

C4.3 Functional Analytic Methods for PDEs Lecture 14

Luc Nguyen luc.nguyen@maths

University of Oxford

MT 2020

• Existence of weak solutions to linear elliptic equations.

• H^2 regularity of weak solutions to linear elliptic equations.

The question of regularity

In the rest of this course we consider regularity results for solutions to

$$Lu = -\partial_i (a_{ij}\partial_j u) + b_i\partial_i u + cu = f$$
 in a domain Ω

with $f \in L^2(\Omega)$.

• We want to keep in mind the following two motivating examples in 1*d*:

$$-u'' = f \text{ in } (-1,1)$$
 (*)

and

$$-(\mathit{au'})'=f$$
 in $(-1,1)$ where $\mathit{a}=\chi_{(-1,0)}+2\chi_{(0,1)}.$ (**)

- For (*), u belongs to H^2 .
- For (**), au' belongs to H¹. Typically this implies u' is discontinuous and hence u ∉ H². Nevertheless u is continuous.

Theorem (Interior H^2 regularity)

Suppose that $a \in C^{1}(\Omega)$, $b, c \in L^{\infty}(\Omega)$, a is uniformly elliptic, and $L = -\partial_{i}(a_{ij}\partial_{j}) + b_{i}\partial_{i} + c$. Suppose that $f \in L^{2}(\Omega)$. If $u \in H^{1}(\Omega)$ satisfies Lu = f in Ω in the weak sense then $u \in H^{2}_{loc}(\Omega)$, and for any open ω such that $\overline{\omega} \subset \Omega$ we have

$$||u||_{H^2(\omega)} \leq C(||f||_{L^2(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on $n, \Omega, \omega, a, b, c$.

Theorem (Global H^2 regularity)

Suppose that Ω is a bounded domain and $\partial\Omega$ is C^2 regular. Suppose that $a, b, c \in C^1(\overline{\Omega})$, a is uniformly elliptic, and $L = -\partial_i(a_{ij}\partial_j) + b_i\partial_i + c$. Suppose that $f \in L^2(\Omega)$. If $u \in H^1_0(\Omega)$ satisfies Lu = f in Ω in the weak sense then $u \in H^2(\Omega)$ and

$$||u||_{H^2(\Omega)} \leq C(||f||_{L^2(\Omega)} + ||u||_{H^1(\Omega)})$$

where the constant C depends only on n, Ω, a, b, c .

Remark: If $\partial \Omega$ is C^{∞} , $a, b, c \in C^{\infty}(\overline{\Omega})$, and $f \in C^{\infty}(\Omega)$ then $u \in C^{\infty}(\Omega)$.

To illustrate the idea, we focus in the case *a* is constant, $b \equiv 0$, $c \equiv 0$. The local H^2 regularity result is equivalent to:

Theorem (Interior H^2 regularity for $-\Delta$)

Suppose $f \in L^2(B_2)$ and $u \in H^1(B_2)$. If $-\Delta u = f$ in B_2 in the weak sense, then $u \in H^2(B_1)$ and

$$\|u\|_{H^2(B_1)} \leq C(\|f\|_{L^2(B_2)} + \|u\|_{H^1(B_2)})$$

where the constant C depends only on n.

The start of the proof is the following simple but important lemma:

Lemma

Suppose that $u \in C^{\infty}_{c}(\mathbb{R}^{n})$. Then

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} = \|\Delta u\|_{L^2(\mathbb{R}^n)}.$$

The proof is a computation using integration by parts:

$$\begin{aligned} \|\nabla^2 u\|_{L^2(\mathbb{R}^n)}^2 &= \int_{\mathbb{R}^n} \partial_i \partial_j u \partial_i \partial_j u \, dx = -\int_{\mathbb{R}^n} \partial_j u \partial_j \partial_i^2 u \, dx \\ &= \int_{\mathbb{R}^n} \partial_j^2 u \partial_i^2 u \, dx = \|\Delta u\|_{L^2(\mathbb{R}^n)}^2. \end{aligned}$$

The following lemma is a generalisation in the weak setting:

Lemma

Suppose that $f \in L^2(\mathbb{R}^n)$, $u \in H^1(\mathbb{R}^n)$ and u has compact support. Suppose that $-\Delta u = f$ in \mathbb{R}^n in the weak sense. Then $u \in H^2(\mathbb{R}^n)$ and

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} \leq \|f\|_{L^2(\mathbb{R}^n)}.$$

Proof of the lemma

• Take a family of mollifiers (ϱ_{ε}) : Fix a non-negative function $\varrho \in C_{c}^{\infty}(B_{1})$ with $\int_{\mathbb{R}^{n}} \varrho = 1$ and let $\varrho_{\varepsilon}(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$.

