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Chapter 1

Introduction

1.1 Why Functional Analysis Methods are im-

portant for PDE’s?

Let us consider an important example: a linear PDE (partial differential
equation) of elliptic type

Lu := −(aiju,j),i + biu,i + cu = f + gi,i in Ω. (1.1.1)

Here, Ω is a domain in R
n, n ≥ 2, u is unknown function, u,i = ∂u/∂xi,

a = (aij) is a given symmetric matrix field, b = (bi) and g = (gi) are given
vector valued functions, c and f are given scalar functions, and summation
over repeated indices running from 1 to n is adopted. It is assumed that the
matrix a satisfies the ellipticity (uniform ellipticity) condition

νI ≤ a ≤ ν−1I (⇔ ν|ξ|2 ≤ ξ · aξ ≤ ν−1|ξ|2 ∀ξ ∈ R
n)

with a positive constant ν. Here, I is the identity matrix.
Equations (1.1.1) can be re-written in the following invariant form

−div(a∇u) + b · ∇u+ cu = f + div g in Ω.

In general, equation (1.1.1) may have infinitely many solutions. To select
a particular one, a boundary condition should be imposed on. An important
example is the Dirichlet boundary condition:

u = u0 on ∂Ω. (1.1.2)
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6 CHAPTER 1. INTRODUCTION

Problem (1.1.1), (1.1.2) is called the Dirichlet boundary value problem. A
classical solution to (1.1.1), (1.1.2) is a solution u, belonging to C2(Ω)∩C(Ω).

The existence and the multiplicity of solutions to boundary value problem
(1.1.1), (1.1.2) are important issues in the theory of PDE’s. Unfortunately,
it might happen that there is no classical solution at all, in particular, if a,
b, c, f , and g are not smooth enough.

Several warning messages, indicating that the classical approach to the
aforesaid problems does not work, came from physics and the Calculus of
Variations in the first part of 20th century. In particular, to prove the exis-
tence of a minimizer, say, of the multiple integral

∫

Ω

F (∇u)dx,

one has to extend it to non-smooth functions and thus to assume that solu-
tions to the Euler-Lagrange equation for the integrand F are not necessary
smooth. On the other hand, δ-function (or Dirac function), introduced by
physicist P. Dirac, suggests that the notion of functions as well as solutions
should be revised.

That time, the main trend was to include PDE problems into the frame-
work of functional analysis. The principal objects in powerful functional
analytic schemes are function spaces and operators, acting there. Suitable
spaces such as Lebesgue and Sobolev spaces, in which differential operators
have reasonable properties, were discovered in the first part of 20th century.
Our course can be regarded as an introduction to the theory of spaces of func-
tions, having so-called weak derivatives, and includes the celebrated Sobolev
embedding theorems.

Having in hands ”good” function spaces, we shall define the notion of
weak solutions, re-discovering old ideas of mechanics and the Calculus of
Variations. Namely, we replace our differential equation (1.1.1) with the
integral identity

L(u, v) =
∫

Ω

(aiju,jv,i + biu,iv + cuv)dx =

∫

Ω

(fv − giv,i)dx,

being valid for any test function v that is sufficiently smooth and vanishes in
a neighbourhood of the boundary of Ω. If all functions in the above identity
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are sufficiently smooth, we may integrate by parts there and derive

L(u, v) =
∫

Ω

(Lu)vdx =

∫

Ω

(f + div g)vdx

for the same test functions v. The latter identity shows that all classical
solutions are weak solutions as well.

It turns out that the existence of weak solutions is a relatively simple
consequence of well-known theorems of functional analysis.

Methods of functional analysis give modern and powerful tools to treat
problems related to PDE’s and, nowadays, it is difficult to imagine modern
mathematics of PDE’s without them.
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Chapter 2

Lebesgue and Sobolev Spaces

2.1 Lebesgue’s Spaces

2.1.1 Spaces Lp(E) and Lp(E)

Let 1 ≤ p ≤ ∞ and E ∈ R
n be measurable. For simplicity, we always assume

that Lebesgue’s measure of E is finite, i.e., |E| := µ(E) <∞, although many
statements hold true without this restriction.

Define for a measurable function f : E → R

‖f‖p,E :=
(∫

E

|f(x)|pdx
) 1

p

if p <∞ and
‖f‖∞,E := ess sup

x∈E
|f(x)|

if p = ∞. Here,

ess sup
x∈E

|f(x)| := inf{c > 0 : |f | ≤ c a.e. inE}.

We let then

Lp(E) := {f : f is measurable and ‖f‖p,E <∞}.

Lp(E) is a vector space. Indeed, if f, g are measurable in E and λ ∈ R,
then f + λg is measurable. In addition, |f + λg|p ≤ 2p−1(|f |p + |λ|p|g|p) for
1 ≤ p <∞. So, f + λg∈Lp(E).

9



10 CHAPTER 2. LEBESGUE AND SOBOLEV SPACES

Lemma 1.1. (Hölder inequality) Let f ∈ Lp(E), and g ∈ Lp′(E) with 1/p+
1/p′ = 1. Then fg ∈ L1(E) and

∣∣∣
∫

E

f(x)g(x)dx
∣∣∣ ≤

(∫

E

|f(x)|pdx
) 1

p
(∫

E

|g(x)|p′dx
) 1

p′

.

Proof Sheet 1.

With the help of Hölder inequality, we can easily prove the following
version of Theorem 4.1 of Appendix B on dominated convergence.

Theorem 1.2. Let fm, m = 1, 2, ..., be a sequence of measurable functions
in E. Suppose that

(i) fm → f a.e. in E;

(ii) supm ‖fm‖p,E <∞ for some p > 1.

Then f ∈ Lp(E) and ‖f − fm‖q,E → 0 as m→ ∞ and for any 1 ≤ q < p.

Proof By Fatou’s lemma, f ∈ Lp(E). Let γ > 0 and Em = {x ∈ E :
|fm(x)− f(x)| ≥ γ}. By Theorem 2.3 (Lebesgue) of Appendix B, |Em| → 0
as m→ ∞. By Hölder inequality,

‖f − fm‖qq,E = ‖f − fm‖qq,E\Em
+ ‖f − fm‖qq,Em

≤

≤ γq|E \ Em|+ |Em|(1−
q

p
)‖f − fm‖qp,Em

≤

≤ γq|E|+ |Em|(1−
q

p
)c(p, q) sup

m
‖fm‖qp,E.

Passing to the limit as m→ ∞, we find

lim sup
m→∞

‖f − fm‖q,E ≤ γ|E| 1q .

Letting γ tend to 0, we complete the proof. ✷

Lemma 1.3. (Minkowski inequality)

(∫

E

|f(x) + g(x)|pdx
) 1

p ≤
(∫

E

|f(x)|pdx
) 1

p

+
(∫

E

|g(x)|pdx
) 1

p

.
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Proof Sheet 1.
Note ‖f‖p,E = 0 implies f = 0 a.e. in E and thus, from Lemma 1.3, it

follows that ‖f‖p,E is a semi-norm in Lp(E).
To work with semi-norms is inconvenient and, in order to avoid this, we

introduce equivalence classes in the following natural way. Two measurable
functions f and g are equivalent in E (f ∼ g) if f = g a.e. in E. An
equivalence class generated by a measurable function f is denoted by [f ].
The space of all equivalence classes whose representatives are integrable with
power p is denoted by Lp(E). However, in what follows, we shall denote an
equivalence class [f ] by the function that generates it, i.e., simply by f . Null
element of Lp(E) consists of all functions that are equal to zero a.e. in E
and, hence, Lp(E) is a normed space.

Theorem 1.4. Lp(E) is a Banach space.

Proof (for 1 ≤ p < ∞, p = ∞ is an exercise). Let fm, m = 1, 2, ..., be a
Cauchy sequence in Lp(E). In particular, this implies

εm = sup
k>m

‖fk − fm‖p,E → 0

as m→ ∞. One can find a subsequence εms
such that εms

< 2−s, s = 1, 2, ....
Then, by Hölder inequality,

‖fms+1 − fms
‖1,E ≤ |E|

1
p′ ‖fms+1 − fms

‖p,E ≤ εms
|E|

1
p′

and thus the series

∫

E

|fm1 |dx+
∞∑

s=1

∫

E

|fms+1 − fms
|dx

converges. By Beppo Levi theorem (see Theorem 4.2) of Appendix B, the
series

|fm1 |+
∞∑

s=1

|fms+1 − fms
|

converges a.e. in E and the series

fm1 +
∞∑

s=1

(fms+1 − fms
)
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convergence a.e. in E absolutely. The later means that

Sj = fm1 + fm2 − fm1 + ...+ fmj+1
− fmj

= fmj+1

converges a.e. in E to a measurable function f . So, for sufficiently large j,
we have

εpm ≥
∫

E

|fmj
− fm|pdx

and |fmj
− fm|p → |f − fm|p a.e. in E. By Fatou’s lemma (see Lemma 4.3)

of Appendix B,

εpm ≥
∫

E

|f − fm|pdx

for any m. This completes the proof. ✷

2.1.2 Sets that are dense in Lp(E)

Let T = {Ej}mj=1 be a partition of E, i.e., E =
⋃m
j=1Ej, Ej ∩ Ek = ∅ if

j 6= k. f : E → R is a simple function if there exists a partition T such that
f(x) = ci for x ∈ Ei.

Theorem 1.5. Let 1 ≤ p ≤ ∞. The set of all simple functions in E is dense
in Lp(E).

Proof The proof is based on Lebesgue’s partition, on Sheet 1.

Theorem 1.6. Let 1 ≤ p <∞. C(Rn) is dense in Lp(E).

We start with two auxiliary lemmata.

Lemma 1.7. Let A ⊂ R
n and ̺(x,A) = inf

z∈A
|x − z|. Then |̺(x,A) −

̺(y, A)| ≤ |x− y|.

Proof We have for z ∈ A

̺(x,A) ≤ |x− z| ≤ |x− y|+ |y − z|,

which implies ̺(x,A) ≤ |x− y|+ ̺(y, A). Replacing x with y and y with x,
we complete the proof. ✷
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Lemma 1.8. Let 1 ≤ p < ∞ and E0 ⊆ E be two measurable sets in R
n.

Given ε > 0, there exists a function g ∈ C(Rn) such that ‖χE0 − g‖p,E < ε,
where χE0(x) = 1 if x ∈ E0 and χE0(x) = 0 if x ∈ E \ E0.

Proof Since E0 is measurable, there exist a closed set F ⊆ E0 and an open
set O ⊇ E0 such that |O \ F | < (ε/2)p. We let

0 ≤ g(x) :=
̺(x,Rn \ O)

̺(x, F ) + ̺(x,Rn \ O)
≤ 1

for x ∈ R
n. Obviously, g is continuous function in R

n. And

‖χE0 − g‖p,E ≤ 2|O \ F | 1p ≤ ε. ✷

Proof of Theorem 1.6 (Sheet 1. Hint: First approximate a function
by simple functions and then approximate simple functions by continuous
functions)

Corollary 1.9. Lp(E) is separable if 1 ≤ p <∞.

Indeed, let Q be an open cube such that E ⊆ Q. Since C(Q) is separable,
we find a countable set {fk}∞k=1 ⊂ C(Q) that is dense in C(Q) with respect
to L∞-norm. By Theorem 1.6, given ε > 0 and given f ∈ Lp(E), there exist
a function g ∈ C(Q) such that ‖f − g‖p,E ≤ ε/2 and a function fi such that

‖g − fi‖p,C(Q) ≤ ‖g − fi‖∞,C(Q)|Q|
1
p < ε/2. So, ‖f − fi‖p,E < ε. ✷

However, L∞(E) is not separable (on problem sheet). Arguments are as
follows. Let T be a countable partition of E, i.e., T = {Ej}∞j=1, E =

⋃∞
j=1Ej,

Ei ∩ Ej = ∅ if i 6= j. We fix it. Define X0 ⊂ L∞(E) so that f ∈ X0 if and
only if f ∈ L∞(E) and f(x) = ci for x ∈ Ei, i = 1, 2, .... The mapping
π : X0 → l∞ defined by πf = c = (ci) is an isometric isomorphism. If L∞(E)
is separable, then X0 is separable as well (Explain why, see remark below).
But this implies separability of l∞, which is wrong. ✷

Remark 1.10. Let (X, ‖ · ‖) be a separable normed space and X0 be a subset
of X. Then X0 is separable.

Indeed, there exists a countable set {xk}∞k=1 that is dense in X. Let εm > 0
tend to zero as m goes to ∞. We can find zkm ∈ X0 such that

‖xk − zkm‖ < εm/3 + ̺(xk, X0).
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To show that {zkm} is dense in X0, take an arbitrary ε and sufficiently large
m so that εm < ε. Now, let x ∈ X0. First, we can find xk such that
‖x− xk‖ < ε/3. We have

‖x− zkm‖ ≤ ‖x− xk‖+ ‖xk − zkm‖ < ε/3 + εm/3 + ̺(xk, X0) ≤

≤ 2ε/3 + ‖xk − x‖ < ε. ✷

Theorem 1.11. (integral continuity or continuity of translations) Let E be
a measurable bounded set of Rn and 1 ≤ p < ∞. Let f ∈ Lp(E) be extended
by zero from E to the whole R

n. Then for any ε > 0, there exists δ > 0 such
that

‖f(·+ h)− f(·)‖p,E :=
(∫

E

|f(x+ h)− f(x)|pdx
) 1

p

< ε

whenever |h| < δ.

Proof We fix a large cube Q such that E + h ⊂ Q for any h ∈ R
n such

that |h| ≤ 1. Since f ∈ Lp(Q), given ε > 0, there exists a function g ∈ C(Q)
such that ‖f − g‖p,Q < ε. Since g is uniformly continuous in Q, there exists

0 < δ < 1 such that |g(x + h)− g(x)| < ε|E|− 1
p as long as x, x + h ∈ Q and

|h| < δ. So,

‖f(·+ h)− f(·)‖p,E ≤ ‖f − g‖p,E+h + ‖g(·+ h)− g(·)‖p,E + ‖g − f‖p,E

≤ 2‖f − g‖p,Q + ‖g(·+ h)− g(·)‖∞,E|E|
1
p < 3ε. ✷

2.1.3 Linear Functionals and Weak Convergence

in Lp(E)

Lemma 1.12. Let f ∈ Lp
′

(E). Then ‖f‖p′,E = I, where

I := sup
{∫

E

f(x)g(x)dx : ‖g‖p,E = 1
}
.

Proof By Hölder inequality, I(g) :=
∫
E

f(x)g(x)dx ≤ ‖f‖p′,E if ‖g‖p,E = 1

and thus I ≤ ‖f‖p′,E.
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Consider first the case 1 < p ≤ ∞. Define

g0(x) = signf(x)|f(x)|p′−1/‖f‖
p′

p

p′,E (g0(x) = signf(x) if p = ∞).

It is easy check that ‖g0‖p,E = 1 and I ≥ I(g0) = ‖f‖p′,E. This completes
the proof for the case 1 < p ≤ ∞.

If p = 1, then, given ε > 0, define a set Eε = {x ∈ E : |f(x)| ≥
‖f‖∞,E−ε} and a function g0(x) = χEε

(x)signf(x)/|Eε|. Simple calculations
show that ‖g0‖1,E = 1 and I ≥ I(g0) ≥ ‖f‖∞,E − ε. Passing ε → 0, we get
the statement of the lemma for p = 1. ✷

Theorem 1.13. (Riesz) Let 1 ≤ p <∞. There exists isometric isomorphism
π : (Lp(E))∗ → Lp

′

(E), p′ = p
p−1

, so that πT = f with

T (g) =

∫

E

f(x)g(x)dx ∀g ∈ Lp(E). (2.1.1)

So, we have (Lp(E))∗ ∼= Lp
′

(E).

From the Riesz representation theorem, it follows that the space Lp(E)
is reflexive provided 1 < p <∞.

Proposition 1.14. Assume that

sup
m

‖fm‖p,E <∞.

