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In the last lecture

@ H? regularity of weak solutions to linear elliptic equations.
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This lecture

@ Continuity of weak solutions to linear elliptic equations.
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@ Recall the example of the equation —(au’)’ = f in (—1, 1) with
a = x(-10 * 2x(0,1)-

o If f € L9, then au’ € W% and so i’ is presumably
discontinuous.

@ Nevertheless as v’ exists by assumption, u is continuous.

@ In higher dimension, the existence of Vu (in L?) doesn't ensure
continuity of u. Nevertheless, a major result due to De Giorgi,
Moser and Nash around late 50s asserts that v is indeed
continuous!
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De Giorgi-Moser-Nash's theorem

Theorem (De Giorgi-Moser-Nash's theorem)

Suppose that a, b, c € L°(2), a is uniformly elliptic, and

L = —0;(a;0;) + bi0; + c. If u € HY(Q) satisfies Lu = f in Q in the
weak sense for some f € L9(2) with q > 5, then u is locally Holder
continuous , and for any open w such that & C ) we have

[ull oy < CHFllLa@) + [[ull @)

where the constant C depends only on n,Q, w, a, b, ¢, and the Holder
exponent o depends only on n,Q, w, a.

’
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We make some observations:

@ In De Giorgi-Moser-Nash's theorem, no continuity is assumed on
the coefficients aj;.

e If a; is continuous, one can imagine using the method of
freezing coefficients to reduce to the case aj; is constant. Hence
the model equation is —Au = f.

o In 1d, we have —u” = f. If f € L9, we then have that u € W,icq

@ It turns out that, in any dimension, if —Au = f and f € L9,
then u € W>9.

loc

In partlcular When n/2 < q < n, by the embedding
W29 W, g C,OC , we have u is Holder continuous.

loc
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Global a priori L™ estimate

To illustrate the method, we will assume for simplicity that b = 0 and
c = 0. We will focus on a priori L* estimates, i.e. we assume that
the solution u € L™ and try to establish estimates for ||u|| .

@ We assume in addition for now a boundary condition: u =0 on
0B;.

Theorem (Global a priori L™ estimates)

Suppose that a € L*°(By), a is uniformly elliptic, b= 10, ¢ = 0 and
L = —0;(a;0;). If u € H}(By) N L>(By) satisfies Lu = f in By in the
weak sense and f € L9(B;) with g > n/2, then

ullteogyy < CUIflliasy) + llullezesy)

where the constant C depends only on n, q, a.

Luc Nguyen (University of Oxford) C4.3 — Lecture 15

MT 2020 7/27



Truncations and powers of H! functions

Suppose that u € H}(By) N L>(By). Then, for p > 1 and k > 0, one
has (U+ = k)p — kP € H(:)l(Bl)

Proof

@ As u € L*(B;), we can suppose |u| < M a.e. in By.

@ By Sheet 3, u, € H'(By).

@ Select a function g € C*(R) such that g(t) = (£t + k)P — kP
fort <M, and g(t) = (M + k+ 1) — kP fort > M + 1.
Note that (uy + k)P — kP = g(u).

@ Then |g(t)| + |g'(t)] < C on R.

@ By the chain rule (Sheet 2), g(u) has weak derivatives
Vg(u) = g'(u)Vu € L?(B;). Hence g(u) € H(By).
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Truncations and powers of H! functions

Proof
e g(u) € HY(By).
@ We next show that g(u) € H}(B,).
Approximate u by (u,) € C°(B;). The argument above shows
that g(um) € H(B1).
As g(um) is continuous, we have that the its trace on 0B is
zero, hence g(u,) € H3 (By).

@ We have, by Lebesgue's dominated convergence theorem
|2

lg(um) — g(u)|” dx — 0.

By

So g(um) — g(u) in L2
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Truncations and powers of H! functions

Proof
@ Next, we have

IVg(um) — Vg(u)Pdx = | |g'(tm)Vum — g (u)Vul? dx

B B

< [ le'tum) — /(W) IVl ox

+/ lg'(um) 2|V U — Vul? dx— 0,
B

where we use Lebesgue's dominated convergence theorem to
treat the first integral and the convergence of Vu,, to Vu in 2
to treat the second integral.
Hence Vg(um) — Vg(u) in L2

@ We have thus shown that g(u,,) € H3(B) and g(um) — g(u) in
HY(B). The conclusion follows.
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Global a priori L™ estimates

We now prove the statement that if u € Hy(B;) N L>(By) is such
that Lu = f in By with f € L9(B;) for some g > n/2, then

[ullee(gyy < CUI o) + llull2sy))-

@ We use Moser iteration method. We write B = B; and fix some
k>0 p>1.

o Let w = uy + k and we use v = wP — kP as test function. This
is possible because we just proved that v € H}(B;).