• Set
$$u_{\varepsilon} = \varrho_{\varepsilon} * u$$
 and $f_{\varepsilon} = \varrho_{\varepsilon} * f$.
Then $u_{\varepsilon}, f_{\varepsilon} \in C_{c}^{\infty}(\mathbb{R}^{n})$ and $u_{\varepsilon} \to u$ in $H^{1}(\mathbb{R}^{n})$ and $f_{\varepsilon} \to f$ in $L^{2}(\mathbb{R}^{n})$.

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^n .

- * Fix $v \in C^{\infty}_{c}(\mathbb{R}^{n})$ and consider $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx$.
- * Recall that, as $u \in H^1(\mathbb{R}^n)$, $\nabla u_{\varepsilon} = \varrho_{\varepsilon} * \nabla u$.
- * Hence, by Fubini's theorem,

$$\begin{split} \int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx &= \int_{\mathbb{R}^n} \Big[\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \partial_{y_i} u(y) \, dy \Big] \partial_{x_i} v(x) \, dx \\ &= \int_{\mathbb{R}^n} \partial_{y_i} u(y) \Big[\int_{\mathbb{R}^n} \varrho_{\varepsilon}(x-y) \partial_{x_i} v(x) \, dx \Big] \, dy. \end{split}$$

 $\star\,$ Integrating by parts in the inner integral we get

$$\int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx = - \int_{\mathbb{R}^n} \partial_{y_i} u(y) \Big[\int_{\mathbb{R}^n} \partial_{x_i} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy.$$

Proof of the lemma

• Claim:
$$-\Delta u_{\varepsilon} = f_{\varepsilon}$$
 in \mathbb{R}^{n} .
* $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx = -\int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \Big[\int_{\mathbb{R}^{n}} \partial_{x_{i}} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy$.
* Now observe that $\partial_{x_{i}} \varrho_{\varepsilon}(x-y) = -\partial_{y_{i}} \varrho_{\varepsilon}(x-y)$.
* We thus have, by Fubini's theorem again,
 $\int_{\mathbb{R}^{n}} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \Big[\int_{\mathbb{R}^{n}} \partial_{y_{i}} \varrho_{\varepsilon}(x-y) v(x) \, dx \Big] \, dy$
 $= \int_{\mathbb{R}^{n}} \Big[\int_{\mathbb{R}^{n}} \partial_{y_{i}} u(y) \partial_{y_{i}} \varrho_{\varepsilon}(x-y) \, dy \Big] v(x) \, dx.$
* As $-\Delta u = f$ in the weak sense, the inner integral is equal to
 $\int_{\mathbb{R}^{n}} f(y) \, \varrho_{\varepsilon}(x-y) \, dy$, which is $f_{\varepsilon}(x)$.
* We deduce that

$$\int_{\mathbb{R}^n} \nabla u_{\varepsilon} \cdot \nabla v \, dx = \int_{\mathbb{R}^n} f_{\varepsilon}(x) v(x) \, dx.$$

Luc Nguyen (University of Oxford)

Proof of the lemma

- Claim: $-\Delta u_{\varepsilon} = f_{\varepsilon}$ in \mathbb{R}^n .
 - * As v was picked arbitrarily in $C_c^{\infty}(\mathbb{R}^n)$, we have that $-\Delta u_{\varepsilon} = f_{\varepsilon}$ in \mathbb{R}^n in the weak sense.
 - * As u_{ε} and f_{ε} are smooth, this equation also holds in the classical sense. (Check this!)
- Now, by the previous lemma, we have

$$\|\nabla^2 u_{\varepsilon}\|_{L^2(\mathbb{R}^n)} = \|\Delta u_{\varepsilon}\|_{L^2(\mathbb{R}^n)} = \|f_{\varepsilon}\|_{L^2(\mathbb{R}^n)}.$$

- Young's convolution inequality gives $\|f_{\varepsilon}\|_{L^{2}(\mathbb{R}^{n})} \leq \|f\|_{L^{2}(\mathbb{R}^{n})} \|\varrho_{\varepsilon}\|_{L^{1}(\mathbb{R}^{n})} = \|f\|_{L^{2}(\mathbb{R}^{n})} \text{ , and so}$ $\|\nabla^{2}u_{\varepsilon}\|_{L^{2}(\mathbb{R}^{n})} \leq \|f\|_{L^{2}(B_{2})}.$
- Therefore, along a subsequence, (∇²u_ε) converges weakly to some A ∈ L²(ℝⁿ; ℝ^{n×n}) with ||A||_{L²(ℝⁿ)} ≤ ||f||_{L²(B₂)}.