If 1 < p <∞, there exists a subsequence fmk
such that

fmk
⇀ f

as k → ∞, i.e., for any g ∈ Lp
′

(E),
∫

E

fmk
gdx→

∫

E

fgdx (2.1.2)

as k → ∞.
If p = ∞ there exists a subsequence fmk

such that

fmk

∗
⇀ f,

i.e., (2.1.2) holds true for any g ∈ L1(E).

Proof It is a direct consequence of Theorems 6.4 and 6.5 of Appendix A
and Theorem 1.13.
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2.1.4 Mollification in Lp(Ω)

Define a function for non-negative t as h(t) = 0 if t ≥ 1 and h(t) = exp{ 1
t−1

}
if 0 ≤ t < 1. We also let ω1(x) = c1(n)h(|x|2), x ∈ R

n, with constant c1
chosen so that ∫

Rn

ω1(x)dx = 1.

For positive ̺, we define a mollifier as ω̺(x) = 1
̺n
ω1(

x
̺
) that is an in-

finitely differentiable function and equal to 0 outside B(̺). By scaling and
by shift, we have for any x ∈ R

n:

∫

Rn

ω̺(x− y)dy =

∫

B(x,̺)

ω̺(x− y)dy = 1.

Let Ω be a domain in R
n and f ∈ L1(Ω) be extended by zero to the whole

R
n. A mollification of f is

f̺(x) := (ω̺ ∗ f)(x) =
∫

Ω

ω̺(x− y)f(y)dy.

It is an infinitely differentiable function in R
n (explain why) and vanishes

outside Ω̺ := {x ∈ R
n : dist(x,Ω) < ̺}.

Our aim is to show that we can approximate functions from Lp(Ω) with
the help of mollification.

Lemma 1.15. Let f ∈ Lp(Ω) and 1 ≤ p ≤ ∞.

‖f̺‖p,Ω ≤ ‖f‖p,Ω.
Proof Let 1 < p <∞. We apply Hölder inequality in the following way

|f̺(x)| ≤
∫

Ω

ω
1
p′
+ 1

p

̺ (x− y)|f(y)|dy

=

∫

Ω

ω
1
p′

̺ (x− y)ω
1
p
̺ (x− y)|f(y)|dy
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≤
(∫

Ω

ω̺(x− y)dy
) 1

p′
(∫

Ω

ω̺(x− y)|f(y)|pdy
) 1

p

.

We know ∫

Ω

ω̺(x− y)dy ≤ 1.

It remains to apply Tonelli’s theorem and conclude

‖f̺‖pp,Ω =

∫

Ω

|f̺(x)|pdx ≤
∫

Ω

dx

∫

Ω

ω̺(x− y)|f(y)|pdy

=

∫

Ω

|f(y)|pdy
∫

Ω

ω̺(x− y)dx ≤
∫

Ω

|f(y)|pdy = ‖f‖pp,Ω.

Cases p = 1 and p = ∞ are considered in the same way (explain why). ✷

Theorem 1.16. Let f ∈ Lp(Ω) and 1 ≤ p < ∞. Then f̺ → f in Lp(Ω) as
̺→ 0.

Proof For any x ∈ Ω, we have (f is extended by zero outside Ω)

f̺(x)− f(x) =

∫

Ω

ω̺(x− y)f(y)dy − f(x) =

=

∫

B(x,̺)

ω̺(x− y)f(y)dy − f(x) =

∫

B(x,̺)

ω̺(x− y)(f(y)− f(x))dy

and thus

|f̺(x)− f(x)| ≤
∫

B(x,̺)

ω̺(x− y)|f(y)− f(x)|dy

z=y−x
=

∫

B(̺)

ω̺(z)|f(x+ z)− f(x)|dz.

Repeating arguments used in the proof of Lemma 1.15, we find

∫

Ω

|f̺(x)− f(x)|pdx ≤
∫

Ω

dx

∫

B(̺)

ω̺(z)|f(x+ z)− f(x)|pdz
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=

∫

B(̺)

ω̺(z)dz

∫

Ω

|f(x+ z)− f(x)|pdx

and, therefore,

‖f̺ − f‖p,Ω ≤ sup
|z|<̺

‖f(·+ z)− f(·)‖p,Ω (2.1.3)

By Theorem 1.11, the right hand side of (2.1.3) tends to 0 as ̺→ 0. ✷

Theorem 1.17. (Riesz) Let F be a subset in Lp(Ω). Let 1 ≤ p < ∞. F is
precompact in Lp(Ω) if and only if
(i) sup

f∈F
‖f‖p,Ω =:M <∞

(ii) sup
f∈F

sup
|z|<̺

‖f(·+ z)− f(·)‖p,Ω =: δ(̺) → 0 as ̺→ 0.

Proof We start with a proof of sufficient conditions of compactness. Let us
denote by F̺ the set of all f̺ with f ∈ F and show that for each fixed ̺ > 0
this family satisfies all conditions of Ascoli-Arzela theorem, see Theorem 4.7
of Appendix A. First, this family is uniformly bounded, i.e.,

sup
x∈Ω

|f̺(x)| ≤ c(̺, |Ω|)‖f‖p,Ω ≤ cM.

It is equi-continuous, since

|f̺(x1)− f̺(x2)| ≤
∫

Ω

|ω̺(x1 − y)− ω̺(x2 − y)|f(y)|dy

≤ c(̺, |Ω|)|x1 − x2|‖f‖p,Ω ≤ cM |x1 − x2|
for any x1 and x2 from Ω.

We take an arbitrary ε > 0 and choose ̺ > 0 so that δ(̺) < ε/2 and
fix it. For this ̺ > 0, the family F̺ is precompact in C(Ω). By Hausdorff’s

theorem, see Theorem 4.5 of Appendix A, there exists a finite ε/(2|Ω| 1p )-net
{hj ∈ C(Ω)}mj=1 and we are going to show that it is ε-net for F . Indeed, for
(f)̺ ∈ F̺, there exists hj such that

‖f̺ − hj‖p,Ω ≤ |Ω| 1p‖f̺ − hj‖∞,Ω < ε/2

and thus, by (2.1.3) and by our choice of ̺ > 0,

‖f − hj‖p,Ω ≤ ‖f − f̺‖p,Ω + ‖f̺ − hj‖p,Ω < ε.
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Now, we are in a position to prove necessary conditions. Let Q be a large
cube so that Ω + h ⊂ Q for any |h| ≤ 1. Let FQ consists of all functions
f ∈ Lp(Q) such that f(x) = g(x) if x ∈ Ω for some g ∈ F and f(x) = 0 if
x ∈ Q \ Ω. Obviously, if F is precompact in Lp(Ω), then FQ is precompact
in Lp(Q).

By Hausdorff’s theorem, there exists a finite 1-net of FQ, say, fj, j =
1, 2, ...,m. Then by the definition, given f ∈ FQ, there exists fj from this
1-net such that ‖f − fj‖p,Q ≤ 1 and thus we have

‖f‖p,Ω < ‖fj‖p,Q + 1 ≤ sup
1≤j≤m

‖fj‖p,Q + 1 =:M

for any f ∈ F . So, uniform boundedness is proved.
Next, for an arbitrary ε > 0, we have ε-net of FQ, say, fj , j = 1, 2, ...,m.

So, for f ∈ FQ, there exists fj from ε-net of FQ such that ‖f − fj‖p,Q < ε.
Then, for |h| < ̺.

‖f(·+ h)− f(·)‖p,Ω ≤
≤ ‖f(·+ h)− fj(·+ h)‖p,Ω + ‖fj(·+ h)− fj(·)‖p,Ω + ‖fj − f‖p,Ω =

= ‖f − fj‖p,Ω+h + ‖fj(·+ h)− fj(·)‖p,Ω + ‖fj − f‖p,Ω ≤
≤ 2‖fj − f‖p,Q + sup

1≤j≤m
sup
|h|<̺

‖fj(·+ h)− fj(·)‖p,Ω ≤

≤ 2ε+ sup
1≤j≤m

sup
|h|<̺

‖fj(·+ h)− fj(·)‖p,Ω.

It follows from Theorem 1.11, that the second term on the right hand side of
the latter inequality tends to 0 as ̺→ 0. So,

lim sup
̺→0

sup
f∈F

sup
|h|<̺

‖f(·+ h)− f(·)‖p,Ω ≤ 2ε.

By arbitrariness of ε,

lim
̺→0

sup
f∈F

sup
|h|<̺

‖f(·+ h)− f(·)‖p,Ω = 0.✷

2.2 Distributions

2.2.1 Spaces of Differentiable Functions

Definition 2.1. A n-dimensional vector α = (α1, α2, ..., αn) = (αi) with non-
negative integer components is a multi-index of order n. |α| = α1+α2+...+αn
is a length of α.
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For x ∈ R
n, we let xα := xα1

1 x
α2
2 ...x

αn
n =

∏n
i=1 x

αi

i . Summation over
multi-indices is denoted as

∑

|α|≤k

aα :=
k∑

i=0

∑

|α|=i

aα =
k∑

i=0

∑

α1+α2+...+αn=i

aα1,α2,...,αn
.

In this notation, a polynomial of order k of n variables can be written as
Pk(x) :=

∑
|α|≤k

pαx
α.

Denote Di = ∂/∂xi, Dif = ∂f/∂xi, D
k
i = ∂k/∂xki and introduce a formal

n-dimensional vector D = (D1, D2, ..., Dn) so that

Dαf = Dα1
1 D

α2
2 ...D

αn

n f =
∂α1+α2+...αn

∂xα1
1 ∂x

α2
2 ...∂x

αn
n

f.

Exercise Prove that DαDβf = DβDαf .
Let Ω be a domain (open connected set) in R

n. For bounded Ω, Ck(Ω)
is a B-space with norm

‖f‖Ck :=
∑

|α|≤k

max
x∈Ω

|Dαf(x)|.

For f : Rn → R, define suppf := {x ∈ Rn : |f(x)| > 0}. We say that
f is compactly supported in Ω if suppf is compact and contained in Ω. By
definition, Ck

0 (Ω) consists of all f : Rn → R being continuously differentiable
up to order k and having a compact support in Ω. The important case
is a linear space C∞

0 (Ω) consisting of all infinitely differentiable functions
compactly supported in Ω. For example, the function h(t) = 0 if |t| ≥ 1 and
h(t) = exp{ 1

t2−1
} if |t| < 1 is of C∞

0 (R).

2.2.2 Distributions

Definition 2.2. D(Ω) is the space of test functions consisting of all functions
from C∞

0 (Ω). It is endowed with the following notion of convergence. Let
ϕm ∈ C∞

0 (Ω), m = 1, 2, ..., and ϕ ∈ C∞
0 (Ω), we say that ϕm → ϕ in

D(Ω) as m → ∞ if there exists a compact K ⊂ Ω such that suppϕm ⊆ K
(∀m = 1, 2, ...), suppϕ ⊆ K, and Dαϕm → Dαϕ uniformly in K for any
multi-indices α.
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Definition 2.3. A distribution T on Ω is a linear contnuous functional T :
D(Ω) → R. The latter means: ϕm → ϕ in D(Ω) ⇒ T (ϕm) → T (ϕ) in R.
The set of all distributions is denoted D′(Ω).

Very often, the action T on ϕ ∈ D(Ω) is also denoted by < T, ϕ >:= T (ϕ).
Examples:
1. T is a regular distribution if there exists a function f ∈ L1

loc(Ω) such that
T (ϕ) =

∫
Ω

fϕdx. A regular distribution is denoted also as T = Tf .

Lemma 2.4. Tf = Tg if and only if f = g a.e. in Ω.

Proof Tf = Tg ⇔
∫
Ω

(f − g)ϕdx = 0 for any ϕ ∈ C∞
0 (Ω). The result follows

from Lemma 2.5 below. ✷

Lemma 2.5. Let f ∈ L1

loc(Ω) and
∫
Ω

fϕdx = 0 for ϕ ∈ C∞
0 (Ω). Then f = 0

in Ω.

Proof Without loss of generality, we may assume that Ω is bounded and
f ∈ L1(Ω). Define Ω̺ = {x ∈ Ω : dist(x, ∂Ω) > ̺}. Fix ̺0 > 0. Then,
for 0 < ̺ < ̺0, the function y 7→ ω̺(x − y) ∈ C∞

0 (Ω) for x ∈ Ω̺0 . By the
assumption, f̺(x) = 0 for all x ∈ Ω̺0 . From Theorem 1.16, it follows that
f = 0 a.e. in Ω̺0 and thus in Ω. ✷
2. A bounded Radon measure T is a distribution satisfying

|T (ϕ)| ≤M‖ϕ‖∞,Ω

for any ϕ ∈ D(Ω). Given a ∈ Ω, the Dirac δ-function is a distribution
T (ϕ) = ϕ(a), ϕ ∈ D(Ω). Let us show that the Dirac δ-function is not a
regular distribution. If yes, there exists f ∈ L1

loc(Ω) such that
∫
Ω
fϕdx = ϕ(a)

for any ϕ ∈ C∞
0 (Ω). By Lemma 2.5, f = 0 a.e. in Ω\{a} and thus f = 0 a.e.

in Ω, which implies ϕ(a) = 0 for any ϕ ∈ C∞
0 (Ω). This is a contradiction.

Nevertheless, physicists often use the formal notation δa(x) for ”density” so
that ϕ(a) =

∫
Ω
δa(x)ϕ(x)dx. However, this is just formal notation since the

right hand side of the last ”identity” makes no sense.

Remark 2.6. We say that a sequence {Tj} of D′(Ω) converges to T in the
sense of distributions if Tj(ϕ) → T (ϕ) for any ϕ ∈ C∞

0 (Ω). Obviously, T is
a linear functional in D(Ω) and, moreover, T ∈ D′(Ω), which is a bit more
difficult to prove.
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2.2.3 Distributional Derivatives

Any distribution has partial derivatives of any order in the following way.
Let T be a distribution on Ω and consider the linear functional S(ϕ) =
(−1)|α|T (Dαϕ), ϕ ∈ D(Ω). It is easy to check that S is continuous on D(Ω).

Definition 2.7. A distributional derivative of a distribution T is a distribu-
tion S denoted by DαT , i.e., S = DαT .

Definition 2.7 is in accordance with the classical notion of partial deriva-
tives. Indeed, suppose that f ∈ C |α|(Ω), then integration by parts gives

(−1)|α|Tf (D
αϕ) = (−1)|α|

∫

Ω

fDαϕdx =

∫

Ω

Dαfϕdx

for any ϕ ∈ C∞
0 (Ω). So, we conclude that in this case

DαTf = TDαf .

Example: Fundamental solution to Laplace’s equation.

Let, for x 6= 0,

f(x) =
1

|x|n−2

for n ≥ 3. Direct calculations shows that

∆f(x) = 0 (2.2.1)

if x ∈ R
n \{0}. Let us find ∆Tf on R

n. By the definition, ∆Tf (ϕ) = Tf (∆ϕ)
for all ϕ ∈ D(Ω). Then

∆Tf (ϕ) =

∫

Rn

f∆ϕdx = lim
ε→0

∫

Rn\B(ε)

f∆ϕdx.

So, after double integration by parts, we show

∆Tf (ϕ) = − lim
ε→0

∫

∂B(ε)

(
∂ϕ

∂ν
f − ∂f

∂ν
ϕ)dS + lim

ε→0

∫

Rn\B(ε)

ϕ∆fdx,
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where ν is the outward unit normal to the surface ∂B(ε). The last term on
the right hand side vanishes by (2.2.1) and thus

∆Tf (ϕ) = − lim
ε→0

1

εn−2

∫

∂B(ε)

∂ϕ

∂xi
νidS − (n− 2) lim

ε→0

1

εn−1

∫

∂B(ε)

ϕdS.

Since the surface area of the ball B(ε) is equal to Sn−1ε
n−1, where Sn−1 is

the surface area of the unit ball in R
n and since ϕ is a smooth function, we

find after taking the limit as ε→ 0 the following identity

∆Tf (ϕ) = −(n− 2)Sn−1ϕ(0). (2.2.2)

However, very often, physicists use the classical notation for (2.2.2)

−∆f(x) = (n− 2)Sn−1δ0(x), x ∈ R
n,

just mentioning that the latter relation is understood in the sense of distri-
butions.