We have
/ fvdx = / a,-jajué?,-v dx
B B

= / pw”’la,-jé)juﬁ,-qu dx
B

ellipticity

> )\p/ wPHVu, |? dx.
B
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Global a priori L™ estimate

Proof
@ We thus have

/ \Vw%ﬂlzdx < Cp/ [f||v|dx < Cp/ |f|wP dx.
B B B
@ By Friedrichs’ inequality, this gives
W' = K < G [ [Flw? o
B
@ By Gagliardo-Nirenberg-Sobolev’s inequality, this implies that

W' K2, < Cp/ £ wP .
B

@ We thus have

f'
||Wp§1 ||2 2 < Cp/(% + 1) wPt dx.
B
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Global a priori L™ estimate

Proof
p f
o W < 6o [ (Bl nyurrian

@ Using Holder's inequality, we then arrive at

f
I < GBI s+ )27
@ We now choose k to be any number larger than ||f||;« and
obtain from the above that

1 1
Iwllspe < CPIWIEn.

inequality is self—improving: If w has a bound in L9(PT1) then it
p+1)

has a bound in L™»
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Global a priori L™ estimate

Proof

+1
n(p+1) — C(p+ 1)||W||qu’(p+1)'

L=
@ Now let y = =T
the above gives

2) - > 1 and t,, = vyx™ for some v > 2¢’, then

Wlliimss < (Ctm)ir [ w]| en

-1, —m /A—1

= (C)T X w | e
Hence by induction,
IWllimes < (€))7 ZmX "X T En ™ ||y < Cllwlis
@ Sending m — oo, we obtain

Wl < C||w||r+ provided v > 24’
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Global a priori L™ estimate

Proof
o ||wl||= < C||lw||r when v > 24’
@ We now reduce from L7 to L?:

1/~ 1-2 1/~
Il < { [ e} < el { [ o}

This gives
Iwlle= < Cllwllee

@ Recalling that w = uy + k and k can be any positive constant
larger than ||f]| s, we have thus shown that

lug e < C(llullz + [[£]lL0)

@ Applying the same argument to u_, we get the corresponding
bound for u_ and conclude the proof.
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Global a priori L™ estimate

When L is injective, the term ||ul;2(g,) on the right hand side can be
dropped yielding the estimate:

ull () < CllfLa(By)-

We knew that
[ulleee < C([[fllza + [ull2)-

Therefore, it suffices to show that

|ull2 < C||f|le for all u € Hy(By), f € L9(B,) with Lu = f.
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Energy estimate with L9 right hand side

Theorem

Suppose that a, b, c € L*°(By), a is uniformly elliptic, and

L = —08;(a;0;) + bi0; + c. Suppose that the only solution in H}(B;)
to Lu = 0 is the trivial solution. Then, for every u € H3(B;) and

f € L9B;) with q > % satisfying Lu = f in By, there holds

lullr(gy < ClIFlleacey

where the constant C depends only on n, q, a, b, c.

Proof

@ When g = 2, the result is a consequence of the Fredholm
alternative and the inverse mapping theorem.
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Energy estimate with L9 right hand side

Proof
@ Let us consider first the case that b= 0 and ¢ = 0.

* In this case, by using u as a test function, we have
AVl < / 250 udju dx — / fu dx < ||Flluollll o
B B

* By Friedrichs’ inequality, we have ||ul|;1 < C||Vul| 2.
As g > n%:2, q < n2_”2. Hence, by
Gagliardo-Nirenberg-Sobolev's inequality, ||ul|,¢ < Cllul[g1.

* Therefore

lullZn < CIVulla < Cllfllallull e < ClIFlliallull p,
from which we get ||u|| g1 < CJ|f]|14, as desired.

MT 2020
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Energy estimate with L9 right hand side

Proof

@ Let us now consider the general case. By using u as a test
function, we have

Bmmzémwswmwm,

where B is the bilinear form associated with L.