Proof of the lemma

- Putting things together we have $u_{\varepsilon} \to u$ in $H^1(\mathbb{R}^n)$, $\nabla^2 u_{\varepsilon} \rightharpoonup A$ in $L^2(\mathbb{R}^n)$ and $||A||_{L^2(\mathbb{R}^n)} \leq ||f||_{L^2(\mathbb{R}^n)}$.
- Claim: A is the weak second derivatives of u.
 Indeed, this follows by passing ε → 0 in the identity

$$\int_{\mathbb{R}^n} u_{\varepsilon} \partial_i \partial_j v = \int_{\mathbb{R}^n} \partial_i \partial_j u_{\varepsilon} v \text{ for all } v \in C^{\infty}_c(\mathbb{R}^n).$$

• We have thus shown that $u \in H^2(\mathbb{R}^n)$ and and $\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} = \|A\|_{L^2(\mathbb{R}^n)} \le \|f\|_{L^2(B_2)}.$

Proof of interior H^2 regularity for $-\Delta$.

- Step 1: Reduction to regularity estimates for solutions which vanish near ∂B_2 .
 - * We do a truncation: Fix a cut-off function $\zeta \in C_c^{\infty}(B_2)$ such that $\zeta \equiv 1$ in B_1 and consider $w := \zeta u$.
 - \star Formally, if we have enough regularity, we have

$$\begin{aligned} -\Delta w &= -\Delta(\zeta u) = -\zeta \Delta u - 2\nabla \zeta \cdot \nabla u - u\Delta \zeta \\ &= (\zeta f - \nabla \zeta \cdot \nabla u) - \partial_i(u\partial_i\zeta). \end{aligned}$$

 $\star\,$ We claim that the above formula for $-\Delta w$ is valid in the weak sense, i.e.

$$\int_{B_2} \nabla w \cdot \nabla v \, dx = \int_{B_2} \left[(\zeta f - \nabla \zeta \cdot \nabla u) v + u \nabla \zeta \cdot \nabla v \right] dx \text{ for all } v \in H^1_0(B_2).$$

Proof of interior H^2 regularity for $-\Delta$.

• Step 1: Reduction to regularity estimates for solutions which vanish near ∂B_2 .

* ... Claim:

•

$$\int_{B_2} \nabla w \cdot \nabla v \, dx = \int_{B_2} \left[(\zeta f - \nabla \zeta \cdot \nabla u) v + u \nabla \zeta \cdot \nabla v \right] dx \text{ for all } v \in H^1_0(B_2).$$

★ Moving the last term on the right hand side to the left hand side and using $w = \zeta u$, we need to check that

$$\int_{B_2} \zeta \nabla u \cdot \nabla v = \int_{B_2} (\zeta f - \nabla \zeta \cdot \nabla u) v \text{ for all } v \in H^1_0(B_2).$$

 Moving the last term on the right hand side to the left hand side once again, we then need to check

$$\int_{B_2} \nabla u \cdot \nabla(\zeta v) = \int_{B_2} f(\zeta v) \text{ for all } v \in H^1_0(B_2),$$

But this is true as $\zeta v \in H_0^1(B_2)$ and $-\Delta u = f$ in B_2 weakly. Luc Nguyen (University of Oxford) C4.3 – Lecture 14 MT 2020 15/27

Proof of interior H^2 regularity for $-\Delta$.

- Step 1: Reduction to regularity estimates for solutions which vanish near ∂B_2 .
 - $\star\,$ We have thus proved the claim that

$$-\Delta w = (\zeta f - \nabla \zeta \cdot \nabla u) - \partial_i (u \partial_i \zeta) \text{ in } B_2$$

in the weak sense.

★ Now if the interior H^2 estimate has been established for functions which vanish near the boundary, then by applying such estimate to w, we get $w \in H^2(B_1)$ and

$$\begin{split} \|w\|_{H^{2}(B_{1})} &\leq C(\|(\zeta f - \nabla \zeta \cdot \nabla u) - \partial_{i}(u\partial_{i}\zeta)\|_{L^{2}(B_{2})} + \|w\|_{H^{1}(B_{2})}) \\ &\leq C(\|f\|_{L^{2}(B_{2})} + \|u\|_{H^{1}(B_{2})}). \end{split}$$

As u = w in B_1 , we thus have the desired estimate for u in B_1 .