2.3 Sobolev Spaces

2.3.1 Weak Derivatives

Let Ω be a domain in R
n.

Definition 3.1. Let u ∈ L1

loc(Ω). A regular distribution Tv is a weak (or

Sobolev) derivative of u in Ω if Tv = DαTu and classical notation is used
v := Dαu. In other words, v ∈ L1

loc(Ω) is a weak derivative of u in Ω if

∫

Ω

vϕdx = (−1)|α|
∫

Ω

uDαϕdx, ∀ϕ ∈ C∞
0 (Ω).

If u ∈ C |α|(Ω), then the integration by parts gives:
∫

Ω

Dαuϕdx = (−1)|α|
∫

Ω

uDαϕdx, ∀ϕ ∈ C∞
0 (Ω).

So, by the uniqueness lemma, see Lemma 2.4, u has a weak derivative Dαu
that coincides with the corresponding usual (classical) derivative.
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Let us list some elementary properties of weak derivatives:
1◦. By Lemma 2.4, u has the only weak derivative Dαu (if it does exist).
2◦. Let u ∈ L1

loc(Ω) have a weak derivative Dαu in Ω and Ω′ ⊂ Ω. Then u has
a weak derivative Dαu in Ω′ and this derivative coincides with the restriction
of the original weak derivative Dαu to Ω′.
3◦. Let u1, u2 ∈ L1

loc(Ω) and D
αu1, D

αu2 be the corresponding weak deriva-
tives of u1, u2 in Ω, respectively. Then, for any c1, c2 ∈ R, c1u1 + c2u2 has a
weak derivative in Ω and it is equal to c1D

αu1 + c2D
αu2.

Proof of 1◦ − 3◦ Exercise.
Let um ∈ L1

loc(Ω), m = 1, 2, ..., and u ∈ L1
loc(Ω). We say that um → u in

L1
loc(Ω) as m→ ∞ if um → u in L1(K) for each compact K ⊂ Ω.

Lemma 3.2. Let um → u in L1

loc(Ω) and Dαum → v in L1

loc(Ω). Then
v = Dαu in Ω.

Proof By definition, for each m, we have
∫

Ω

Dαumϕdx = (−1)|α|
∫

Ω

umD
αϕdx, ∀ϕ ∈ C∞

0 (Ω).

Since ϕ is compactly supported in Ω, we can take a limit for each fixed ϕ
and show ∫

Ω

vϕdx = (−1)|α|
∫

Ω

uDαϕdx.✷

2.3.2 Mollification of Functions with Weak Derivatives

Lemma 3.3. Let u ∈ L1(Ω) have a weak derivative Dαu ∈ L1(Ω). Let x ∈ Ω
and 0 < ̺ < dist(x, ∂Ω). Then

Dαu̺(x) = (Dαu)̺(x).

Proof For simplicity only, consider the case |α| = 1. By assumptions,
B(x, ̺) ⊂ Ω and thus the function ω̺(x− ·) ∈ C∞

0 (Ω). Next,

u̺(x) =

∫

Ω

ω̺(x− y)u(y)dy

and
∂u̺
∂xk

(x) =

∫

Ω

∂ω̺
∂xk

(x− y)u(y)dy.
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We notice that
∂ω̺
∂xk

(x− y) = −∂ω̺
∂yk

(x− y)

and, using the definition of weak derivatives, find

∂u̺
∂xk

(x) = −
∫

Ω

∂ω̺
∂yk

(x− y)u(y)dy =

∫

Ω

ω̺(x− y)
∂u

∂yk
(y)dy =

( ∂u
∂xk

)
̺
(x).✷

Lemma 3.4. Let 1 ≤ p < ∞ and u and Dαu be in Lp(Ω). Then Dαu̺ →
Dαu in Lp

loc
(Ω).

Proof We know that u̺ → u and (Dαu)̺ → Dαu in Lp(Ω). By previ-
ous lemma, for any compact K ∈ Ω and sufficiently small ̺, Dαu̺(x) =
(Dαu)̺(x) for any x ∈ K. This completes our proof. ✷

Proposition 3.5. Let u ∈ L1

loc(Ω) and all the weak derivatives of the first
order vanish. Then u is a constant in Ω.

Proof Suppose first that Ω is a ball of radius r and u ∈ L1(Ω). Let us show
that u is a constant there. Let B be a ball of radius r − ε with the same
center as Ω. For 0 < ̺ < ε, by Lemma 3.3,

∂u̺
∂xk

(x) =
( ∂u
∂xk

)
̺
(x) = 0, ∀x ∈ B, k = 1, 2, ..., n,

and thus u̺(x) = c̺ for x ∈ B. We know that u̺ → u in L1(B), which
implies that u is a constant in B. This constant is in fact independent of ε
(explain why). Tending ε→ 0, we get that u is constant in Ω.

From this particular case and from the fact that Ω is connected, we can
deduce the statement, noticing that if two balls containing in Ω have an
intersection that u is a constant in the union of these balls. ✷.

Theorem 3.6. Let φ : Ω̃ → Ω be diffeomorphism of class C1 and let a
locally integrable function x ∈ Ω 7→ u(x) have all weak derivatives of the first

order in Ω. Then the function y ∈ Ω̃ 7→ v(y) = u(φ(y)) also has all weak
derivatives of the first order calculated according to the classical chain rule,
i.e.,

∂v

∂yk
(y) =

n∑

i=1

∂u

∂xi
(x)

∣∣∣
x=φ(y)

∂xi
∂yk

(y).

Proof On sheet 2.
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2.3.3 Sobolev Spaces

Definition 3.7. Sobolev space W l,p(Ω) is a vector space of functions that are
integrable with power p and have all weak derivatives up to order l also being
integrable with power p.

This is a normed space with respect to the norm

‖u‖W l,p(Ω) = ‖u‖p,l,Ω =
( ∑

|α|≤l

‖Dαu‖pp,Ω
) 1

p

=
( ∑

|α|≤l

∫

Ω

|Dαu|pdx
) 1

p

or equivalently

‖u‖W l,p(Ω) =
∑

|α|≤l

‖Dαu‖p,Ω.

Theorem 3.8. W l,p(Ω) is a B-space.

Proof Let ‖uk − um‖p,l,Ω → 0 as k,m→ ∞. Then ‖Dαuk −Dαum‖p,Ω → 0
for any |α| ≤ l. Since Lp(Ω) is a Banach space, there exist functions wα ∈
Lp(Ω) such that ‖Dαum − wα‖p,Ω → 0. We let u = w0. By Lemma 3.2,
wα = Dαu for all 0 ≤ |α| ≤ l and thus ‖u− um‖p,l,Ω → 0 as m→ ∞. ✷

For the space W l,2(Ω), we introduce a special notation setting H l(Ω) =
W l,2(Ω). It becomes a Hilbert space with a scalar product

(u, v)Hl(Ω) =
∑

|α|≤l

∫

Ω

DαuDαvdx =
∑

|α|≤l

(Dαu,Dαv)L2(Ω).

Theorem 3.9. Let φ : Ω̃ → Ω be diffeomorphism of class C l so that the
mapping φ and all its derivatives up to order l are continuous in the closure
Ω̃. Moreover, its Jacobian does not change the sign there. Then if x ∈ Ω 7→
u(x) ∈ W l,p(Ω) then y ∈ Ω 7→ v(y) = u(φ(y)) ∈ W l,p(Ω̃) and there exist
positive constants c1 and c2 depending only on φ and its derivatives such that

c1‖u‖p,l,Ω ≤ ‖v‖p,l,Ω̃ ≤ c2‖u‖p,l,Ω.

Proof Easy consequence of chain rule.

Definition 3.10. For finite p, W l,p
0 (Ω) is the closure of C∞

0 (Ω) in W l,p(Ω).
It is a B-space. We also define H l

0(Ω) = W l,2
0 (Ω).
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Lemma 3.11. Let Ω ⊂ Ω̃ and u ∈ W l,p
0 (Ω). Define ũ(x) = u(x) if x ∈ Ω

and ũ(x) = 0 if x ∈ Ω̃ \ Ω. Then ũ ∈ W l,p
0 (Ω̃) and ‖ũ‖l,p,Ω̃ = ‖u‖l,p,Ω.

Proof By the definition, there exists a sequence um ∈ C∞
0 (Ω) such that

‖um−u‖l,p,Ω → 0 asm→ ∞. Let us denote by ũm the extension of um by zero

to Ω̃. Obviously, ũm ∈ C∞
0 (Ω̃) and of course ‖ũm − ũk‖l,p,Ω̃ = ‖um − uk‖l,p,Ω

and ‖ũm‖l,p,Ω̃ = ‖um‖l,p,Ω. From the first identity, it follows that ũm is a

Cauchy sequence in W l,p(Ω̃) and thus ũ ∈ W l,p
0 (Ω̃). The second identity

yields the statement of the lemma. ✷

Lemma 3.12. Let u ∈ W l,p
0 (Ω). Then u̺ → u in W l,p(Ω) as ̺→ 0.

Proof See Problem Sheet 2.

Proposition 3.13. (integration by parts) Let u ∈ W l,p′(Ω) and v ∈ W l,p
0 (Ω)

so that 1/p+ 1/p′ = 1 with 1 ≤ p <∞. Then, for any |α| ≤ l,
∫

Ω

vDαudx = (−1)|α|
∫

Ω

uDαvdx. (2.3.1)

Proof Let vm ∈ C∞
0 (Ω) be an approximating sequence for v. Then, by

definition of weak derivatives, we have
∫

Ω

vmD
αudx = (−1)|α|

∫

Ω

uDαvmdx.

We find (2.3.1) by tending m to ∞. ✷

Lemma 3.14. (Friedrichs inequality) Let u ∈ W l,p
0 (Ω). Then

‖u‖p,Ω ≤ dl|u|p,l,Ω, (2.3.2)

where d = diamΩ, |u|p,l,Ω =
(∑

|α|=l ‖Dαu‖pp,Ω
) 1

p

.

Proof Obviously, it is sufficient to prove (2.3.2) for u ∈ C∞
0 (Ω). Without

loss of generality, we may assume that Ω ⊂ Qn = {x = (xi) : 0 < xi <
d}. We extend u by zero to the cube Qn. We let x = (y, xn), where y =
(x1, x2, ..., xn−1). Then

u(y, xn) =

xn∫

0

∂u

∂t
(y, t)dt.
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By Hölder inequality,

|u(y, xn)| ≤
( xn∫

0

∣∣∣∂u
∂t

(y, t)
∣∣∣
p

dt
) 1

p
( xn∫

0

1p
′

dt
) 1

p′ ≤ d
1
p′

( d∫

0

∣∣∣∂u
∂t

(y, t)
∣∣∣
p

dt
) 1

p

.

Integrating the latter inequality over Qn and applying Tonelli’s theorem, we
find

∫

Qn

|u(y, xn)|pdx =

d∫

0

dxn

∫

Qn−1

|u(y, xn)|pdy ≤

≤ d
p

p′

d∫

0

dxn

∫

Qn−1

dy

d∫

0

∣∣∣ ∂u
∂xn

(y, t)
∣∣∣
p

dt = d
1+ p

p′

∫

Qn

∣∣∣ ∂u
∂xn

(y, xn)
∣∣∣
p

dx.

Since 1 + p
p′
= p, we have

(∫

Qn

|u|pdx
) 1

p ≤ d
(∫

Qn

∣∣∣ ∂u
∂xn

∣∣∣
p

dx
) 1

p

.

Proceeding in the same way, we show that

(∫

Qn

∣∣∣ ∂u
∂xn

∣∣∣
p

dx
) 1

p ≤ d
(∫

Qn

∣∣∣∂
2u

∂x2n

∣∣∣
p

dx
) 1

p

and so on. As a result,

(∫

Qn

|u|pdx
) 1

p ≤ dl
(∫

Qn

∣∣∣ ∂
lu

∂xln

∣∣∣
p

dx
) 1

p ≤ dl|u|p,l,Ω.✷

Corollary 3.15. ‖ · ‖p,l,Ω and | · |p,l,Ω are equivalent in W l,p
0 (Ω).

Our next question is about density of smooth functions in Sobolev spaces.
We denote by W̃ l,p(Ω) the closure of C∞(Ω) in W l,p(Ω). Obviously, W̃ l,p(Ω)
is a subspace in W l,p(Ω). Very often, these two spaces coincide and this
depends on how ”good” or ”bad” domain Ω is.

Definition 3.16. Ω is a star-shaped domain if there exists a point x0 ∈ Ω
such that, for any x ∈ Ω, the line segment, joining x and x0, is in Ω.
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Theorem 3.17. W̃ l,p(Ω) = W l,p(Ω) for bounded star-shaped domains.

Proof The idea of the proof is as follows. We extend a function u ∈ W l,p(Ω)
outside of Ω so that the extension slightly differs from the original one and
then we approximate the extended function by mollification.

We may assume that x0 = 0.

Lemma 3.18. Let f ∈ Lp(Ω) with 1 ≤ p < ∞ be extended by zero to the
whole R

n. Then

‖f(·/λ)− f(·)‖p,Ω :=
(∫

Ω

|f(x/λ)− f(x)|pdx
) 1

p → 0 as λ→ 1.

Proof On problem sheet 3, similar to the proof of the integral continuity,
see Theorem 1.11.

Let us proceed with a proof of Theorem 3.17. We restrict ourselves to the
case l = 1. For λ > 1, we let Ωλ = φλ(Ω) where φλ(x) = λx. Define uλ(x) =
u(y), setting x = λy ∈ Ωλ for y ∈ Ω. By Theorem 3.9, uλ ∈ W 1,p(Ωλ) and

∂uλ
∂xk

(x) =
1

λ

∂u

∂yk
(y)

∣∣∣
y=x/λ

, x ∈ Ωλ.

By the lemma above,

‖uλ − u‖p,1,Ω → 0 as λ→ 1.

Now, consider mollification of uλ, i.e.,

(uλ)̺(x) =

∫

Ωλ

ω̺(x− y)uλ(y)dy.

Obviously, (uλ)̺ ∈ C∞(Ω) and we know, see Lemma 3.4, that

‖(uλ)̺ − uλ‖p,1,Ω → 0 as ̺→ 0.

Given k ∈ N, we first find λk > 1 such that ‖uλk − u‖p,1,Ω < 1/k and find
̺k > 0 such that ‖(uλk)̺k −uλk‖p,1,Ω < 1/k. Letting uk := (uλk)̺k , we deduce
from the triangle inequality that ‖uk − u‖p,1,Ω < 2/k → 0 as k → ∞. So,
sequence uk is required. ✷

Definition 3.19. A domain Ω is locally star-shaped if for any x ∈ ∂Ω, there
exists a neighborhood Ox such that the domain Ω ∩ Ox is star-shaped.

Theorem 3.20. Let Ω be a bounded locally star-shaped domain. Then

W̃ l,p(Ω) = W l,p(Ω)

provided 1 ≤ p <∞.
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2.3.4 Extension of Functions with Weak Derivatives

Let y be a Cartesian system of coordinates in R
n.

Cy(R, h) = {y = (y′, yn) ∈ R
n : y′ = (y1, y2, ..., yn−1), |y′| < R, |yn| < h}

is a right circle cylinder.

Definition 3.21. Let x be a Cartesian system of coordinates in R
n. A

Lipschitz domain (or domain with Lipschitz boundary) Ω is a domain with
the boundary ∂Ω satisfying the following property. For any x0 ∈ ∂Ω, there
exist positive numbers L, R, a Cartesian system of coordinates y centred at
the point x0, and a function φ : {|y′| ≤ R} → R such that:
(i) ∂Ω ∩ Cy(R, 2LR) = {y ∈ R

n : yn = φ(y′), |y′| ≤ R}
(ii) Ω ∩ Cy(R, 2LR) = {y ∈ R

n : |y′| ≤ R, φ(y′) ≤ yn ≤ 2LR}
(iii) function φ is Lipschitz continuous with the Lipschitz constant L, i.e.,
|φ(y′)− φ(z′)| ≤ L|y′ − z′| for y′, z′ ∈ R

n−1, |y′| ≤ R, |z′| ≤ R.

