C4.3 Functional Analytic Methods for PDEs - Sheet 2 of 4

Read Chapter 2 and prove the few statements whose proofs were left out as exercises. (Not to be handed in.)

Do:

- **Q1.** Let $f_{\alpha}(x) = x^{\alpha}$ for $x \in (0, 1)$ and $\alpha \in \mathbb{R}$. Compute its weak derivative f'_{α} and determine, for given $1 \leq p < \infty$ the values of α such that $f_{\alpha} \in W^{1,p}(0, 1)$.
- **Q**2. Let Ω be a domain in \mathbb{R}^n and $u \in L^p_{loc}(\Omega)$, $1 \leq p < \infty$. Let $\varrho \in C^{\infty}_c(B_1)$ be a nonnegative function satisfying $\int_{\mathbb{R}^n} \varrho = 1$. For $\varepsilon > 0$, let $\Omega_{\varepsilon} := \{x \in \Omega : B_{\varepsilon}(x) \subset \Omega\}$ and $\varrho_{\varepsilon}(x) = \varepsilon^{-n} \varrho(x/\varepsilon)$.
 - (i) Show that $u_{\varepsilon} := \varrho_{\varepsilon} * u$ is well-defined in Ω_{ε} and u_{ε} converges to u in $L^{p}_{loc}(\Omega)$ (i.e. $u_{\varepsilon} \to u$ in $L^{p}(K)$ for every compact subset K of Ω).
 - (ii) Show that if u has first order weak derivative Du, then $Du_{\varepsilon} = \varrho_{\varepsilon} * Du$ in Ω_{ε} .
 - (iii) Deduce that if Du = 0 a.e. in Ω , then u = C a.e. in Ω for some constant C.
- **Q3.** (Chain rule) Let Ω be a bounded domain in \mathbb{R}^n and assume that $u \in W^{1,p}(\Omega)$ with $1 \leq p < \infty$. Let $f : \mathbb{R} \to \mathbb{R}$ be C^1 and satisfy $|f'| \leq L < \infty$ in \mathbb{R} . In this exercise, we are going to show that w = f(u) belongs to $W^{1,p}(\Omega)$ and Dw = f'(u)Du.
 - (i) Using the inequality $|f(t)| \leq |f(0)| + L|t|$, show that $w \in L^p(\Omega)$.

Let $\rho \in C_c^{\infty}(B_1)$ be a non-negative function satisfying $\int_{\mathbb{R}^n} \rho = 1$ and ρ_{ε} be defined by $\rho_{\varepsilon}(x) = \varepsilon^{-n} \rho(x/\varepsilon), \ \varepsilon > 0$. Define

$$\Omega_{\varepsilon} = \{ x \in \Omega : B_{\varepsilon}(x) \subset \Omega \},\$$

$$u_{\varepsilon} = \varrho_{\varepsilon} * u \text{ and } w_{\varepsilon} = f(u_{\varepsilon}) \text{ in } \Omega_{\varepsilon}.$$

(ii) Show that if K is a compact subset of Ω , then

$$||w_{\varepsilon} - w||_{L^{p}(K)} \le C ||u_{\varepsilon} - u||_{L^{p}(K)}$$

and deduce that $w_{\varepsilon} \to w$ in $L^p_{loc}(\Omega)$.

(iii) Show that $f'(u_{\varepsilon})Du$ converges along a subsequence to f'(u)Du in $L^p_{loc}(\Omega)$.

- (iv) Show that Dw_{ε} converges along a subsequence to f'(u)Du in $L^p_{loc}(\Omega)$. Deduce that w has a first order weak derivative Dw = f'(u)Du. Conclude that $w \in W^{1,p}(\Omega)$.
- Q4. (A special case of Theorem 2.3.5) Let $1 \leq p < \infty$, Ω be a domain in \mathbb{R}^n and suppose that Ω is star-shaped in the sense that there exists a point $x_0 \in \Omega$ such that for every $x \in \overline{\Omega}$, the line segment $(xx_0]$ connecting x and x_0 stays in Ω . Let $u \in W^{1,p}(\Omega)$. For $\lambda > 0$, let $\Omega^{\lambda} = \{x : x/\lambda \in \Omega\}$ and $u^{\lambda}(x) = u(x/\lambda)$ for $x \in \Omega^{\lambda}$. Show that $u^{\lambda} \in W^{1,p}(\Omega^{\lambda})$. Applying suitable mollification to u^{λ} with λ close to 1, show that u can be approximated by functions in $C^{\infty}(\overline{\Omega})$. Deduce that $C^{\infty}(\overline{\Omega})$ is dense in $W^{1,p}(\Omega)$.
- **Q**5. (Local extension) Let $1 \le p < \infty$, *B* be the open unit ball, $B^+ = \{(x', x_n) \in B, x_n > 0\}$ and $B^- = \{(x', x_n) \in B, x_n < 0\}$.
 - (i) Let $u \in C^1(\bar{B}^+)$ and define, for $x \in \bar{B}$,

$$\bar{u}(x) = \begin{cases} u(x) & \text{if } u \in \bar{B}^+, \\ -3u(x', -x_n) + 4u(x', -\frac{1}{2}x_n) & \text{if } u \in \bar{B}^-. \end{cases}$$

Show that $\bar{u} \in C^1(\bar{B})$ and $\|\bar{u}\|_{W^{1,p}(B)} \leq C_* \|u\|_{W^{1,p}(B^+)}$, where the constant C_* is independent of u.

(ii) Deduce that there is an extension operator $E : W^{1,p}(B^+) \to W^{1,p}(B)$ such that Eu = u a.e. in B^+ and

 $||Eu||_{W^{1,p}(B)} \le C_* ||u||_{W^{1,p}(B^+)}$ for all $u \in W^{1,p}(B^+)$.

Q6. Suppose $1 and <math>p' = \frac{p}{p-1}$.

(i) (Integration by parts) Let Ω be a bounded domain with Lipschitz boundary. Let ν be the outward pointing unit normal to $\partial\Omega$. By mean of approximations, show that for every $i \in \{1, \ldots, n\}, u \in W^{1,p}(\Omega)$ and $v \in W^{1,p'}(\Omega)$ there holds

$$\int_{\Omega} D_i uv = \int_{\partial \Omega} uv \nu_i - \int_{\Omega} u D_i v.$$

Here the values of u and v on $\partial \Omega$ are understood in the sense of trace.

(ii) Suppose $u^- \in W^{1,p}(B_1)$ and $u^+ \in W^{1,p}(B_2 \setminus B_1)$, where B_1 and B_2 are concentric balls of radii 1 and 2, respectively. Suppose that the trace of u^- on ∂B_1 coincides with the (restriction of the) trace of u^+ on ∂B_1 . Show that the function u defined by

$$u(x) = \begin{cases} u^{-}(x) & \text{if } x \in B_1, \\ u^{+}(x) & \text{if } x \in B_2 \setminus B_1, \end{cases}$$

belongs to $W^{1,p}(B_2)$.