the function $v_0(x) = \sin x$ satisfies $Lv_0 = 0$ and $v_0(0) = v_0(\pi) = 0$.
- Furthermore, if (\heartsuit) is solvable, then upon multiplying with v_0 and integrating we get

$$\int_0^{\pi} f v_0 dx = \int_0^{\pi} [-u'' v_0 - u v_0] dx = \int_0^{\pi} [u' v_0' - u v_0] dx$$
$$= \int_0^{\pi} [-u v_0'' - u v_0] dx = 0.$$

Hence, when $\int_0^{\pi} f v_0 dx \neq 0$, the problem (\heartsuit) is not solvable.

- No uniqueness. Solvable only if $\int_0^{\pi} f v_0 dx = 0$.
- Conversely, suppose $\int_0^{\pi} f v_0 dx = 0$. If $f \in L^2(0,\pi)$, we can write

$$f = \sum_{n=2}^{\infty} f_n \sin nx$$
 with $(f_n) \in \ell^2$. Formally expanding

$$u = \sum_{n=1}^{\infty} u_n \sin nx$$
 gives

$$u_1$$
 is arbitrary and $u_n = \frac{f_n}{n^2 - 1}$ for $n \ge 2$.

- Let us check that $u_* := \sum_{n=2}^{\infty} \frac{f_n}{n^2 1} \sin nx$ belongs to $H_0^1(0, \pi)$ and satisfies $Lu_* = f$ in the weak sense.
 - * The function $\sin nx \in H_0^1(0,\pi)$ and has norm

$$\|\sin nx\|_{H^1}^2 = \int_0^\pi [n^2\cos^2 nx + \sin^2 nx] dx = \frac{(n^2+1)\pi}{2}.$$

- * The system $\{\sin nx\}$ is orthogonal in $H^1(0,\pi)$.
- * It follows that

$$\left\| \sum_{m_1 \le n \le m_2} \frac{f_n}{n^2 - 1} \sin nx \right\|_{H^1}^2 = \sum_{m_1 \le n \le m_2} \frac{f_n^2}{(n^2 - 1)^2} \frac{(n^2 + 1)\pi}{2}$$

$$\le \frac{5\pi}{18} \sum_{m_1 \le n \le m_2} f_n^2 \xrightarrow{m_1, m_2 \to \infty} 0.$$

- We are checking that $u_*:=\sum_{n=2}^\infty \frac{f_n}{n^2-1}\sin nx\in H^1_0(0,\pi)$ and $Lu_*=f$.
 - * Therefore, the series $\sum_{n=2}^{\infty} \frac{f_n}{n^2 1} \sin nx$ converges in H^1 to $u_* \in H^1_0(0, \pi)$.
 - * To show that $Lu_* = f$, we consider the truncated series $u_{(N)} = \sum_{n=2}^N \frac{f_n}{n^2-1} \sin nx$ and $f_{(N)} = \sum_{n=2}^N f_n \sin nx$. These are smooth functions and satisfy $Lu_{(N)} = f_{(N)}$. The convergence of $u_{(N)}$ to u_* in H^1 and of $f_{(N)}$ to f in L^2 thus implies that $Lu_* = f$ (check this!).

$$\begin{cases}
Lu = -u'' - u = f, \\
u(0) = u(\pi) = 0.
\end{cases}$$
(\heartsuit)

- We conclude that, for given $f \in L^2(0,\pi)$, (\heartsuit) is solvable if and only if $\int_0^\pi f v_0 \, dx = 0$. Furthermore, when that is the case, all solutions are of the form $u(x) = u_*(x) + C \sin x$ for some particular solution u_* .
- Exercise: Check that $u_* \in H^2(0, \pi)$.

An obstruction for existence and uniqueness

We now return to the general setting: $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$ is a bounded linear operator from $H^1(\Omega)$ into $H^{-1}(\Omega)$.

- Uniqueness holds if and only if $L|_{H_0^1(\Omega)}$ is injective.
- Existence holds if and only if $L|_{H_0^1(\Omega)}$ is surjective.
- If $u \in H_0^1(\Omega)$ satisfies Lu = T, then for all $\varphi \in H_0^1(\Omega)$, we have

$$T\varphi = B(u,\varphi) = \int_{\Omega} \left[a_{ij}\partial_j u\partial_i \varphi + b_i\partial_i u\varphi + cu\varphi \right] dx.$$

If we can integrate by parts once more, we then have

$$T\varphi = \int_{\Omega} u \Big[-\partial_j (a_{ij}\partial_i \varphi) + \partial_i (b_i \varphi) + c \varphi \Big] dx.$$

Hence, if v_0 is such that $-\partial_j(a_{ij}\partial_i v_0) + \partial_i(b_i v_0) + cv_0 = 0$ in Ω , then we must necessarily have $Tv_0 = 0$.