Remark 3.22. Numbers R, L, and function φ may depend on x0 ∈ ∂Ω.
Relationship between old (global) and new (local) Cartesian coordinates x
and y is given by y = Q(x− x0) with an orthogonal matrix Q.

Remark 3.23. Any Lipschitz domain is locally star-shaped.

Remark 3.24. A Lipschitz domain is of class Ck if the function φ of Defi-
nition 3.21 belongs to Ck{|y′| ≤ R}.

Examples

Theorem 3.25. Let Ω be a Lipschitz domain and Ω0 be a domain such that
Ω ⋐ Ω0. For any u ∈ W 1,p(Ω), there exists a function v ∈ W 1,p

0 (Ω0) with the
following properties:
(i) v(x) = u(x), x ∈ Ω
(ii) ‖v‖p,1,Ω0 ≤ c‖u‖p,1,Ω with a constant depending only on n, p, Ω, and Ω0.



Chapter 3

The First Embedding Theorem

3.1 Sobolev embedding of W 1,p(Ω) into Lq(Ω)

Let B1 and B2 be two B-spaces. We say that B2 is embedded into B1 if
B2 ⊂ B1. The embedding of B2 into B1 is continuous if there exists a
constant c such that ‖u‖B1 ≤ c‖u‖B2 for any u ∈ B2. When talking about
embedding, we always keep in mind continuous embedding. Trivial examples
are:
(i) B1 = Lp1(Ω), B2 = Lp2(Ω) for p1 < p2 if Ω is a bounded domain
(ii) B1 = Lp(Ω), B2 = W 1,p(Ω)
Embedding is called compact if any set bounded in B2 is precompact in B1.

Lemma 1.1. Let n > 1. For any u ∈ C1
0(R

n),

(∫

Rn

|u| n
n−1dx

)n−1
n ≤

n∏

i=1

(∫

Rn

|Diu|dx
) 1

n

, (3.1.1)

where Di = ∂/∂xi.

Proof Proof is by induction on n. Let n = 2. Then

u(x1, x2) =

x1∫

−∞

∂u

∂t
(t, x2)dt

and thus

|u(x1, x2)| ≤
x1∫

−∞

∣∣∣∂u
∂t

(t, x2)
∣∣∣dt ≤

∞∫

−∞

∣∣∣ ∂u
∂x1

(x1, x2)
∣∣∣dx1 ≤

∞∫

−∞

|D1u|dx1.

31
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The same arguments give

|u(x1, x2)| ≤
∞∫

−∞

|D2u|dx2.

From the latter bounds, it follows that

∫

R2

|u|2dx ≤
∫

R2

dx

∞∫

−∞

|D1u|dx1
∞∫

−∞

|D2u|dx2.

By Tonelli’s theorem the right hand side of the last inequality is
∫

R2

|D1u|dx
∫

R2

|D2u|dx.

Now, assume that our statement is valid for n − 1 and let us show its
validity for n. In the way as in 2D case, one can prove that

|u(x)| ≤
∞∫

−∞

|Diu|dxi, i = 1, 2, ..., n. (3.1.2)

Next, letting x′ = (x1, x2, ..., xn−1), we have, by Tonelli’s theorem,

∫

Rn

|u| n
n−1dx =

∞∫

−∞

dxn

∫

Rn−1

|u||u| 1
n−1dx′. (3.1.3)

By Hölder inequality and by induction
∫

Rn−1

|u||u| 1
n−1dx′ ≤

( ∫

Rn−1

(|u| 1
n−1 )n−1dx′

) 1
n−1

( ∫

Rn−1

|u|n−1
n−2dx′

)n−2
n−1 ≤

≤
( ∫

Rn−1

|u|dx′
) 1

n−1

n−1∏

i=1

( ∫

Rn−1

|Diu|dx′
) 1

n−1
.

Using (3.1.3) and (3.1.2), we derive from the last estimate

∫

Rn

|u| n
n−1dx ≤

∞∫

−∞

dxn

( ∫

Rn−1

∞∫

−∞

|Dnu|dx′dxn
) 1

n−1

n−1∏

i=1

( ∫

Rn−1

|Diu|dx′
) 1

n−1
=
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=
(∫

Rn

|Dnu|dx
) 1

n−1

∞∫

−∞

dxn

n−1∏

i=1

( ∫

Rn−1

|Diu|dx′
) 1

n−1
.

Applying Hólder inequality one more time to the second multiplier on the
right hand side of the latter inequality, we complete the proof of the lemma.
✷

Theorem 1.2. (Gagliardo-Nirenberg inequality) Let Ω be an arbitrary do-
main in R

n and let 1 ≤ p < n. For any u ∈ W 1,p
0 (Ω),

‖u‖p,Ω ≤ p(n− 1)

n− p
|u|p,1,Ω, (3.1.4)

where p = np
n−p

.

Proof We shall prove the theorem for the case p > 1. The case p = 1 is an
exercise.

We let κ = n−p
(n−1)p

. It is easy to check that 1/κ > 1. For an arbitrary

u ∈ C∞
0 (Ω) extended by zero to the whole R

n, define v = |u| 1κ . Since

Div = 1
κ
|u| 1κ−1sign(u)Diu, v ∈ C1

0(R
n). By Lemma 1.1,

‖v‖ n
n−1

,Ω ≤
n∏

i=1

(∫

Ω

|Div|dx
) 1

n

. (3.1.5)

After direct calculations, we see

‖v‖ n
n−1

,Ω = ‖u‖
1
κ

p,Ω.

For the right hand side of (3.1.5), we apply Hölder inequality

∫

Ω

|Div|dx =
1

κ

∫

Ω

|u| 1κ−1|Diu|dx ≤

≤ 1

κ

(∫

Ω

|Diu|pdx
) 1

p
(∫

Ω

(|u| 1κ−1)
p

p−1dx
) p−1

p ≤ 1

κ
|u|p,1,Ω‖u‖

1
κ
−1

p,Ω .

Now, from (3.1.5) and from two latter bounds, we get required inequality
(3.1.4) for u ∈ C∞

0 (Ω).
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If u ∈ W 1,p
0 (Ω), then, by the definition, there exists a sequence um ∈

C∞
0 (Ω) such that ‖u−um‖p,1,Ω → 0 asm→ ∞. So, it is a Cauchy sequence in

W 1,p(Ω) and, by inequality (3.1.4) for smooth compactly supported functions,
is a Cauchy sequence in Lp(Ω). Then we finish our proof by taking the limit
in (3.1.4) with u = um. ✷

Corollary 1.3. (Poincarè inequality) For any u ∈ W 1,2
0 (Ω),

‖u‖2,Ω ≤ c(n)|Ω| 1n |u|2,1,Ω.
Proof Let us find p for which p = 2. It is p = 2n

n+2
< 2. So, by (3.1.4),

‖u‖2,Ω ≤ 2(n− 1)

n
|u| 2n

n+2
,1,Ω =

2(n− 1)

n

(∫

Ω

n∑

i=1

|Diu|
2n
n+2dx

)n+2
2n
.

It remains to apply Hölder inequality for sums and integrals and complete
the proof. ✷

Theorem 1.4. (Sobolev) Let Ω be a bounded domain with Lipschitz boundary
and let 1 ≤ p ≤ n. Then:
(i) if 1 ≤ p < n then Sobolev space W 1,p(Ω) is embedded (continuously) into
Lebesgue space Lq(Ω) for any q ∈ [1, pn

n−p
];

(ii) if p = n then Sobolev space W 1,p(Ω) is embedded (continuously) into
Lebesgue space Lq(Ω) for any 1 ≤ q <∞.

Proof. Let us fix a bounded domain Ω0 so that Ω ⋐ Ω0. Then for any
u ∈ W 1,p(Ω), there exists a function v ∈ W 1,p

0 (Ω0) such that
(i) v = u in Ω
(ii) ‖v‖p,1,Ω0 ≤ c1(n, p,Ω0,Ω)‖u‖p,1,Ω.

Obviously, by (3.1.4), we have

‖u‖p,Ω ≤ ‖v‖p,Ω0 ≤
(n− 1)p

n− p
|v|p,1,Ω0 ≤

(n− 1)p

n− p
‖v‖p,1,Ω0 ≤

≤ c1
(n− 1)p

n− p
‖u‖p,1,Ω.

To finish the proof of the first part of the theorem, it is sufficient to note

that ‖u‖q,Ω ≤ |Ω| 1q− 1
p‖u‖p,Ω. The second part follows from the first one and

obvious continuous embedding W 1,p(Ω) into W 1,q(Ω) provided 1 ≤ q < p. ✷
Our next question is under which assumptions the above continuous em-

beddings are compact. We start with the following theorem
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Theorem 1.5. (Rellich-Kondrachov) Let Ω ⊂ R
n be a bounded Lipschitz

domain. Then W 1,p(Ω) is compactly embedded into Lp(Ω).

Proof We shall prove the theorem for finite p.
Let u ∈ C∞

0 (Rn). Fix an arbitrary vector z ∈ R
n and define the function

ϑ(t) = u(x+ tz). Then

u(x+ z)− u(x) = ϑ(1)− ϑ(0) =

1∫

0

dϑ

dt
(t)dt,

where
dϑ

dt
(t) =

n∑

i=1

Diu(y)|y=x+tzzi.

Next, we have

I :=

∫

Rn

|u(x+ z)− u(x)|pdx =

∫

Rn

dx
∣∣∣

1∫

0

n∑

i=1

Diu(x+ tz)zidt
∣∣∣
p

.

Then we apply Hölder inequality for integrals and sums:

I ≤
∫

Rn

dx

1∫

0

∣∣∣
n∑

i=1

Diu(x+ tz)zi

∣∣∣
p

dt ≤ n
p

p′

∫

Rn

dx

1∫

0

n∑

i=1

|Diu(x+ tz)|p|zi|pdt

≤ np−1|z|p
1∫

0

∫

Rn

n∑

i=1

|Diu(x+ tz)|pdxdt.

After change of variables y = x+ tz, we find

‖u(·+ z)− u(·)‖p,Rn ≤ c2(n, p)|z||u|p,1,Rn (3.1.6)

for any u ∈ C∞
0 (Rn).

Now, let U be a bounded set in W 1,p(Ω), i.e., ‖u‖p,1,Ω ≤M <∞ for any
u ∈ U . We fix a bounded domain Ω0 such that Ω ⋐ Ω0. Define V ⊂ W 1,p

0 (Ω0)
as follows: v ∈ V if and only if there exists u ∈ U such that v = u in Ω
and ‖v‖p,1,Ω0 ≤ c3(n, p,Ω,Ω0)‖u‖p,1,Ω. So, V is also bounded in W 1,p(Ω0)
and therefore in Lp(Ω0). Next, by the definition of W 1,p

0 (Ω0), there exists a
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sequence vm ∈ C∞
0 (Ω0) is converging to v in W 1,p(Ω0) and thus in Lp(Ω0)

and even in Lp(Rn). Since (3.1.6) gives:

‖vm(·+ z)− vm(·)‖p,Ω0 ≤ c2(n, p)|z||vm|p,1,Ω0 ,

(3.1.6) is valid for any function v ∈ W 1,p
0 (Ω0) and, therefore,

‖v(·+ z)− v(·)‖p,Ω0 ≤ ‖v(·+ z)− v(·)‖p,Rn ≤ c2(n, p)|z||v|p,1,Ω0 ≤ c2c3|z|M
for any v ∈ V and for any z ∈ R

n. Hence, by Theorem 1.17, the set V is
precompact in Lp(Ω0) and therefore the set U is precompact in Lp(Ω). ✷

Theorem 1.6. (Sobolev-Kondrachov) Let Ω ⊂ R
n be a bounded Lipschitz

domain. ThenW 1,p(Ω) is compactly embedded into Lq(Ω) with any 1 ≤ q < p,
where p = np

n−p
if 1 ≤ p < n and p = ∞ if p = n.

Proof Consider the case 1 ≤ p < n only. The case p = n is an exercise. Let
U be a bounded set in W 1,p(Ω) and um is an arbitrary sequence in U . By
Theorem 1.5, there exists a subsequence umk

such that ‖umk
− u‖p,Ω → 0 as

k → ∞ for some u ∈ W 1,p(Ω) and thus umk
→ u in measure in Ω. On the

other hand, by Theorem 1.4, this sequence is bounded in Lp(Ω). Then, by
Theorem 1.2, we show that umk

→ u in Lq(Ω) with q < p. ✷

3.2 Traces of functions with weak derivatives

3.2.1 Surface Integral

Let Ω be a bounded domain of class C1. Going back to Definition 3.21,
note that cylinders Cy(R(x), 2L(x)R(x)) for x ∈ ∂Ω are an open cover of the
compact ∂Ω. By the Heine-Borel lemma, there exists a finite subcover, i.e.,

∂Ω ⊂
m⋃

k=1

Cy(k)(Rk, 2LkRk),

where Rk = R(x(k)), Lk = L(x(k)), y(k) = Qk(x−x(k)), and Qk is an orthogo-
nal matrix. Denote that Sk = {|y′(k)| < Rk} ⊂ R

n−1. Under our assumptions,

the function φk, the graph of which is a part of ∂Ω, belongs to C1(Sk). For
this subcover, there exists a finite partition of unity ϑk ∈ C∞

0 (Rn) such that

0 ≤ ϑk ≤ 1 and suppϑ ⊂ Cy(k)(Rk, 2LkRk), k = 1, 2, ...,m, and
m∑
k=1

ϑk(x) = 1

for all x ∈ ∂Ω.
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Definition 2.1. f : ∂Ω → R is Lebesgue integrable in ∂Ω if the value

I :=
m∑

k=1

∫

Sk

ϑk(x(y
′
(k), φk(y

′
(k))))f(x(y

′
(k), φk(y

′
(k))))×

×

√√√√1 +
n−1∑

i=1

∣∣∣ ∂φk
∂y′i(k)

(y′(k))
∣∣∣
2

dy′(k).

is finite

All the integrals in the above definition are taken with respect to Lebesgue
measure in R

n−1. If f is integrable in ∂Ω, we shall write
∫

∂Ω

fdS := I.

One can show that the integral is well-defined, i.e., independent of the choice
of subcover. We also can introduce a surface Lebesgue measure and mea-
surable (with respect to this measure) sets as follows. Let Γ ⊆ ∂Ω and χΓ

be its characteristic function. If χΓ is integrable, then the set Γ is called
measurable and the corresponding integral is called its surface measure. It
is a natural generalisation of the surface area.

We say that f : Γ ⊆ ∂Ω → R is integrable in Γ if its extension f̃ : ∂Ω → R

by zero to the whole ∂Ω is integrable in ∂Ω and we let
∫

Γ

fdS =

∫

∂Ω

f̃dS.

For functions integrable in Γ, the same statements as for functions integrable
in R

n are valid as well. We also can introduce Lebesgue space Lp(Γ).

Remark 2.2. All the statements and constructions remains to be true for
domains with Lipschitz boundary.

3.2.2 Traces of functions from Sobolev Spaces

Lemma 2.3. Let Ω be a domain of class C1 and let 1 ≤ p <∞. There exists
a constant c(n, p,Ω) such that

‖u‖p,∂Ω ≤ c‖u‖p,1,Ω, ∀u ∈ C1(Ω). (3.2.1)
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Proof We shall consider the case p > 1. The case p = 1 is an exercise.
To avoid technical difficulties and demonstrate the essence of the matter,
consider the following particular case. Assume that ∂Ω contains a flat part
Γ = {x = (x′, xn) : |x′| < r, xn = 0} and prove instead of (3.2.1) a simpler
inequality

‖u‖p,Γ ≤ c‖u‖p,1,Ω, ∀u ∈ C1(Ω). (3.2.2)

Let h > 0 be so small that Ωh := {x = (x′, xn) : |x′| < r, 0 < xn < h} ⊂ Ω.
Fix a function η ∈ C∞

0 (R) so that η(t) = 1 for |t| ≤ h/3 and η(t) = 0 for
|t| > 2h/3. Then we have

|u(x′, 0)|p = −
h∫

0

∂

∂t
|η(t)u(x′, t)|pdt =

−p
h∫

0

|η(t)u(x′, t)|p−1sign(η(t)u(x′, t))
∂ηu

∂t
(x′, t)dt.