Proof of interior H^2 regularity for $-\Delta$.

- Step 2: Reduction to estimates on the whole space.
 - * Suppose that $u \in H_0^1(B_2)$ vanishes near ∂B_2 and satisfies $-\Delta u = f$ in B_2 in the weak sense for some $f \in L^2(B_2)$. We would like to bound $||u||_{H^2(B_1)}$.
 - * We extend u and f by zero outside of B_2 so that $u \in H_0^1(\mathbb{R}^n)$ and $f \in L^2(\mathbb{R}^n)$.
 - * Claim: $-\Delta u = f$ on \mathbb{R}^n , i.e.

$$\int_{\mathbb{R}^n}
abla u \cdot
abla v \, dx = \int_{\mathbb{R}^n} f \, v \, dx$$
 for all $v \in C^\infty_c(\mathbb{R}^n).$

* If v has support in B_2 , this is true because $-\Delta u = f$ in B_2 . For general v, we will truncate v exploiting the fact that u vanishes near ∂B_2 , say $u \equiv 0$ in $B_2 \setminus B_R$ for some R < 2. Note that we also have f = 0 in $B_2 \setminus B_R$ (check this!).

Proof of interior H^2 regularity for $-\Delta$.

- Step 2: Reduction to estimate on the whole space.
 - * Take a cut-off function ζ such that $\zeta \equiv 1$ in B_R and $\zeta \equiv 0$ in $\mathbb{R}^n \setminus B_2$. Then, for $v \in C_c^{\infty}(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{B_2} \nabla u \cdot \nabla (\zeta v) \, dx$$
$$= \int_{B_2} f \zeta v \, dx = \int_{\mathbb{R}^n} f v \, dx.$$

Hence $-\Delta u = f$ in \mathbb{R}^n .

 \star Now, by the lemma, we have $abla^2 u \in L^2(\mathbb{R}^n)$ and

$$\|\nabla^2 u\|_{L^2(\mathbb{R}^n)} \leq \|f\|_{L^2(\mathbb{R}^n)}.$$

which gives the conclusion.

Luc Nguyen (University of Oxford)

- We now turn to the case where *a* is variable. To better convey central ideas, we will focus in the rest of this course to a priori estimates: We assume that the solution has the right regularity and will be concerned with establishing quantitative estimates.
- More precisely, we suppose that u belongs to <u>H²(Rⁿ)</u> and is a weak solution to Lu = f in Rⁿ, and would like to bound ||u||_{H²(Rⁿ)} in terms of the bounds for the coefficients of L, ||f||_{L²(Rⁿ)} and ||u||_{H¹(Rⁿ)}.
- For simplicity, we will assume that *b* ≡ 0 and *c* ≡ 0. You should check that the methods we use work in the general case.

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^{\infty}(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exist $0 < \delta_0 \ll 1$ and C > 0 such that if $||a_{ij} - \delta_{ij}||_{L^{\infty}(\mathbb{R}^n)} \le \delta_0$ and if $u \in H^2(\mathbb{R}^n)$ and satisfies Lu = f in \mathbb{R}^n in the weak sense, then

$$||u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).$$

Proof

Claim: u satisfies

$$-\Delta u = f + (a_{ij} - \delta_{ij})\partial_i\partial_j u + \partial_i a_{ij}\partial_j u =: \tilde{f},$$

that is, for all $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

Proof

• Claim: for $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

★ We note that $(a_{ij} - \delta_{ij})v \in C_c^1(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$\begin{split} \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j uv \, dx &= -\int_{\mathbb{R}^n} \partial_j u \partial_i [(a_{ij} - \delta_{ij})v] \, dx \\ &= -\int_{\mathbb{R}^n} \partial_j u [(a_{ij} - \delta_{ij})\partial_i v + \partial_i a_{ij}v] \, dx \\ &= \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx \\ &- \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx. \end{split}$$

Proof

• Claim: for
$$v \in C^\infty_c(\mathbb{R}^n)$$
,

$$\int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx = \int_{\mathbb{R}^n} \left[f + (a_{ij} - \delta_{ij}) \partial_i \partial_j u + \partial_i a_{ij} \partial_j u \right] v \, dx.$$

$$\star \int_{\mathbb{R}^n} (a_{ij} - \delta_{ij}) \partial_i \partial_j uv \, dx = \int_{\mathbb{R}^n} \nabla u \cdot \nabla v \, dx - \int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx \\ - \int_{\mathbb{R}^n} \partial_i a_{ij} v \, dx.$$

 \star As Lu = f, we have

$$\int_{\mathbb{R}^n} a_{ij} \partial_j u \partial_i v \, dx = \int_{\mathbb{R}^n} f \, v \, dx.$$

 \star Putting the two identities together, we obtain the claim.

