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In the last lecture
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Linear elliptic equations of second order
Classical and weak solutions
Energy estimates

First existence theorem: Riesz represenation theorem
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This lecture

@ First existence theorem: Direct method of the calculus of
variation.

@ Second existence theorem: Fredholm alternative.
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An existence theorem

Theorem

Suppose that a, ¢ € L*°(Q), a is uniformly elliptic, ¢ > 0 a.e. in £,
and L = —0;(a;;0;) + ¢ (i.e. b=0). Then for every f € [?(Q),

g € L%(Q) and uy € H*(Q), the Dirichlet boundary value problem

{Lu = f+0,g inf, (BVP)

u = U on 0N

has a unique weak solution u € H*(SQ).

T

Suppose that a, c € L*°(Q), a is uniformly elliptic, ¢ > 0 a.e. in £,
and L = —0;(a;0;) + c (i.e. b=0). Then L|pq) is a bijection from
H3(Q) into H1(Q).
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An existence theorem

First proof: Riesz representation theorem.
@ The equation Lu= T with T € H}(Q) is equivalent to

B(u,v) = Tv for all v € Hy(Q).

@ The bilinear form B(-,-) defines an inner product on H}(),
which is equivalent to the standard inner product of H}(2). The
conclusion is reached using the Riesz representation theorem.

Second proof: Direct method of the calculus of variation.

We'll use the fact that H(S2) is weakly closed in H*(Q2). This is a
consequence of the following general theorem:

Theorem (Mazur)

Let K be a closed convex subset of a normed vector space X, (x,) be
a sequence of points in K converging weakly to x. Then x € K.
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An existence theorem

Second proof

e Fix T € H1(Q) and define the ‘variational energy':
1
I[v] = EB(V, v) — Tv for v € X := H}(Q).

The key point of the proof is the fact that: u € X solves Lu =T
if u is a minimizer or | on X i.e. I[u] < I[v] for all v € X.

@ Step 1: Boundedness of minimizing sequence.
Let & = infx | € RU{—o0}. Note that /[0] =0 and so o < 0.
Pick u,, € X such that /[u,] — a. We show that the sequence
(um) is bounded in H*(Q).

* By the ellipticity and the non-negativity of ¢, we have

B(um, um) = /[a,-jajuma,-um + cu?] dx > )\/ |V | dx.
Q Q
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An existence theorem

Second proof
@ Step 1: Boundedness of minimizing sequence (up,).
* Hence, by Friedrichs’ inequality, B(um, Um) > = || um||%-
* It follows that

1 1
Itm] = 5Bt ) = Titm = > < mlx = | Tl 1l x

> RHUmHX - C|ITI.
* On the other hand, as /[um] — o <0, we have (/[um]) is
bounded from above. Therefore (up,) is bounded in X.

@ Step 2: The weak convergence of (up,) along a subsequence to a
minimizer of /.

* Since HY(Q) is reflexive, the bounded sequence (u,) has a
weakly convergent subsequence.
* We still denote this subsequence (u,) so that u, — v in H1(R).
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An existence theorem

Second proof

@ Step 2: The weak convergence of (up,) along a subsequence to a
minimizer of /.

* Upm— uin HL.
* As X is weakly closed in H* and (u,,) € X, we have that u € X.
* By definition of weak convergence, we have Tu,, — Tu. We

claim that

Iim_>inf B(um, um) > B(u, u). (™
Once this is shown, we have that /[u] < liminf /{uy,] = « and
so I[u] = a.
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An existence theorem

Second proof

@ Step 2: The convergence of (u,,) along a subsequence to a
minimizer of /.

* We now prove (*), i.e. liminf B(um, um) > B(u, u).
m—0o0
* To illustrate the idea, let us consider for now the case ¢ = 0
and ajj = d;;. Then

B(um, um) — B(u, u) = /[|Vum|2 — |Vul?] dx

/]V(um— ]2dx+2/V(um—u)-Vudx.

The first term is non-negative. The second term converges to 0
as V(um — u) — 0 in L2, Hence

liminf[B(um, um) — B(u, u)] = lim |nf/ |V (tm — u)|? dx > 0.

m—00 m—00
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An existence theorem

Second proof

@ Step 2: The convergence of (u,,) along a subsequence to a
minimizer of /.