After applying Hölder inequality, we find

|u(x′, 0)|p ≤ c1

( h∫

0

|u(x′, xn)|pdxn
) 1

p′
( h∫

0

∣∣∣ ∂u
∂xn

(x′, xn)
∣∣∣
p

dxn

) 1
p

+

+c1

h∫

0

|u(x′, xn)|pdxn.

To complete the proof, it is sufficient to integrate the latter inequality over
Γ, then apply consequently Hölder inequality and Young inequality (ab ≤
ap/p+ bp

′

/p′). ✷
Let us define a linear operator γ : C1(Ω) ⊂ W 1,p(Ω) → Lp(∂Ω) so that

γu = u|∂Ω. By (3.2.1), this operator can be considered as a linear bounded
operator fromW 1,p(Ω) into Lp(∂Ω) with domain of definition D(γ) = C1(Ω),
which is dense in W 1,p(Ω). Its operator norm

‖γ‖D(γ) = sup{‖γu‖p,∂Ω : u ∈ D(γ), ‖u‖p,1,Ω ≤ 1}

is finite. It is known from the Functional Analysis that such an oper-
ator admits unique continuation γ̃ to the whole W 1,p(Ω). The operator
γ̃ : W 1,p(Ω) → Lp(∂Ω) has the following important properties:
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(i) ‖γ̃‖ = ‖γ‖D(γ) ≤ c(n, p,Ω)
(ii) γ̃u = γu for all u ∈ C1(Ω).

γ̃ is the trace operator, acting onW 1,p(Ω) into Lp(∂Ω), and γ̃u is the trace
of a function u ∈ W 1,p(Ω). For the trace of u, we use the classical notation,
i.e., γ̃u = u|∂Ω. It should be understood in the sense described above.

Lemma 2.4. Let Ω be a bounded domain of class C1 and let 1 < p < ∞.
Then we have ∫

Ω

uDivdx =

∫

∂Ω

uvνidS −
∫

Ω

vDiudx (3.2.3)

for all u ∈ W 1,p(Ω) and for all v ∈ W 1,p′(Ω) with p′ = p
p−1

as usual. Here, ν
is the unit outward normal to the surface ∂Ω.

Proof (3.2.3) is valid for all u, v from C1(Ω). Therefore, we can write (3.2.3)
for sequences of smooth functions approximating functions u ∈ W 1,p(Ω) and
v ∈ W 1,p′(Ω) and then take the limit using continuity of the trace operator
with respect to strong convergence in Sobolev spaces. ✷

Corollary 2.5. Let Ω be a bounded domain of class C1 and 1 ≤ p < ∞.
Suppose that u ∈ W 1,p(Ω) with u|∂Ω = 0. Let Ω ⊂ Ω0 and ũ is an extension
of u by zero from Ω to Ω0. Then ũ ∈ W 1,p(Ω0).

Proof On problem sheet 3.

Remark 2.6. Let W̃ 1,p
0 (Ω) = {u ∈ W 1,p(Ω) : u|∂Ω = 0}. In fact, W 1,p

0 (Ω) ⊆
W̃ 1,p

0 (Ω) (explain why). However, under our assumptions on Ω (it is of class

C1), W 1,p
0 (Ω) = W̃ 1,p

0 (Ω).

Remark 2.7. All above statements can be extended to bounded domains with
Lipschitz boundaries.
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Chapter 4

Functional Methods for PDE’s

4.1 Methods of Functional Analysis for PDE’s

4.1.1 Notation

There are several ways to denote partial derivatives. Here, it is a list of some
of them

∂u

∂xk
= Dku = ∂xku = uxk = u,k.

In the rest of the course, the last notation will be used mostly both for
classical and weak derivatives.

Another important thing is the so-called nabla-operator ∇. So, the action
of this operator on u is the gradient of u and denoted by ∇u. This makes our
notation closer to physical notation, in which fundamental equations of the
physics are invariant (independent of a coordinate system). In particular, in
Cartesian coordinates x = (xk), ∇u = (u,1, u,2, ..., u,n) = (u,k). We also let
A : B = spATB for two n × n matrices A and B. So that A : B = AijBij,
where summation over repeated indices running from 1 to n is adopted. And
for a given vector-valued field a = (ak), we denote div a = ak,k.

Now, we can consider two types of differential operators in Ω. The first
one has a divergence form:

Lu := −div(a∇u) + b · ∇u+ cu,

where a is a symmetric matrix-valued field, b is a vector-valued field, c is a
scalar field in Ω. The second type has a non-divergence form:

Nu := −a : ∇2u+ b · ∇u+ c.

41
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In this course, we are going to deal with differential operators in the
divergence form only.
Example

1. Laplace operator: here, a = I := (δij), b = 0, and c = 0. Then −Lu =
div∇u = △u = u,ii.
2. Helmholtz operator: −Lu = △u+ k2u

4.1.2 Dirichlet Boundary Value Problems

for Elliptic Equation

We always assume that a symmetric matrix a ∈ L∞(Ω;Rn×n) satisfies the
ellipticity condition

ν|ξ|2 ≤ ξ · a(x)ξ ≤ 1

ν
|ξ|2, ∀ξ ∈ R

n (4.1.1)

a.e. in Ω with a positive constant ν.

Definition 1.1. A function u ∈ C2(Ω) ∩ C(Ω) satisfying

Lu = f + div g in Ω (4.1.2)

u = u0 on ∂Ω (4.1.3)

with given f , g, and u0 is called a classical solution to boundary value problem
(4.1.2), (4.1.3).

Of course, a necessary condition for the existence of a classical solution
to boundary value problem (4.1.2), (4.1.3) is sufficient smoothness of given
functions a, b, c, f , g, and u0. However, even under these conditions on
the data of the problem, it is not so easy to prove the existence of classical
solutions especially in the case of variable coefficients a, b, and c. On the
other hand, there are quite a number of interesting and physically relevant
cases, in which those coefficients are not smooth enough.

The modern way to tackle the solvability issue, which is, by the way,
closely connected with modern ways to approximate solutions, is as follows.
The classical set-up of boundary value problems is replaced with a weak
setting based on integral identities rather than point-wise equations. This
allows us to use powerful methods of functional analysis in order to prove
existence theorems and develop a rigorous foundation of solving problems
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approximately, for example, by the finite-difference method or the finite ele-
ment method.

In what follows, we always assume that

|a| := √
a : a ∈ L∞(Ω), |b| :=

√
b · b ∈ L∞(Ω), c ∈ L∞(Ω), (4.1.4)

f ∈ L2(Ω), |g| ∈ L2(Ω), (4.1.5)

u0 ∈ H1(Ω) := W 1,2(Ω), (4.1.6)

and ellipticity condition (4.1.1) holds.

Definition 1.2. A function u ∈ H1
0 (Ω) + u0 is a weak (or generalized) so-

lution to boundary value problem (4.1.2), (4.1.3) if it satisfies the integral
(variational) identity

L(u, w) =
∫

Ω

(fw − g · ∇w)dx, w ∈ C∞
0 (Ω), (4.1.7)

where L(u, w) :=
∫
Ω

((a∇u) · ∇w + b · ∇uw + cuw)dx.

Variational identity (4.1.7) is motivated by the following formal identity
∫

Ω

(Lu− f − div g)wdx = 0, w ∈ C∞
0 (Ω),

which can be obtained by means of a single integration by parts involving
the terms wdiv(a∇u) and wdiv g.

Boundary condition (4.1.3) is satisfied in the sense of traces, i.e., u−u0 ∈
H1

0 (Ω).

Remark 1.3. If u is a weak solution, then variational identity (4.1.7) holds
true for any test functions w ∈ H1

0 (Ω). (Explain why)

Theorem 1.4. (uniqueness implies existence) Let given functions a, b, and c
satisfy conditions (4.1.1) and (4.1.4). Suppose, in addition, that any function
v ∈ H1

0 (Ω) subject to the identity

L(v, w) = 0, ∀w ∈ C∞
0 (Ω),

must be equal to zero. Then, for any f , g, and u0, satisfying conditions
(4.1.5) and (4.1.6), boundary value problem (4.1.2), (4.1.3) has a unique
weak solution.
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Proof We are going to reduce the problem in question to Theorem 7.2. Our
Hilbert space is going to be U = H1

0 (Ω). By Poincaré inequality, | · |2,1,Ω is
a norm on U that is equivalent to the standard norm ‖ · ‖2,1,Ω, see Corollary
3.15. The ellipticity condition gives the following bounds

√
ν|u|2,1,Ω ≤ IuI2,1,Ω :=

(∫

Ω

∇u · a∇u
) 1

2 ≤ 1√
ν
|u|2,1,Ω.

They imply that I · I2,1,Ω is a norm in U as well and it is equivalent to the
norm ‖ · ‖2,1,Ω. The norm I · I2,1,Ω is generated by the scalar product

[u, v] =

∫

Ω

(a∇u) · ∇v dx =

∫

Ω

∇u · a∇v dx, u, v ∈ U.

Then our bilinear form L can be presented as follows

L(u, v) = [u, v]− L1(u, v),

where

L1(u, v) = −
∫

Ω

(vb · ∇u+ cuv)dx, u, v ∈ U.

By Cauchy-Schwartz inequality, by Poincaré inequality, see Corollary 1.3,
and by the above equivalence of norms, we

|L1(u, v)| ≤ C1(‖v‖2,Ω‖∇u‖2,Ω+‖v‖2,Ω‖u‖2,Ω) ≤ C2IuI2,1,ΩIvI2,1,Ω, ∀u, v ∈ U.

So, given u ∈ U , the linear functional v 7→ L1(u, v) is bounded in U . By Riesz
theorem on representation of linear functional in Hilbert space, there exist a
unique K(u) ∈ U such that L1(u, v) = [K(u), v] for any u, v ∈ U . It is easy
to check that K : U → U is a bounded linear operator (indeed, IKuI2,1,Ω ≤
C2IuI2,1,Ω). Our aim is to show that K is a compact operator. To this end,
we should show that, for any bounded sequence um, the sequence Kum is
precompact. WLOG, we may assume that um ⇀ u in U and thusKum ⇀ Ku
in U . If not, using a boundedness of um and a sufficient condition of weak
compactness in Hilbert spaces, select a required subsequence, which could be
denoted again by um. By Reillich-Kondrachov theorem, the embedding of U
into L2(Ω) is compact and we also may assume that um → u and Kum → Ku
in L2(Ω). Then, denoting wm = Kum and w = Ku, we show

IK(um − u)I22,1,Ω = [K(um − u), wm − w] = L1(um − u, wm − w) =
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=

∫

Ω

((wm − w)b · ∇(um − u) + c(wm − w)(um − u))dx

≤ C1(‖wm − w‖2,Ω‖∇um −∇u‖2,Ω + ‖wm − w‖2,Ω‖um − u‖2,Ω) → 0

as m→ ∞. Indeed, a sequence ‖∇um−∇u‖2,Ω is bounded as ∇um−∇u ⇀
0 in L2(Ω) and ‖um − u‖2,Ω + ‖wm − w‖2,Ω → 0 by compact embedding
mentioned above.

Finally, let us notice that

w 7→ −L(u0, w) +
∫

Ω

(fw − g · ∇w)dx

is a linear bounded functional in U (explain why) and thus, by Riesz theorem,
there exists F ∈ U such that

[F,w] = −L(u0, w) +
∫

Ω

(fw − g · ∇w)dx, ∀w ∈ U.

By our assumptions, the equation w − Kw = 0 (⇔ L(u, v) = [u − Ku, v]
u, v ∈ U) has the only trivial solution and, hence, by Fredholm Alternative,
there exists a unique u ∈ U such that u−Ku = F . According to our notation
this is equivalent to the following identity

[u, w]− [Ku,w] = [F,w], ∀w ∈ U

or

L(u, w) = −L(u0, w) +
∫

Ω

(fw − g · ∇w)dx, ∀w ∈ U.

This means that u = u0 + u is a required unique weak solution to boundary
value problem (4.1.2), (4.1.3). ✷

Corollary 1.5. Assume that our bilinear form L is coercive in the following
sense: there exists a positive constant C such that

L(w,w) ≥ C‖w‖22,Ω, ∀w ∈ C∞
0 (Ω). (4.1.8)

Then boundary value problem (4.1.2), (4.1.3) has a unique weak solution.
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Indeed, coercivity condition holds for all w ∈ H1
0 (Ω) (explain why). Now,

let v ∈ H1
0 (Ω) satisfy the identity L(v, w) = 0 for all w ∈ C∞

0 (Ω) and thus for
all w ∈ H1

0 (Ω). If we take a test function w = v, coercivity condition (4.1.8)
implies ‖v‖2,Ω = 0 and, hence, v = 0. Now, the statement of the corollary
follows from the above theorem. ✷
Example Let div b ≤ 0 and c ≥ 0. We need to spell out how we understand
div b ≤ 0 with b = (bi) ∈ L1

loc(Ω). By definition, a distribution T ≥ 0 if

and only if T (ϕ) ≥ 0 for any ϕ ∈ C∞
0 (Ω) and ϕ ≥ 0. So, div b ≤ 0 means

that divTb ≤ 0, which in turn means that divTb(ϕ) = −Tb(∇ϕ) ≤ 0 for any
non-negative ϕ ∈ C∞

0 (Ω). Hence,
∫

Ω

wb · ∇wdx =

∫

Ω

wbiw,idx =
1

2

∫

Ω

bi(w
2),idx =

1

2
Tb(∇|w|2) ≥ 0

for any w ∈ C∞
0 (Ω). Then we find with the help of Poincaré inequality that

L(w,w) =
∫

Ω

(∇w · a∇w + wb · ∇w + cw2)dx ≥ ν‖∇w‖22,Ω ≥ C‖w‖22,Ω

for any w ∈ C∞
0 (Ω).

It is interesting what happens if the main assumption of Theorem 1.4 is
violated.

Theorem 1.6. Assume that there exists v0 ∈ H1
0 (Ω) such that v0 is not

identically zero and
L(v0, w) = 0

for all w ∈ C∞
0 (Ω). Then boundary value problem (4.1.2), (4.1.3) has a weak

solution provided f , g, and u0 satisfy compatibility conditions (4.1.5) and
(4.1.6), and

L(u0, v) =
∫

Ω

(fv − g · ∇v)dx

for any v ∈ H1
0 (Ω) having the property

L(w, v) = 0 ∀w ∈ C∞
0 (Ω).

Remark 1.7. The identity L(w, v) = 0 for ∀w ∈ C∞
0 (Ω) is a weak form of

the following homogeneous boundary value problem

−div(a∇v)− div(bv) + cv = 0

in Ω and v = 0 on the boundary ∂Ω.
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Proof The statement follows from a remark to Fredholm Alternative
and the following identity

L1(v, w) = [Kv,w] = [v,K∗w]

being valid for any v and w in H1
0 (Ω). ✷

4.1.3 Variational Method

In some case, the existence of a weak solution to boundary value problems
can be proved as a result of a variational approach. Let us consider the
simplest case

−div(a∇u) = f (4.1.9)

in Ω and
u = 0 (4.1.10)

on ∂Ω.
We start with the following abstract version of the Weierstrass theorem.

Theorem 1.8. Let V be a reflexive Banach space. Assume that we are given
a functional I : V →]−∞,∞], having the following properties:

(i) sequentially weak lower semi-continuity: for any sequence vm such that
vm ⇀ v, the following holds

lim inf
m→∞

I(vm) ≥ I(v),

(ii) coercivity: if ‖vm‖V → ∞, then I(vm) → +∞.
Suppose, further, that I(v1) < +∞ for some v1 ∈ V . Then, there exists

u ∈ V such that
I(u) = A := inf

v∈V
I(v) > −∞.

Proof Let vm be a minimising sequence, i.e., I(vm) → A. According
to our assumptions, A < +∞. By the coercivity condition, ‖vm‖V must be
bounded. Since V is reflexive, there exists a subsequence still denoted by vm

such that vm ⇀ u ∈ V . By weak lower semi-continuity,

A = lim
m→∞

I(vm) ≥ I(u) > −∞.