The formal adjoint operator

Definition

Let $Lu = -\partial_i(a_{ij}\partial_j u) + b_i\partial_i u + cu$. The formal adjoint L^* of L is defined as the operator $L^*: H^1(\Omega) \to H^{-1}(\Omega)$ defined by

$$L^*v = -\partial_i(a_{ij}\partial_j v) - \partial_i(b_i v) + cv,$$

$$L^*v(\psi) = \int_{\Omega} \left[a_{ij}\partial_j \psi \partial_i v + b_i \partial_i \psi v + c\psi v \right] dx \text{ for } \psi \in H_0^1(\Omega).$$

The formal adjoint satisfies

$$Lu(v) = B(u, v) = L^*v(u)$$
 for all $u, v \in H_0^1(\Omega)$.

• For $v \in H^1(\Omega)$ and $T \in H^{-1}(\Omega)$, we have $L^*v = T$ if and only if $B(\psi, v) = T\psi$ for all $\psi \in H^1(\Omega)$.

The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a,b,c\in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L=-\partial_i(a_{ij}\partial_j)+b_i\partial_i+c$.

The boundary value problem

$$\begin{cases}
Lu = f + \partial_i g_i & \text{in } \Omega, \\
u = u_0 & \text{on } \partial\Omega
\end{cases}$$
(BVP)

is uniquely solvable for each $f \in L^2(\Omega)$, $g \in L^2(\Omega)$ and $u_0 \in H^1(\Omega)$ if and only if $L|_{H^1_0(\Omega)}$ is injective.

- ① The kernels N of $L|_{H_0^1(\Omega)}$ and N* of $L^*|_{H_0^1(\Omega)}$ are finite dimensional, and their dimensions are equal.
- If N is non-trivial, (BVP) has a solution if and only if $B(u_0, v) = \langle f, v \rangle \langle g_i, \partial_i v \rangle$ for all $v \in N^*$.

A consequence of the Fredholm alternative

Theorem

Suppose that Ω is a bounded Lipschitz domain. Suppose that $a,b,c\in L^\infty(\Omega)$, a is uniformly elliptic, and $L=-\partial_i(a_{ij}\partial_j)+b_i\partial_i+c$. If the bilinear form B associated to L is coercive, i.e. there is a constant C>0 such that

$$B(w, w) \ge C \|w\|_{L^2(\Omega)}^2$$
 for all $w \in C_c^{\infty}(\Omega)$,

then the boundary value problem

$$\begin{cases}
Lu = f + \partial_i g_i & \text{in } \Omega, \\
u = u_0 & \text{on } \partial\Omega
\end{cases}$$
(BVP)

has a unique solution for every $f \in L^2(\Omega)$, $g \in L^2(\Omega)$ and $u_0 \in H^1(\Omega)$.

A consequence of the Fredholm alternative

Proof

• By density, we have

$$B(w,w) \ge C \|w\|_{L^2(\Omega)}^2$$
 for all $w \in H_0^1(\Omega)$.

- By the Fredholm alternative, it suffices to show that if $u \in H_0^1(\Omega)$ satisfies Lu = 0, then u = 0.
- By the definition of weak solution, we have $B(u,\varphi)=0$ for all $\varphi\in H^1_0(\Omega)$. In particular B(u,u)=0. By the coercivity of B, we thus have $\|u\|_{L^2}=0$ and so u=0.

A detour to FA

Definition

Let H be a Hilbert space. An bounded linear operator $K: H \to H$ is said to be *compact* if K maps bounded subset of H into pre-compact subsets of H.

Lemma

Let H be a Hilbert space and K : H \rightarrow H be compact. If Ker (I - K) = 0, then V = Im(I - K) is a closed subspace of H.

Proof

- Take $(u_m) \subset H$ such that $v_m = (I K)(u_m) \to x$. We will show that $x \in V$ by showing that (u_m) has a convergent subsequence.
- It suffices to show that (u_m) is bounded. Indeed, once this is proved, as K is compact, there is a subsequence such that $Ku_{m_j} \to z$, and so $u_{m_j} = v_{m_j} + Ku_{m_j} \to x + z$.

A detour to FA

Proof

- Suppose by contradiction that (u_m) is not bounded, i.e. there is a subsequence (u_{m_i}) with $||u_{m_i}|| \to \infty$.
- Let $\tilde{u}_{m_j} = \frac{u_{m_j}}{\|u_{m_i}\|}$ and $\tilde{v}_{m_j} = (I K)\tilde{u}_{m_j} = \frac{v_{m_j}}{\|u_{m_i}\|}$.
- As (v_m) is convergent, $\tilde{v}_{m_j} \to 0$. We are thus in a similar situation as on the previous slide.
- In the same way, as (\tilde{u}_{m_j}) is bounded and K is compact, we can assume after passing to a subsequence if necessary that $K\tilde{u}_{m_j}$ converges to some $y \in H$.
- $\bullet \ \tilde{u}_{m_i} = \tilde{v}_{m_i} + K \tilde{u}_{m_i} \to y.$
- This amounts to a contradiction to the hypothesis that Ker(I-K)=0: On one hand, as $\|\tilde{u}_{m_j}\|=1$, we must have on $\|y\|=1$. On the other hand, as $(I-K)\tilde{u}_{m_j}=\tilde{v}_{m_j}$, we have (I-K)y=0.