@ The right hand side is treated as before and is bounded from
above by C||f||ie||u||4:. For the left hand side, we use
Friedrichs’ inequality together with energy estimates:

A 1
B(u, u) + Cllull: = SIVullz > =llull

We thus have
lullip < ClIflleallullm + CllullZ.
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Energy estimate with L9 right hand side

Proof
o |[ullfp < Cllflluallullme + CllullZ.
@ By Cauchy-Schwarz’ inequality, we then have
1
lullfn < 5||U||i/1 + ClIfll + Cllullfz,
and so

lullFa < ClIF|IZe + CllulZ..
@ |n other words,

[ullp < C[fl[a + Cllul| 2. (*)
@ To conclude, we show that

Jullz < C|If]|a- (**)

More precisely, we show that “(*) + injectivity of L = (**)".
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Energy estimate with L9 right hand side

Proof

@ Suppose by contradiction that there exists sequence
Unm € HY(By), fn € L9(By) such that Lu, = f,, but

[tml 2 > m]|f]| o

Replacing u,, by mum if necessary, we can assume that
[umlliz = 1.

® Then [[um|[iz =1, ||[fmlle < L and by (*), ||um|lm < C.
By the reflexivity of H! and Rellich-Kondrachov's theorem, we
may assume that u,, — v in H' and u,, — uin L2
Note that ||ul[,2 = 1.

@ To conclude, we show that Lu = 0, which implies u = 0 by
hypothesis, and amounts to a contradiction with ||u||,2 = 1.
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Energy estimate with L9 right hand side

Proof
o We start with Lu,, = f,, which means

/ [ayﬁjum&-v—i-b,-a,-umv—i-cumv} dx = / f,vdx forall v € Hg(Bl).
Bl Bl

We then send m — oo using that Vu,, — Vu in [?, u, — uin
L% and f,, — 0 in L9 to obtain

/ [aijaju&-v + b;0;uv + Cuv] dx =0 forall v € Hg(Bl),
By

i.e. Lu=20, as desired.

e As up, € H3(B;), we have u € H3(B;) and so u = 0 by
hypothesis. This contradicts the identity ||u||;2 = 1, and finishes
the proof.
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Let us now consider an example in 1d:

{ —(au') = fin (—1,1),

u(~1) = u(1) = 0, where a = x(-10) + kX(0.)

As k — 0, the ellipticity deteriorates. As k — oo, the boundedness of
k deteriorates.
We have proved 2 estimates:

ulloo(—1,1) < G(K) || oo (~1,1), (1)
ulltoo(—1.1) < G(R)IFll e (-1,1) + llull2-1,1))- (2)

We would now like to have a rough appreciation whether (or how)
these constants depend on k, as kK — 0 or cc.
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where a = x(_10) + kX(0,1)-

o We empirically take f =1, so that ||f][;~ = 1.

@ We know that the problem has uniqueness (why?), so it suffices
to find a solution.

@ The equation gives —u” =1 in (—1,0) and —v” =1/k in (0,1).
So u takes the form

u(x) = { ~l(x+12+a(x+1) forx € (—1,0),
T —H 1P 4B —1) forxe (02).

T2k
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where a = X(-1,0) T kX(O,l)-

e As u € HY(—1,1), u is continuous. So

1 1

o As au’ is weakly differentiable, it is continuous and so

—1+a=1+kg.
@ So we find a = 2(",(131) and 5 = %
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{ ;((—aLll,))/—:u:tll)n —_O%, & where a = x(-1,0) + kX(0,1)-
@ So we have
u(x) = { _%I(X + 1)22—1— 2(kk;:§21(x +1) for x € (—1,0),
—n(x—1)7 - m(x —1) forx €(0,1).

o We find [[uf| ;= ~ % as k — 0, and ||u[ . ~ 1 as k — oo.
Therefore

1
Ci(k) ~ P k — 0, and Ci(k) ~ 1 as k — oc.

o Similarly |lul[;2 ~ £ as k = 0, and ||u|;2 ~ 1 as k — oo.

Therefore
Co(k) ~1as k — 0, 00.
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More examples...

Some other motivating examples you may want to consider:
a = X(-1,1\a + kxa where

@ A s an interval of length e.

@ A consists of two or more disjoint intervals of distance ¢ apart.

Studies of this kind in higher dimensions are active area of research,
due to their practical importance.
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