So, I(u) = A. ✷
The question to be raised is how one can check sequential weak lower

semi-continuity.
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Lemma 1.9. Let V be a Banach space. Let I be strongly lower semi-
continuous, i.e., vm → v in V implies lim inf

m→∞
I(vm) ≥ I(v) and let I be

convex, i.e.,
I(λu+ (1− λ)v) ≤ λI(u) + (1− λ)I(v)

for all u, v ∈ V and for all 0 ≤ λ ≤ 1. Then I is a sequentially weak lower
semi-continuous functional.

Proof We are going to prove the lemma if V = H is a Hilbert space. So
assume that vm ⇀ v in H. Without loss of generality, we may assume that

lim
m→∞

I(vm) = lim inf
m→∞

I(vm).

By Banach-Sacks theorem, there exists a subsequence still denoted by vm

such that

um =
1

m

m∑

k=1

vk → v

in V . By convexity, we have

I(um) ≤ 1

m

m∑

k=1

I(vk) → lim
m→∞

I(vm).

It remains to notice that

lim
m→∞

I(um) ≥ I(v).

✷

Now, let us consider a functional

I(v) :=
1

2

∫

Ω

(a∇v) · ∇vdx−
∫

Ω

fvdx

for V = H1
0 (Ω). It is assumed that a satisfies the ellipticity condition (4.1.1)

and f ∈ L2(Ω). It is easy to check that the ellipticity condition provides
convexity of our functional. Moreover, since it is continuous in V , the func-
tional I is sequentially weakly lower semi-continuous on V . Moreover, the
ellipticity condition

I(v) ≥ ν

2
‖∇v‖22,Ω − ‖f‖2,Ω‖v‖2,Ω.
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Clearly, Poincare’s inequality implies the coercivity condition. So, by Theo-
rem 1.8, there exists u ∈ V such that

I(u) = A := inf
v∈V

I(v).

Our aim is to show that u is a weak solution to (4.1.9) and (4.1.10). To
this end, given w ∈ C∞

0 (Ω) and t > 0, we derive from the last identity the
following

0 ≤ I(u+ tw)− I(u) = t

∫

Ω

((a∇u) · ∇w − fw)dx+
t2

2

∫

Ω

(a∇w) · ∇wdx.

Dividing the latter inequality by t and tending t→ 0, we get

0 ≤
∫

Ω

((a∇u) · ∇w − fw)dx

for any w ∈ C∞
0 (Ω). This certainly implies that u is a weak solution to

(4.1.9) and (4.1.10).

4.1.4 Spectrum of Elliptic Differential Operators un-

der Dirichlet Boundary Condition

Let us go back to our elliptic differential equations

Lu = −div(a∇u) + b · ∇u+ cu

with bounded coefficients a = (aij), b = (bi), and c in a bounded domain
Ω ⊂ R

3, where the matrix-valued function satisfies the standard ellipticity
condition. These are our standing assumptions. The corresponding bilinear
form is

L(u, v) =
∫

Ω

(∇v · a∇u+ b · ∇uv + cuv)dx

for any u, v ∈ H1(Ω).
Now, we restrict ourselves to the case homogeneous Dirichlet boundary

conditions. Formally, the latter means that we consider the above bilinear
form on H1

0 (Ω)×H1
0 (Ω).
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We shall say that the bilinear form L is symmetric in H1
0 (Ω)×H1

0 (Ω) if
and only if

L(u, v) = L(v, u)
for any u, v ∈ H1

0 (Ω). Assume for a moment that a, b, and c are smooth.
Then integration by parts gives:

L(u, v) =
∫

Ω

(Lu)vdx =

∫

Ω

u(L∗v)dx

for any u, v ∈ C∞
0 (Ω), where

L∗v = −div(a∇v)− div(bv) + cv

and L∗ is called formally adjoint operator.
We can easily see that the bilinear form L is symmetric if and only if

L = L∗. Indeed, we have in the sense of distributions

L(u, v) =
∫

Ω

(Lu)vdx =

∫

Ω

u(L∗v)dx = L(v, u) =

=

∫

Ω

(Lv)udx =

∫

Ω

v(L∗u)dx =

∫

Ω

(L∗u)vdx

for any u, v ∈ C∞
0 (Ω).

Obviously, the condition of symmetry holds if

b = 0.

From now on we assume that the bilinear form L is symmetric on U ×U ,
where U = H1

0 (Ω), and that c ≥ 0 in Ω. We know that for any f ∈ L2(Ω),
there exists a unique element u ∈ U such that

L(u, v) = (f, v) :=

∫

Ω

fvdx, ∀v ∈ U.

So, we have a well-defined operator K : L2(Ω) → L2(Ω) defined by u = Kf .
Obviously, it is a compact operator in L2(Ω) (explain why). Let us show
that it is a symmetric operator. Indeed, for u = Kf and v = Kg, we have

L(u, w) = (f, w), L(v, w) = (g, w)
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for any w ∈ U . Hence,

(Kf, g) = (u, g) = (g, u) = L(v, u) = L(u, v) =

= (f, v) = (v, f) = (Kg, f) = (f,Kg)

for any f, g ∈ L2(Ω). Symmetry follows.
Now, we can apply the celebrated Hilbert-Schmidt theorem about spec-

trum of a symmetric compact operator. It reads the following.

Theorem 1.10. Let H be a Hilbert space and K : H → H be a symmetric
compact operator. There exists an orthonormal system {ϕm}Nm=1 ⊂ H that
consists of eigenfunctions ϕm belonging to eigenvalue µm 6= 0, i.e., Kϕm =
µmϕm, such that for any h ∈ H one has a unique representation

h =
N∑

m=1

cmϕm + h′

with cm = (h, ϕm) and Kh
′ = 0.

Moreover, if N = ∞, then µm → 0 as m→ ∞.

Let us discuss consequences of the Hilbert-Schmidt theorem for our par-
ticular case with H = L2(Ω). First of all, it is easy to see that the equation
Kh = 0 has the only trivial solution h = 0, i.e., µ = 0 is not an eigenvalue
of the operator K. Hence, N = ∞ and {ϕm}∞m=1 is an orthogonal basis in
L2(Ω). We let λm = 1/µm. Then the identity Kϕm = µmϕm is equivalent to

L(ϕm, v) = λm(ϕm, v)

for any v ∈ U . Here, of course, ‖ϕm‖2,Ω = 1. By ellipticity conditions,

L(ϕm, ϕm) = λm > 0.

One can numerate eigenvalues in the following way

0 < λ1 ≤ λ2 ≤ ... ≤ λm ≤ ...

with λm → ∞. Here, a particular eigenvalue is repeated as many times as
its multiplicity that is the dimension of the subspace

{u ∈ U : L(u, v) = λ(u, v) ∀v ∈ U}.
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It is known that this dimension is finite.
As it follows from the Hilbert-Schmidt theorem, for any h ∈ L2(Ω),

h =
∞∑

m=1

cmϕm, cm = (h, ϕm)

and the series converges in L2(Ω).
Now, our aim is to show if h ∈ U the above series converges in U as well.

To this end, let us introduce a scalar product as follows

[u, v] := L(u, v), u, v ∈ U.

We know that

‖h−
N∑

m=1

cmϕm‖2,Ω → 0

as N → ∞. By definition of eigenvalues,

[ϕm, h] = λm(ϕm, h) = λmcm.

Therefore,

[h,
N∑

m=1

cmϕm] =
N∑

m=1

λmc
2
m. (4.1.11)

On the other hand, we can find

Ih−
N∑

m=1

cmϕmI
2
2,1,Ω = [h−

N∑

m=1

cmϕm, h−
N∑

m=1

cmϕm] =

= IhI22,1,Ω −
N∑

m=1

λmc
2
m ≥ 0.

Therefore, we can state that series

∞∑

m=1

λmc
2
m (4.1.12)

converges and moreover

I

N∑

m=1

cmϕmI
2
2,1,Ω =

N∑

m=1

λmc
2
m ≤

∞∑

m=1

λmc
2
m ≤ IhI22,1,Ω <∞.
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Now, let gN =
N∑
m=1

cmϕm. There exists a subsequence such that gNk
converges

weakly to g in U . Then from (4.1.11) and (4.1.12), it follows that

[h, g] =
∞∑

m=1

λmc
2
m.

But
N∑
m=1

cmϕm → h in L2(Ω) as N → ∞ and thus g = h. Hence,

∞∑

m=1

λmc
2
m = IhI22,1,Ω

and thus gN → h in U . That is all.

4.2 Smoothness of Weak Solutions

4.2.1 The Second Embedding Theorem

In what follows, we shall use the following notion for mean values: [u]Ω :=
1
|Ω|

∫
Ω

udx.

We start with a technical lemma that shows how we can approximate a
function at a point by mean values.

Lemma 2.1. Let u ∈ L1(B(x0, R)). Assume that there exist positive constant
A and α such that, for all 0 < r ≤ R,

Ψ(x0, r) :=
1

|B(r)|

∫

B(x0,r)

|u− [u]B(x0,r)|dx ≤ Arα. (4.2.1)

Then there exists
lim
r→0

[u]B(x0,r) =: u0

and, for all 0 < r ≤ R,

|u0 − [u]B(x0,r)| ≤ cArα (4.2.2)

with a constant c depending on n and α only.



54 CHAPTER 4. FUNCTIONAL METHODS FOR PDE’S

Proof Let r ≤ R, then we have

|[u]B(x0,r/2) − [u]B(x0,r)| ≤
1

|B(x0, r/2)|

∫

B(x0,r)

|u(x)− [u]B(x0,r)|dx ≤

≤ 2nΨ(x0, r).

Thus, for m > k ≥ 0,

|[u]B(x0,r/2m) − [u]B(x0,r/2k)| ≤
m−1∑

i=k

|[u]B(x0,r/2i+1) − [u]B(x0,r/2i)|

≤ 2n
m−1∑

i=k

Ψ(r/2i) ≤ 2nA
m−1∑

i=k

(r/2i)α = 2nrA
m−1∑

i=k

(1/2i)α → 0 (4.2.3)

as k → ∞. So, lim
m→∞

[u]B(x0,r/2m) exists for any 0 < r ≤ R. Let u0 :=

lim
m→∞

[u]B(x0,R/2m). Our aim is to show that lim
r→0

[u]B(x0,r) = u0. Indeed, given

rk → 0, we can find subsequence of mk such that

R/2mk+1 ≤ rk ≤ R/2mk

for any k. Then we can repeat the above arguments to show that

|[u]B(x0,rk) − [u]B(x0,R/2
mk+1)| ≤ 2nΨ(x0, rk) ≤ 2nArαk → 0.

So, [u]B(x0,rk) → u0.
To derive (4.2.2) from (4.2.3), it is sufficient to let k = 0 there and then

pass to the limit as m→ ∞. ✷
Now, assuming that Ω is bounded, we introduce Hölder space Cα(Ω̄),

which consists of all continuous functions f : Ω̄ → R such that

‖u‖Cα(Ω̄) := ‖u‖∞,Ω + [u]α,Ω <∞,

where

[u]α,Ω := sup
x,y∈Ω,x 6=y

|u(x)− u(y)|
|x− y|α .

Cα(Ω̄) is a Banach space, see Problem Sheet 4.
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Lemma 2.2. (Campanato) Let u ∈ L1(B(R)). Assume that there exist
positive constant A and α such that

Ψ(x0, r) :=
1

|B(r)|

∫

B(x0,r)

|u− [u]B(x0,r)|dx ≤ Arα (4.2.4)

for all B(x0, r) ⊂ B(R). Then, for any 0 < ̺ < R,

‖u‖Cα(B̄(̺)) ≤ C(n, α, ̺, R)(A+ ‖u‖1,B(R)). (4.2.5)

Proof First of all, by Lemma 2.1, lim
r→0

[u]B(x,r) exists for all x ∈ B(R).

The function x 7→ lim
r→0

[u]B(x,r) belongs to the equivalence class u and in what

follows we shall work with this particular representative which is going to be
denoted simply by u.

Now, we let us fix a positive number ̺ < R. Letting r = (R − ̺)/2, we
deduce form Lemma 2.1 that for all x ∈ B(̺)

|u(x)| ≤ cArα + |[u]B(x,r)| ≤ C(R− ̺, n, α)(A+ ‖u‖1,B(R)). (4.2.6)

To proceed further, we assume that x0 and y0 belong to the ball B(̺)
and |x0 − y0| < R− ̺. Let z0 = (x0 + y0)/2 and 2r = |x0 − y0| > 0. Then

|u(x0)− u(y0)| ≤ |u(x0)− [u]B(x0,r)|+ |u(y0)− [u]B(y0,r)|+

+|[u]B(x0,r) − [u]B(z0,2r)|+ |[u]B(y0,r) − [u]B(z0,2r)|.
The first two terms on the right hand side can be estimated with the help of
(4.2.2). Both them give the right contribution. The third and fourth terms
are estimated in the same way. Let us treat the third one. So, we have, by
Corollary 2.4,

|[u]B(x0,r) − [u]B(z0,2r)| ≤
1

|B(x0, R)|

∫

B(x0,r)

|u(x)− [u]B(z0,2r)|dx ≤

≤ 1

|B(x0, r)|

∫

B(z0,2r)

|u(x)− [u]B(z0,2r)|dx ≤

≤ |B(z0, 2r)|
|B(x0, r)|

Ψ(z0, 2r) ≤ c(n, α)Arα ≤ c(n, α)A|x0 − y0|α.
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So,
|u(x0)− u(y0)| ≤ c(n, α)A|x0 − y0|α

provided x0 and y0 belong to the ball B(̺) and |x0 − y0| < R − ̺. The last
restriction can be easily removed with the help of estimate (4.2.6). Indeed,
let x0 and y0 are in B(̺) but |x0 − y0| ≥ R− ̺. Then

|u(x0)− u(y0)| ≤ 2‖u‖∞,B(̺) ≤ 2
( |x0 − y0|
R− ̺

)α
‖u‖∞,B(̺).

Summarizing the above estimates, we arrive at (4.2.5). ✷

Lemma 2.3. (Poincaré-Sobolev) Let Ω be a bounded Lipschitz domain. Then

‖u− [u]Ω‖p,Ω ≤ c(n, p,Ω)|u|p,1,Ω, ∀u ∈ W 1,p(Ω). (4.2.7)

Here, [u]Ω := 1
|Ω|

∫
Ω

udx.

Proof Our proof is based on the Reillich-Kondrachov theorem. Suppose
that the statement is false. Then for any m ∈ N there exists um ∈ W 1,p(Ω)
such that ‖um − [um]Ω‖p,Ω > m|um − [um]Ω|p,1,Ω. Letting vm := (um −
[um]Ω)/‖um − [um]Ω‖p,Ω, we have

‖vm‖p,Ω = 1 > m|vm|p,1,Ω, [vm]Ω = 0. (4.2.8)

From (4.2.8), it follows that vm is bounded in W 1,p(Ω) and, by Reillich-
Kondrachov theorem, sequence vm is precompact in Lp(Ω). Hence, there
exists a subsequence vmk

→ v in Lp(Ω). The limit function v must have
the vanishing mean value, i.e., [v]Ω = 0 and satisfy the identity ‖v‖p,Ω = 1.
In addition, from (4.2.8), we deduce that Divmk

→ 0 in Lp(Ω) for all i =
1, 2, ..., n. Therefore, v has all the weak derivatives that are equal to zero.
So, v is a constant in Ω. This constant must be equal to zero since v has
zero mean value in Ω. But this is in a contradiction with ‖v‖p,Ω = 1. ✷

Corollary 2.4. If Ω = B(x0, R), then

‖u− [u]B(x0,R)‖p,B(x0,R) ≤ c(n, p)R|u|p,1,B(x0,R), ∀u ∈ W 1,p(B(x0, R)).

The corollary is proved by scaling. Change variables so that v(y) = u(x)
provided y = (x − x0)/R, where y ∈ B(0, 1). Then we use Lemma 2.3 for
Ω = B(0, 1) and return to the old coordinates. ✷
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Theorem 2.5. Let Ω be a bounded domain with Lipschitz boundary and let
n < p < ∞. Then the Sobolev space W 1,p(Ω) is continuously embedded into
space Cβ(Ω) for any 0 ≤ β ≤ α = 1− n/p.