Proof

- We have proved the claim that $-\Delta u = \tilde{f} = f + (a_{ii} - \delta_{ii})\partial_i\partial_i u + \partial_i a_{ij}\partial_j u.$
- By the lemma on the H^2 regularity for $-\Delta$, we have a constant C such that

$$\begin{split} \|\nabla^{2}u\|_{L^{2}} &\leq C\|\tilde{f}\|_{L^{2}} \\ &\leq C\Big[\|f\|_{L^{2}} + \|a_{ij} - \delta_{ij}\|_{L^{\infty}}\|\nabla^{2}u\|_{L^{2}(\Omega)} \\ &+ \|\partial_{i}a_{ij}\|_{L^{\infty}}\|\nabla u\|_{L^{2}}\Big]. \end{split}$$

• It is readily seen that if $C \|a_{ij} - \delta_{ij}\|_{L^{\infty}} < 1$, then the second term on the right hand side can be absorbed back to the left hand side, giving the conclusion:

$$\|\nabla^2 u\|_{L^2} \leq C' \Big[\|f\|_{L^2} + \|\nabla u\|_{L^2} \Big].$$

Theorem

Suppose $a \in C^1(\mathbb{R}^n)$, $\nabla a \in L^{\infty}(\mathbb{R}^n)$ and $L = -\partial_i(a_{ij}\partial_j)$. There exists C > 0 such that if $u \in H^2(\mathbb{R}^n)$ and satisfies Lu = f in \mathbb{R}^n in the weak sense, then

$$|u||_{H^2(\mathbb{R}^n)} \leq C(||f||_{L^2(\mathbb{R}^n)} + ||u||_{H^1(\mathbb{R}^n)}).$$

Proof

- Let $w = \partial_k u \in H^1(\mathbb{R}^n)$. We would like to bound $||w||_{H^1}$.
- Claim: w satisfies

$$Lw = \partial_i h_i$$
 where $h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik}$,

that is, for $v\in \mathit{C}^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

Proof

• Claim: for $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

* Note that $a_{ij}\partial_i v \in C_c^1(\mathbb{R}^n)$. Hence, by definition of weak derivatives,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = \int_{\mathbb{R}^n} \partial_k \partial_j u (a_{ij} \partial_i v) \, dx = -\int_{\mathbb{R}^n} \partial_j u \, \partial_k (a_{ij} \partial_i v) \, dx$$
$$= -\int_{\mathbb{R}^n} a_{ij} \partial_j u \, \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij} \partial_i v \, dx$$

Proof

• Claim: for $v \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i v \, dx = - \int_{\mathbb{R}^n} [\partial_k a_{ij} \partial_j u + f \, \delta_{ik}] \partial_i v \, dx.$$

* $\int_{\mathbb{R}^n} a_{ij}\partial_j w \partial_i v \, dx = -\int_{\mathbb{R}^n} a_{ij}\partial_j u \, \partial_k \partial_i v \, dx - \int_{\mathbb{R}^n} \partial_j u \, \partial_k a_{ij}\partial_i v \, dx.$ * On the other hand, using $\partial_k v$ as a test function for Lu = f, we have

$$\int_{\mathbb{R}^n} a_{ij}\partial_j u \,\partial_i \partial_k v \,dx = \int_{\mathbb{R}^n} f \partial_k v \,dx.$$

 $\star\,$ Putting the two identities together we get the claim.

Proof

- We have thus shown that $Lw = \partial_i h_i$ with $h_i = \partial_k a_{ij} \partial_j u + f \delta_{ik}$.
- Using w as a test function for this equation, we get

$$\int_{\mathbb{R}^n} a_{ij} \partial_j w \partial_i w \, dx = - \int_{\mathbb{R}^n} h_i \partial_i w \, dx.$$

• Using ellipticity on the left side and Cauchy-Schwarz' inequality on the right side we get

$$\lambda \|
abla w\|_{L^2}^2 \leq \|h\|_{L^2} \|
abla w\|_{L^2} \leq rac{\lambda}{2} \|
abla w\|_{L^2}^2 + rac{1}{2\lambda} \|h\|_{L^2}^2.$$

We thus have

$$\|\nabla w\|_{L^2} \leq C \|h\|_{L^2} \leq C \Big[\|f\|_{L^2} + \|\nabla u\|_{L^2}\Big].$$

Recalling that $w = \partial_k u$, we're done.