* The proof in the general case is similar. We compute
B, tm) — B(u, 1) = /Q[a,-j(‘),-(um — )9 (um — 1) + c(tm — 1)?]
+ /Q [ayai(um — u)Oju + a;j0;udi(um — u)
+2c(um — u)u| dx.

Again, the first integral is non-negative while the second term
tends to zero. The claim (*) follows, and we conclude Step 2.
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An existence theorem

Second proof
@ Step 3: We show that u solves Lu = T, i.e. B(u,¢) = T for
all ¢ € X.
* For t € R, let H(t) = I[u + ty].
* As shown in Step 2, /[u] < [[u+ ty] for all t. Hence H has a
global minimum at t = 0.
* Now note that H(t) is a quadratic polynomial in t:

1
H(t) = EB(U +to,u+ tp) — T(u+ typ)

1 1
= 1[u] + St(B(u, ) + B(p, u) — 2T) + St*B(p, ).
* We deduce that
1

* Since B is symmetric, we deduce that B(u, ) = T as wanted.
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An existence theorem

Second proof

@ Step 4: We prove the uniqueness: If & also solves Lii = T, then
o= u.
* It suffices to show that if Lu = 0, then u = 0.
* Lu =0 means B(u, ) =0 for all ¢ € X. In particular

B(u,u) =0.
* But we showed in Step 1 that B(u,u) > L||ul|%. Therefore
u=0.
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An example of non-existence and non-uniqueness

We now consider a motivating example for our next discussion:

lu = —uv"—u=Tf,
{U(O) — u(r) =0, (©)

@ This problem has no uniqueness, as the function vp(x) = sin x
satisfies Lvy = 0 and vp(0) = vp(7) = 0.

e Furthermore, if (O) is solvable, then upon multiplying with v,
and integrating we get

/ fup dx = / [—u"vo — uvg] dx= / [u'v§ — uvo] dx
0 0 0

= / [—uvy — uvg] dx= 0.
0

Hence, when / fvo dx # 0, the problem () is not solvable.
0
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An example of non-existence and non-uniqueness

@ No uniqueness. Solvable only if/ fvo dx = 0.
0
e Conversely, suppose / fipdx = 0. If f € L?(0,7), we can write
0

f= Z f, sin nx with (f,) € 2. Formally expanding

n=2
o
u= E u, sin nx gives
n=1
. . n
uy is arbitrary and u, = 7 1 for n > 2.
n E—
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An example of non-existence and non-uniqueness

[e.9]

f. .
@ Let us check that u, := E 7 Sinnx belongs to H3(0, )
n

n—=
and satisfies Lu, = f in the weak sense.

* The function sin nx € H3(0,7) and has norm

T 2
1
|| sin nx||7, = / [n? cos? nx + sin® nx] dx = M
0

x The system {sin nx} is orthogonal in H1(0, 7).
* It follows that

H Z fa .
sin nx
n?—1 Ht

m<n<mp m<n<my
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An example of non-existence and non-uniqueness

=
e We are checking that u, := Z P sin nx € H3(0, ) and
n J—
n=2

Lu, =f.
. n . . 1
* Therefore, the series Z —— sin nx converges in H* to
— nc —1

u. € HX(0, ).

* To show that Lu* = f, we consider the truncated series
N

Uy = 2 sm nx and f(y Z fosin nx. These are

n=2
smooth functlons and satisfy LU(N) = f(n). The convergence of
Uy to uy in H' and of fivy to fin L2 thus implies that
Lu, = f (check this!).
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An example of non-existence and non-uniqueness

lu = —u" —u=f,
{ u(0) = u(r)=0. (©)
@ We conclude that, for given f € L2(0,7), (V) is solvable if and

only if fvo dx = 0. Furthermore, when that is the case, all

0
solutions are of the form u(x) = u.(x) + Csin x for some
particular solution u,.

o Exercise: Check that u, € H?(0, 7).
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An obstruction for existence and uniqueness

We now return to the general setting: L = —0;(a;;0;) + bi0; + c is a
bounded linear operator from H*(Q) into H~1(Q).