Moreover, the embedding is compact if 0 ≤ β < α.

Proof Our first remark is follows. It is sufficient to prove continuity of
embedding W 1,p(Ω) into Cα(Ω). Indeed, continuity of others embeddings
follows from the fact Cβ(Ω) ⊂ Cα(Ω) if β ≤ α (Explain why). The statement
about compactness can be deduced from the fact that Cβ(Ω) is embedded
into Cα(Ω) if β < α, see Problem Sheet 4.

Let us take a number R > 0 so large that Ω ⋐ B(R/2) and fix it. Let
v ∈ W 1,p

0 (B(R/2)) be an extension of a given function u ∈ W 1,p(Ω) with the
following estimate

‖v‖p,1,B(R/2) ≤ c(Ω, R, n, p)‖u‖p,1,Ω. (4.2.9)

The function v can be extended to the whole ball B(R) by zero. This exten-
sion is still a function from W 1,p

0 (B(R)) and equal to zero in B(R) \B(R/2).
We have from the Corollary 2.4 and from Hölder inequality the following
estimate

1

|B(r)|

∫

B(x0,r)

|v − [v]B(x0,r)|dx ≤

≤
( 1

|B(r)|

∫

B(x0,r)

|v − [v]B(x0,r)|pdx
) 1

p ≤ c(n, p)rα|v|p,1,B(x0,R)

for B(x0, r) ⊂ B(R). Then, by Lemma 2.2, v ∈ Cα(B(R/2)) with estimate

‖v‖Cα(B(R/2)) ≤ c(Ω, R, n, p)(|v|p,1,B(x0,R) + ‖v‖1,B(R)).

It remains to notice that

‖u‖Cα(Ω) ≤ ‖v‖Cα(B(R/2))

and by Hölder inequality and by (4.2.9)

|v|p,1,B(x0,R) + ‖v‖1,B(R) ≤ c(Ω, R, n, p)‖u‖p,1,Ω.

This completes the proof of the theorem. ✷
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4.2.2 Solvability in H2 ∩H1

0

Let us consider the following elliptic differential operator of the form

Lu = −div(a∇u) + b · ∇u+ cu

with coefficients satisfying our standing assumptions in a bounded domain
Ω with sufficiently smooth boundary, for example, of class C2. We assume
in addition that a is continuously differentiable in Ω. Then

|∇a| ≤ µ <∞

in Ω for some µ. Our goal is to show that, for any f ∈ L2(Ω), the Dirichlet
boundary value problem

Lu = f

in Ω,
u|∂Ω = 0

has a solution u that belongs to H2(Ω).
We first notice that

Lu = −aiju,ij + (bj − aij,i)u,j + cu

and then by our assumptions the operator L is bounded on H2(Ω), i.e.,

‖Lu‖2,Ω ≤ c‖u‖2,2,Ω
for all u ∈ H2(Ω).

We also introduce the space

E(Ω) = {v ∈ C2(Ω) : v|∂Ω = 0}

and its closure in H2(Ω), i.e.,

H2
+(Ω) = [E(Ω)]H2(Ω).

Clearly, H2
+(Ω) is a subspace of H1

0 (Ω) ∩ H2(Ω) (exercise). Now, let us
consider the restriction of the operator L on H2

+(Ω). We denote it by the
same symbol L. Our aim is to show that R(L) := L(H2

+(Ω)) = L2(Ω). This
would be an answer to the question of solvability of our Dirichlet boundary
value problem in H1

0 ∩H2.
We start with an important auxiliary statement.
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Proposition 2.6. There exists a constant C depending on Ω, ν, µ, ‖b‖∞,Ω,
and ‖c‖∞,Ω such that

‖∇2u‖22,Ω ≤ C(‖Lu‖22,Ω + ‖u‖22,Ω)

for any u ∈ H2
+(Ω).

Proof. By definition of the space H2
+(Ω), it is sufficient to prove the estimate

of the proposition for functions u ∈ E(Ω) only.
Just to understand the main idea better, we prove the proposition in the

the simplest case Lu = −∆u. Let us fix Cartesian coordinates x = (xi) in
R
n. After integration by parts, we have

∫

Ω

|∇2u|2dx =

∫

Ω

u,iju,ijdx = −
∫

∂Ω

(νju,ju,ii − u,iju,jνi)ds+

∫

Ω

u,iiu,jjdx =

= −
∫

∂Ω

Ids+

∫

Ω

u,iiu,jjdx,

where
I := ν · ∇u∆u− ν ⊗∇u : ∇2u

and ν is the unit outward normal to the surface ∂Ω.
Let x0 be an arbitrary point on the boundary ∂Ω. We also can find a

local Cartesian coordinates y centred at the point x0 so that the axis yn has
the same direction as the unit outward normal ν to ∂Ω at the point x0. So,
we have y = QT (x− x0), where Q = (ckl) is an orthogonal matrix and QT is
transpose of it. Then we let

v(y) := u(Qy + x0)

and the change of variables gives to us:

∂u

∂xk
=

∂v

∂ys
cks,

∂2u

∂xk∂xl
=

∂2v

∂ys∂yt
cltcks.

Now, since I is invariant with respect to shifts and rotations, we have

I(x0) =
∂v

∂yn

∂2v

∂yk∂yk
− ∂v

∂yj

∂2v

∂yj∂yn
.
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Adopting summation over repeated Greek indices running from 1 to n − 1,
we find

I(x0) =
∂v

∂yn

∂2v

∂yα∂yα
− ∂v

∂yβ

∂2v

∂yβ∂yn
.

We may assume that the boundary ∂Ω in a neighbourhood of the point
x0 (or y = 0) is a graph of the function ϕ, i.e., yn = ϕ(y′), where y′ =
(y1, y2, ..., yn−1). By our construction, ϕ(0) = 0 and

∂ϕ

∂yα
(0) = 0

with α = 1, 2, ..., n− 1.
We know that h(y′) = v(y′, ϕ(y′)) = 0. Since

0 =
∂h

∂yα
=

∂v

∂yα
+

∂v

∂yn

∂ϕ

∂yα
.

It follows from the latter identity that

∂v

∂yα
(0) = 0.

After further differentiations, we find

0 =
∂2h

∂yα∂yβ
=

∂2v

∂yα∂yβ
+

∂2v

∂yα∂yn

∂ϕ

∂yβ
+

∂v

∂yn

∂2ϕ

∂yα∂yβ
+

∂2v

∂yn∂yβ

∂ϕ

∂yα
+

+
∂2v

∂y2n

∂ϕ

∂yβ

∂ϕ

∂yα

and, since
∂u

∂ν
(x0) =

∂v

∂yn
(0),

the following is true

∂2v

∂yα∂yα
(0) = −∂u

∂ν
(x0)

∂2ϕ

∂yα∂yα
(0).

Hence,

I(x0) = −
∣∣∣∂u
∂ν

(x0)
∣∣∣
2 ∂2ϕ

∂yα∂yα
(0).
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It is interesting to notice that if the domain Ω is convex then ϕ,αα(0) ≤ 0
for any point x0 ∈ ∂Ω and, therefore, the following remarkable inequality is
valid:

‖∇2u‖2,Ω ≤ ‖∆u‖2,Ω
for any u ∈ E(Ω).

In general case, since the domain Ω is of class C2, there exists a constant
K independent of x0 ∈ ∂Ω such that

∣∣∣ ∂2ϕ

∂yα∂yα
(0)

∣∣∣ ≤ K.

So, we have the inequality
∫

Ω

|∇2u|2dx ≤ K

∫

∂Ω

|∇u|2ds+
∫

Ω

|∆u|2dx.

By a simple modification of the proof of the theorem on traces, see Lemma
2.3, (explain what modification should be made) we have the following state-
ment: given ε > 0, there exists a constant C(ε,Ω) such that

∫

∂Ω

|∇u|2ds ≤ ε

∫

Ω

|∇2u|2dx+ C(ε,Ω)

∫

Ω

|∇u|2dx.

Picking up ε by the identity Kε = 1/2, we easily find

1

2

∫

Ω

|∇2u|2dx ≤ C(K, ε,Ω)

∫

Ω

|∇u|2dx+
∫

Ω

|∆u|2dx.

On the other hand, integration by parts gives
∫

Ω

|∇u|2dx = −
∫

Ω

u∆udx ≤ ‖u‖2,Ω‖∆u‖2,Ω.

The proposition follows.

In what follows, we assume that the operator L satisfies the additional
condition

(Lu, u) =

∫

Ω

uLudx = L(u, u) ≥ δ‖u‖22,Ω
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for some positive δ, for any u ∈ E(Ω) and thus for any u ∈ H2
+(Ω). Then the

inequality of Proposition 2.6 takes the form

‖∇2u‖2,Ω ≤ C‖Lu‖2,Ω
for any u ∈ H2

+(Ω) with a constant C independent of u.
Our main theorem is as follows.

Theorem 2.7. Assume that all above listed conditions on the operator L
hold. Suppose that there exists an elliptic operator L0 satisfying the same
condition as the operator L but with possibly different parameters a0, b0, c0,
ν0, µ0, and δ0. Assume that there exists a set M ⊂ R(L0) that is dense in
L2(Ω).

Then, for any τ ∈ [0, 1], R(Lτ ) = L2(Ω), where Lτ := L0 + τ(L − L0) :
H2

+(Ω) → L2(Ω). Moreover, Lτ is injective and there exists a bounded inverse
operator L−1

τ : L2(Ω) → H2
+(Ω).

Let us discuss simple applications of Theorem 2.7.
Let Ω be a ball in R

n. It is well known that all eigenfunctions of the
Laplace operator

−∆u = λu

under the Dirichlet boundary conditions

u|∂Ω = 0

are infinitely smooth. Since those eigenfunctions are dense in L2(Ω), the
operator L0 = −∆ satisfies the assumptions of Theorem 2.7. Indeed, for any
f ∈ L2(Ω), we have

f =
∞∑

m=1

cmϕm,

where {ϕm}∞m=1 is an orthonormal basis in L2(Ω) consisting of the eigenfunc-
tions of the Laplace operator under the Dirichlet boundary condition. The
solution of the problem

−∆u =
N∑

m=1

cmϕm, u|∂Ω = 0

is

u = −
N∑

m=1

cmϕm/λm ∈ H2
+(Ω).
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Similar arguments work if Ω can be transformed into the ball B by smooth
non-degenerate change of variables y = ψ(x) with ψ ∈ C3(Ω). Let us show
how to construct such an operator L0 for the domain Ω. Take two functions
u, v ∈ H2

+(Ω) and let u′(y) = u(x) and v′(y) = v(x) for y = ψ(x). We know
that u′, v′ ∈ H2

+(B). Then simply by chain rule, we find

∫

B

∂u′

∂yi

∂v′

∂yi
dy =

∫

Ω

∂u

∂xk

∂xk
∂yi

∂v

∂xs

∂xs
∂yi

Jdx, (4.2.10)

where J(x) = det(∇ψ(x)) is the Jacobian of the coordinate transformation
y = ψ(x) that satisfies the inequalities

0 < α ≤ J(x) ≤ β <∞

for all x ∈ Ω. This identity suggests to introduce the operator L0 as follows:

L0u(x) = − ∂

∂xk

(
aks(x)

∂u

∂xs
(x)

)
,

where a(x) = g(x)J(x),

gks(x) =
∂xk
∂yi

(y)
∂xs
∂yi

(y)
∣∣∣
y=ψ(x)

.

Therefore, (4.2.10) implies

∫

B

∂u′

∂yi

∂v′

∂yi
dy =

∫

Ω

L0(u)vdx.

To see that the matrix a satisfies the ellipticity condition, we let

d+ = sup
y∈B

sup
|ξ|=1

|(∇yx(y))
T ξ|2, d− = inf

y∈B
inf
|ξ|=1

|(∇yx(y))
T ξ|2.

It is easy to see d− > 0 and d+ < ∞ (explain why). We can pick up ν0
sufficiently small so that 0 < ν0 ≤ αd− and βd+ ≤ ν−1

0 .
Then we find

∫

Ω

|u|2dx =

∫

B

|u′|2J−1dy ≤ 1

α

∫

B

|u′|2dy ≤ 1

λ1α

∫

B

∂u′

∂yi

∂u′

∂yi
dy ≤
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≤ 1

λ1α
(L0u, u).

Next, let ϕ′
m(y) is an eigenfunction of the Laplace operator under the

Dirichlet boundary condition in the ball B and let ϕm(x) = ϕ′
m(y) provided

y = ψ(x). Then from (4.2.10) it follows that

λm

∫

Ω

Jϕmvdx = λm

∫

B

ϕ′
mv

′dy =

∫

B

∂ϕ′
m

∂yi

∂v′

∂yi
dy = −

∫

Ω

L0ϕmvdx

and thus L0ϕm = λmJϕm and ϕm ∈ H2
+(Ω).

Now, take f ∈ L2(Ω) and let f ′(y) = f(x)/J(x). Given ε > 0, we can
find N such that ∫

B

|f ′ −
N∑

m=1

ckϕ
′
m|2dy < ε.

After change of variables, we find

ε >

∫

Ω

|fJ−1 −
N∑

m=1

ckϕm|2Jdx =

∫

Ω

|f −
N∑

m=1

ckJϕm|2J−1dx ≥

≥ 1

β

∫

Ω

|f −
N∑

m=1

ckJϕm|2dx.

So, image of the operator L0 contains a set that is dense in L2(Ω). Hence, if
the operator L satisfies all the assumptions of Theorem 2.7 in such a domain
Ω, then R(L) = L2(Ω).

Proof of Theorem 2.7 Let us describe some properties of the operator
Lτ . First of all,

‖Lτ‖ ≤ τ‖L‖+ (1− τ)‖L0‖ ≤ max{‖L‖, ‖L0‖} = c3 (4.2.11)

for any τ ∈ [0, 1]. Next,

(Lτu, u) = τ(Lu, u) + (1− τ)(L0u, u) ≥ (τδ + (1− τ)δ0)‖u‖22,Ω ≥

≥ δ1‖u‖22,Ω,
where δ1 = min{δ, δ0}. The latter, together with Cauchy-Schwarz inequality,
gives the estimate ‖Lτu‖2,Ω ≥ δ1‖u‖2,Ω. Proposition 2.6 gives us

‖∇2u‖2,Ω ≤ c′3‖Lτu‖2,Ω
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with constant independent of τ . Moreover, by integration by parts,
∫

Ω

|∇u|2dx = −
∫

Ω

∆uudx ≤ ‖∇2u‖2,Ω‖u‖2,Ω ≤ c′3/δ1‖Lτu‖22,Ω.

Finally, we find
‖u‖2,2,Ω ≤ c4‖Lτu‖2,Ω (4.2.12)

with a constant c4 that is independent of u ∈ H2
+(Ω) and of τ ∈ [0, 1]. So,

the operator Lτ is injective.
The theorem will be proven if we show that the operator Lτ is onto.

Then boundedness of the inverse operator follows from the estimate (4.2.12)
so that ‖L−1

τ ‖ ≤ c4. First let us show that L0 is surjective. Indeed, for any
f ∈ L2(Ω) there exists fm ∈ M such that fm → f . Moreover, for each m,
there exists um ∈ H2

+(Ω) such that fm = L0um. From estimate (4.2.12) for
τ = 0, it follows that ‖um − uk‖2,2,Ω ≤ c4‖fm − fk‖2,Ω and hence there exists
u ∈ H2

+(Ω) such that um → u in H2
+(Ω) and by continuity of the operator

L0 we find L0u = f .
Now, the equation Lτu = f can be re-written in the form (I+A)u = L−1

0 f ,
where I is the identity operator in H2

+(Ω) and A = τL−1
0 (L−L0) : H

2
+(Ω) →

H2
+(Ω). By (4.2.11) and (4.2.12), we have ‖A‖ ≤ τc42c3 = τc5. We know

(von Neumann) that the operator I +A has the bounded inverse operator if
‖A‖ < 1. So, for τ ∈ [0, τ1] with τ1 = 1/(2c5), ‖A‖ ≤ 1/2 and thus for the
same τ the operator Lτ is surjective.

