C4.3 Functional Analytic Methods for PDEs - Sheet 3 of 4

Read Chapter 3 and prove the few statements whose proofs were left out as exercises. (Not to be handed in.)

Do:

Q1. Let Ω be a bounded domain in \mathbb{R}^n and assume that $u \in W^{1,p}(\Omega)$ with $1 \leq p < \infty$. By considering the sequence $\sqrt{m^{-2} + u^2}$, or otherwise, show that $|u| \in W^{1,p}(\Omega)$ and has weak derivative

$$(D|u|)(x) = \begin{cases} Du(x) & \text{if } u(x) > 0, \\ -Du(x) & \text{if } u(x) < 0, \\ 0 & \text{if } u(x) = 0. \end{cases}$$

- **Q**2. Suppose that Ω be a bounded domain in \mathbb{R}^n and $u \in W^{1,1}(\Omega)$.
 - (i) Let U be an open subset of \mathbb{R} and define $G_U = \int_0^t \chi_U(s) ds$. Show that, for all $\varphi \in C_c^{\infty}(\Omega)$,

$$\int_{\Omega} \chi_U(u(x)) Du(x) \varphi(x) dx = -\int_{\Omega} G_U(u(x)) D\varphi(x) dx.$$

[Start by computing the weak derivative of $(u-a)^+$, for some constant a, using Q1, then successively consider the cases $U=(a,\infty)$, U=(a,b), and finally any open U.]

- (ii) Let $Z \subset \mathbb{R}$ be a measurable set of zero measure and let $B = u^{-1}(Z)$. Show that Du = 0 a.e. in B. [Select a sequence of open sets $U_1 \supset U_2 \supset \ldots \supset Z$ such that $|U_m| \to 0$. Apply (i) to each U_m and send $m \to \infty$.]
- **Q**3. Let Ω be a bounded domain in \mathbb{R}^n and $1 \leq p < n$. Suppose that for some $1 \leq q \leq \infty$ the following Sobolev-type inequality holds

$$||u||_{L^{q}(\Omega)} \le C||u||_{W^{1,p}(\Omega)}$$
 for all $u \in W^{1,p}(\Omega)$,

where C is independent of u. Show that $q \leq p^*$.

- **Q**4. (Sobolev spaces in one dimension) Let $1 \le p < \infty$.
 - (i) Let $v \in L^p(0,1)$. Show that the function $w:[0,1] \to \mathbb{R}$ defined by $w(x) = \int_0^x v(t) dt$ is continuous and has weak derivative w' = v.
 - (ii) Show that a function $u \in L^p(0,1)$ belongs to $W^{1,p}(0,1)$ if and only if there exist a function $v \in L^p(0,1)$ and a constant c such that $u(x) = c + \int_0^x v(t) dt$ for a.e. $x \in (0,1)$.
 - (iii) Deduce that the embedding $W^{1,p}(0,1) \hookrightarrow C([0,1])$ is continuous.
 - (iv) For p > 1, prove the inequality

$$[u]_{C^{0,1-\frac{1}{p}}(0,1)} \le ||u'||_{L^p(0,1)} \text{ for all } u \in W^{1,p}(0,1)$$

and deduce that the embedding $W^{1,p}(0,1) \hookrightarrow C([0,1])$ is compact.

Q5. (Poincaré-Sobolev's inequality) Let Ω be a bounded Lipschitz domain in \mathbb{R}^n and suppose $1 \leq p < \infty$. Let $1 \leq q \leq p^*$ when p < n, $1 \leq q < \infty$ when p = n, and $1 \leq q \leq \infty$ when p > n. Show that there exists a constant $C = C_{n,p,q,\Omega}$ such that

$$||u - \bar{u}_{\Omega}||_{L^q(\Omega)} \le C||Du||_{L^p(\Omega)}$$
 for all $u \in W^{1,p}(\Omega)$.

Here $\bar{u}_{\Omega} = \frac{1}{|\Omega|} \int_{\Omega} u$.

Q6. (i) (Gagliardo-Nirenberg's inequality in two dimensions) Prove that

$$||u||_{L^{2}(\mathbb{R}^{2})}^{2} \leq ||\partial_{1}u||_{L^{1}(\mathbb{R}^{2})}||\partial_{2}u||_{L^{1}(\mathbb{R}^{2})} \text{ for all } u \in C_{c}^{\infty}(\mathbb{R}^{2}).$$

(A similar inequality holds in higher dimensions.)

(ii) (Ladyzhenskaya's inequality) Deduce, by applying (i) to v^2 , that

$$||v||_{L^4(\mathbb{R}^2)}^2 \le \sqrt{2}||v||_{L^2(\mathbb{R}^2)}||Dv||_{L^2(\mathbb{R}^2)} \text{ for all } v \in C_c^{\infty}(\mathbb{R}^2).$$