@ Uniqueness holds if and only if L|H3(Q) is injective.
@ Existence holds if and only if L\Hé(Q) is surjective.
o If u € H}(Q) satisfies Lu = T, then for all ¢ € Hy(Q), we have

Tp=B(u,¢) =/

[a,-j@ju&-go + b;Ojup + Cugp} dx.
Q

If we can integrate by parts once more, we then have
To= / U[ — 9j(a;010) + Oi(bip) + Cso] dx.
Q

Hence, if Vo is such that —81'(3,']8,'%)) + a,'(b,'Vo) +cvy = 0in Q,
then we must necessarily have Tvy = 0.
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The formal adjoint operator

Let Lu = —0;(a;0;u) + bjO;u + cu. The formal adjoint L* of L is
defined as the operator L* : H1(Q2) — H~1(Q) defined by

L*v = —6,-(a,-j(9jv) — (‘3,-(b,-v) + cv,
L*v(y)= / [ayajw&-v + b;Ojv + cwv} dx for @ € H&(Q).
Q

@ The formal adjoint satisfies

Lu(v) = B(u,v) = L*v(u) for all u,v € H}(Q).

e Forve HY(Q)and T € H}(Q), we have L*v = T if and only if
B(w, v) = T4 for all v € Hy(Q).
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The Fredholm alternative

Theorem (Fredholm alternative)

Suppose that €2 is a bounded Lipschitz domain. Suppose that
a, b, c € L>~(Q), a is uniformly elliptic, and L = —0;(a;0;) + b;0; + c.

@ The boundary value problem

(BVP)

Lu = f+6,g, in Q,
u = u on 0

is uniquely solvable for each f € L*(Q), g € L*(Q) and
up € H'(Q) if and only if L|q) is injective.

@ The kernels N of L|yyq) and N* of L*|1(q) are finite
dimensional, and their dimensions are equal.

@ If N is non-trivial, (BVP) has a solution if and only if
B(up, v) = (f,v) — (g, 0;v) for all v € N*.
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A consequence of the Fredholm alternative

Theorem

Suppose that ) is a bounded Lipschitz domain. Suppose that

a, b, c € L*(Q), a is uniformly elliptic, and L = —0;(a;;0;) + b;0; + c.

If the bilinear form B associated to L is coercive, i.e. there is a
constant C > 0 such that

B(w,w) > C||W||%2(Q) for all w € C2°(R2),
then the boundary value problem

Lu = f—l—@,g, in Q,
u = U on 00

has a unique solution for every f € L?(Q), g € L?(Q) and
Uup € HI(Q)

(BVP)
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A consequence of the Fredholm alternative

Proof
@ By density, we have

B(w,w) > C||W||L2 for all w € Hy(R).

@ By the Fredholm alternative, it suffices to show that if
u € H}(Q) satisfies Lu = 0, then u = 0.

@ By the definition of weak solution, we have B(u, ¢) = 0 for all
¢ € H}(2). In particular B(u,u) = 0. By the coercivity of B,
we thus have ||u||;2 =0 and so u = 0.
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A detour to FA

Definition

Let H be a Hilbert space. An bounded linear operator K : H — H is
said to be compact if K maps bounded subset of H into pre-compact
subsets of H.

Lemma

Let H be a Hilbert space and K : H — H be compact. If
Ker (I — K) =0, then V = Im (I — K) is a closed subspace of H.

| A

Proof

e Take (um) C H such that v,, = (I — K)(um) — x. We will show
that x € V by showing that (u,,) has a convergent subsequence.
o It suffices to show that (u,,) is bounded. Indeed, once this is
proved, as K is compact, there is a subsequence such that
Kumj — 7z, and so Umj = Vi, + Kumj — X+ z.
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A detour to FA

Proof

@ Suppose by contradiction that (u,,) is not bounded, i.e. there is
a subsequence (up,) with ||upy, || — co.

Um; 7

o Let im = TamT and Vp, = (I — K)iim, = Tomg T

® As (vp,) is convergent, ¥, — 0. We are thus in a similar
situation as on the previous slide.

@ In the same way, as (i) is bounded and K is compact, we can
assume after passing to a subsequence if necessary that Ky,
converges to some y € H.

@ iy = Vm, + Kﬁmj —y.

@ This amounts to a contradiction to the hypothesis that

Ker (I — K) = 0: On one hand, as ||{im,|| = 1, we must have on
ly[| = 1. On the other hand, as (/ — K) iy, = U, we have
(I —K)y =0.
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