We then can represent the operator Lτ as follows: Lτ = Lτ1+(τ−τ1)(L−
L0). The main equation takes then the form u+(τ−τ1)L−1

τ1
(L−L0)u = L−1

τ1
f .

Repeating the same arguments as in the first step, we can show that Lτ is
surjective for all τ ∈ [0, 2τ1]. After a finite number of steps, we will be cover
the whole interval [0, 1]. Theorem 2.7 is proven.

4.2.3 Smoothness of Distributional Solutions

Theorem 2.8. Let u ∈ L2(Ω) and f ∈ L2(Ω) satisfy the Poisson equation

△u = −f

in the sense of distributions, i.e.,

∆Tu = −Tf (⇔
∫

Ω

u∆ϕdx = −
∫

Ω

fϕdx, ∀ϕ ∈ C∞
0 (Ω)).
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Then u ∈ W 2,2
loc (Ω) and the following estimate is valid:

‖∇u‖2,Ω0 + ‖∇2u‖2,Ω0 ≤ c(Ω,Ω0)(‖f‖2,Ω + ‖u‖2,Ω) (4.2.13)

whenever Ω0 ⋐ Ω.

Proof. Fix an arbitrary ball ω := B(x0, R) ⋐ Ω. We can test the identity
that appears in the definition of distributional solution with a function ϕv,
where ϕ ∈ C∞

0 (ω) and v ∈ E(ω), and find
∫

ω

ϕu∆vdx = −
∫

ω

(f ′v + g′ · ∇v)dx,

where f ′ = ϕf + u∆ϕ and g′ = 2u · ∇ϕ.
We know that there exists a unique function w ∈ H1

0 (ω) such that
∫

ω

∇w · ∇vdx = −
∫

ω

(f ′v + g′ · ∇v)dx

for any v ∈ H1
0 (ω). Since E(ω) ⊂ H1

0 (ω), we find after integration by parts
in the second identity ∫

ω

(uϕ− w)∆vdx = 0

for any v ∈ E(ω) and therefore for any v ∈ H2
+(ω). By Theorem 2.7, we can

find v ∈ H2
+(ω) such that −∆v = uϕ − w. This implies that w = uϕ. The

function w obeys the estimate

‖∇w‖2,ω ≤ c(‖f ′‖2,ω + ‖g′‖2,ω)
From the latter, we can easily deduce the first statement of the theorem for
the first derivatives.

Since we know that ∇u ∈ H1
loc(Ω), we can re-write the first identity in

the form ∫

ω

ϕu∆vdx = −
∫

ω

Fvdx,

where F = f ′ − 2div(u∇ϕ) ∈ L2(ω). Now, we can find w ∈ H2
+(ω) such that

−∆w = F or equivalently
∫

ω

w∆vdx = −
∫

ω

Fvdx
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for any v ∈ E(ω). Then we way repeat the above arguments and conclude w =
ϕu. By Theorem 2.7, w satisfies the estimate ‖∇2w‖2,ω ≤ c‖F‖2,ω. Selecting
a particular function ϕ and using the previous estimate, we complete the
proof of the theorem.

Theorem 2.9. Let b = 0, c = 0, a be a constant matrix and let u ∈ L2(Ω)
satisfy the equation div(a∇u) = 0 in the sense of distributions, i.e.,

∫

Ω

udiv(a∇w)dx = 0, ∀w ∈ C∞
0 (Ω).

Then u is infinitely differentiable inside Ω and satisfies the estimate

|u(x)| ≤ c(n, ν,Ω0,Ω)‖u‖2,Ω, ∀x ∈ Ω0 ⋐ Ω.

Proof Step I. Here, we simply repeat arguments of the first step in the
proof of the previous statement replacing −∆u with −diva∇u on balls and
then using covering by balls we can deduce the first energy estimate

∫

Ω1

|∇u|2dx ≤ C1

∫

Ω

|u|2dx. (4.2.14)

Step II Fix an arbitrary Lipschitz subdomain Ω0 ⋐ Ω and find a sequence
domains Ωk, k = 1, 2, ..., such that Ω0 ⋐ ..... ⋐ Ωk+1 ⋐ Ωk ⋐ ... ⋐ Ω1 ⋐ Ω.
According to Step I, u ∈ H1(Ω1) and estimate (4.2.14) holds. Now, for any
w ∈ C∞

0 (Ω1), we have

0 = −
∫

Ω1

u div(a∇w,i)dx =

∫

Ω1

u,idiv(a∇w)dx, i = 1, 2, ..., n.

We may repeat the same arguments as in Step I, replacing Ω with Ω1, Ω1

with Ω2, and u with u,i. This gives the following facts: u ∈ H2(Ω2) and
∫

Ω2

|∇2u|2dx ≤ C2

∫

Ω1

|∇u|2dx ≤ C1C2

∫

Ω

|u|2dx.

So, we can state that u ∈ Hk(Ωk) and
∫

Ω0

|∇ku|2dx ≤ Ck

∫

Ω

|u|2dx
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for any k = 1, 2, ....
Now, let k = [n/2] + 1. Then applying the embedding Theorem 1.4

(k − 1) times, we get w ∈ W 1,p(Ω0) with any p > n if n is even and with
p = 2n

n−2[n/2]
> n if n is odd and the estimate ‖u‖p,1,Ω0 ≤ C‖u‖2,Ω holds.

It remains to apply the embedding Theorem 2.5 to get the estimate of the
theorem. ✷

4.2.4 More about Variable Coefficients

In this section, we are going to consider the simplest case of the elliptic
equation

−div a∇u = 0 (4.2.15)

in Ω provided that a is a symmetric matrix with bounded measurable entries
satisfying ellipticity condition

νI ≤ a ≤ ν−1
I

for some positive ν.
The best known result in this direction is:

Theorem 2.10. (DeGiorgi-Nash-Moser) Let b = 0, c = 0 and let u ∈ H1(Ω)
satisfy the identity L(u, w) = 0 for any w ∈ C∞

0 (Ω). Then u is Hölder
continuous inside Ω with an exponent depending on n and ν only.

In what follows, we assume about a a bit more:

x 7→ a(x) (4.2.16)

is continuous at any point x ∈ Ω. Since our analysis will be essentially local,
we may assume that Ω ∈ R

n is bounded and

a ∈ C(Ω). (4.2.17)

Our main result is as follows:

Theorem 2.11. Let 4.2.17 hold. Let u ∈ H1(Ω) satisfy equation (4.2.15) in
the following weak sense

L(u, v) =
∫

Ω

(a∇u) · ∇vdx = 0 (4.2.18)

for any v ∈ C∞
0 (Ω). Then for any 0 < α < 1 and for any Ω0 ⋐ Ω,

u ∈ Cα(Ω0).
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We start a proof of Theorem 2.11 with auxiliary statements.

Lemma 2.12. (Morrey) Assume that u ∈ H1(B(R)) and there exist two
constants A and α ∈]0, 1[ such that

∫

B(x0,r)

|∇u|2dx ≤ Arn−2+2α

for any B(x0, r) ⊂ B(R). Then, for any 0 < ̺ < R, u ∈ Cα(B(̺)), with the
estimate

‖u‖Cα(B̄(̺)) ≤ C(n, α, ̺, R)(
√
A+ ‖u‖1,B(R)) (4.2.19)

Proof Follows from Lemma 2.2, Hölder inequality, and Poincare-Sobolev
inequality, see arguments in the proof of the second embedding theorem.

Lemma 2.13. Assume that an increasing function Φ : [0, R0] → [0,∞[
satisfies the following property

Φ(r) ≤ c
[( r
R

)n
+ ε

]
Φ(R)

for any 0 < r ≤ R ≤ R0 with some positive constants c and ε.
For any 0 < γ < n, there exists ε0 = ε0(n, γ, c) such that if ε ≤ ε0 then

Φ(r) ≤ c1(n, γ, c)
( r

R0

)n−γ
Φ(R0)

for all 0 < r < R0.

Proof Take 0 < τ < 1 satisfying the condition

2cτ γ ≤ 1 (4.2.20)

and let
ε0 = τn.

Then for r = τ k+1R0 and R = τ kR0, we have

Φ(τ k+1R0) ≤ c(τn + ε)Φ(τ kR0) ≤

≤ c(τn + ε0)Φ(τ
kR0) ≤

≤ cτ γτn−γ(1 + ε0τ
−n)Φ(τ kR0) ≤
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≤ τn−γΦ(τ kR0).

Iterating the last inequality in k starting with k = 0, we find

Φ(τ kR0) ≤ τ k(n−γ)Φ(R0)

for any non-negative integer k. Given 0 < r < R0, we can find k such that

τ k+1R0 ≤ r < τ kR0

which implies

τ k ≤ r

τR0

.

So,

Φ(r) ≤ Φ(τ kR0) ≤
( r

τR0

)n−γ
Φ(R0). ✷

Proof of Theorem 2.11 Our proof is based on the so-called method
of ”frozen” coefficients. Take any ball B(x0, R) ⋐ Ω. Consider the following
auxiliary boundary value problem:

−div(a(x0)∇v) = 0 (4.2.21)

in B(x0, R) and
v = u (4.2.22)

on ∂B(x0, R). We know that there exists a unique weak solution v ∈
H1(B(x0, R)) to boundary value problem (4.2.21) and (4.2.22). Moreover,
the solution v is infinitely smooth inside of the ball B(x0, R) and satisfies the
estimate (explain why)

sup
x∈B(x0,R/2)

|∇v(x)|2 ≤ c(n, ν)
1

Rn

∫

B(x0,R)

|∇v|2dx.

So, if 0 < r ≤ R/2, then
∫

B(x0,r)

|∇v|2dx ≤ c
( r
R

)n ∫

B(x0,R)

|∇v|2dx,

if R/2 < r ≤ R, then
∫

B(x0,r)

|∇v|2dx ≤
(2r
R

)n ∫

B(x0,R)

|∇v|2dx.
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And finally ∫

B(x0,r)

|∇v|2dx ≤ c
( r
R

)n ∫

B(x0,R)

|∇v|2dx

for all 0 < r ≤ R.
Now, we wish to compare our solution u with auxiliary one v:

∫

B(x0,r)

|∇u|2dx =

∫

B(x0,r)

|∇(v + u− v)|2dx ≤

≤ 2

∫

B(x0,r)

|∇v|2dx+ 2

∫

B(x0,r)

|∇(u− v)|2dx ≤

≤ c
( r
R

)n ∫

B(x0,R)

|∇v|2dx+ 2

∫

B(x0,R)

|∇(u− v)|2dx.

Using the same trick v = (v − u) + u, we show now
∫

B(x0,r)

|∇u|2dx ≤ c
( r
R

)n ∫

B(x0,R)

|∇u|2dx+ c

∫

B(x0,R)

|∇(u− v)|2dx (4.2.23)

for any 0 < r ≤ R with a constant c depending only on n and ν. Now, we
need evaluate the second term on the right hand side of the latter inequality.
Indeed, according to the definition of weak solutions u and v, we find (explain
why)

0 =

∫

B(x0,R)

(a(x)∇u− a(x0)∇v) · ∇(u− v)dx =

=

∫

B(x0,R)

(
(a(x)− a(x0))∇u+ a(x0)∇(u− v)

)
· ∇(u− v)dx.

From the last identity and from the ellipticity condition, one can deduce

ν

∫

B(x0,R)

|∇(u− v)|2dx ≤
∫

B(x0,R)

|(a(x)− a(x0))∇u||∇(u− v)|dx ≤

≤
( ∫

B(x0,R)

|a(x)− a(x0)|2|∇u|2dx
) 1

2
( ∫

B(x0,R)

|∇(u− v)|2dx
) 1

2
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and thus
∫

B(x0,R)

|∇(u− v)|2dx ≤ 1

ν2
sup

x∈B(x0,R)

|a(x)− a(x0)|2
∫

B(x0,R)

|∇u|2dx.

And (4.2.23) can be transformed into the following one

∫

B(x0,r)

|∇u|2dx ≤ c(n, ν)
[( r
R

)n
+

+ sup
x∈B(x0,R)

|a(x)− a(x0)|2
] ∫

B(x0,R)

|∇u|2dx (4.2.24)

for all 0 < r ≤ R.
We take an arbitrary number 0 < α < 1 and let γ = 2−2α. Then, using a

constant c from (4.2.24) and the number γ, we can find number ε0 of Lemma
2.13. This number depends on n, ν, and α only. By uniform continuity, we
can find δ such that

|a(x)− a(x0)| ≤
√
ε0 (4.2.25)

provided x, x0 ∈ Ω and |x− x0| ≤ δ.
Now, let us take a ball B(z, R∗) ⋐ Ω with R∗ < δ and fix it. We then let

R0 = R∗/4 and thus, for any x0 ∈ B(z, 3/4R∗),

B(x0, R0) ⊂ B(z, R∗)

and (4.2.25) holds for any x ∈ B(x0, R0). If we let

Φ(r) =

∫

B(x0,r)

|∇u|2dx,

then we can derive from (4.2.24)

Φ(r) ≤ c(n, ν)
[( r
R

)n
+ ε0

]
Φ(R)

for all 0 < r ≤ R ≤ R0. Now, we are in position to apply Lemma 2.13

Φ(r) ≤ c(n, ν)
( r

R0

)n−2+2α

Φ(R0) ≤
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≤ c(n, ν)
( r

R0

)n−2+2α
∫

Ω

|∇u|2dx = C1(n, ν, α,R∗, ‖∇u‖2,Ω)rn−2+2α

for any 0 < r ≤ R0.
Now, let us B(x0, r) ⊂ B(z, 3/4R∗). If r ≤ R0, then as it has been shown

above Φ(x0, r) ≤ C1r
n−2+2α. If r > R0, then we argue as follows:

Φ(r) ≤
∫

Ω

|∇u|2dx ≤
( r

R0

)n−2+2α
∫

Ω

|∇u|2dx =

= C2(n, α,R∗, ‖∇u‖2,Ω)rn−2+2α.

So, for A = max{C1, C2},
∫

B(x0,r)

|∇u|2dx ≤ Arn−2+2α

provided B(x0, r) ⊂ B(z, 3/4R∗). By Lemma 2.12,

‖u‖Cα(B(z,R∗/2))
≤ C(n, ν, α,R∗/2, 3/4R∗)(

√
A+ ‖u‖1,Ω) =

= c0(n, ν, α,R∗, ‖u‖2,1,Ω).
Given Ω0 ⋐ Ω, let us take r = 1

3
min{δ, dist(Ω0, ∂Ω)}. Then

‖u‖Cα(B(z,r/2)) ≤ C := c0(n, ν, α, r, ‖u‖2,1,Ω)

for any z ∈ Ω0. Obviously ‖u‖∞,Ω0 ≤ C. Next, let x0, y0 ∈ Ω0. If |x0 − y0| <
r/2, then |u(x0)− u(y0)| ≤ C|x0 − y0|α. If |x0 − y0| ≥ r/2, then

|u(x0)− u(y0)| ≤ 2‖u‖∞,Ω0 ≤ 2C
( |x0 − y0|

r/2

)α

and thus
‖u‖Cα(Ω0)

≤ (1 + 21+αr−α)C.

✷

In fact, if we assume that

a ∈ Cα(Ω) (4.2.26)

for some 0 < α < 1, then Theorem 2.11 can be essentially improved.
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Theorem 2.14. Let (4.2.26) and (4.2.18) hold. Then

∇u ∈ Cβ(Ω0)

for any 0 < β < α and for any Ω0 ⋐ Ω.

Proof The plan of the proof is the same as in the previous theorem.
We “freeze” coefficients and consider auxiliary problem (4.2.21). But, in this
case, the different estimate for solutions to elliptic equations with constant
coefficients is used. Namely,

∫

B(x0,r)

|∇v − [∇v]x0,r|2dx ≤ c(n, ν)
( r
R

)n+2
∫

B(x0,R)

|∇v − [∇v]x0,R|2dx

for any 0 < r ≤ R. Here, we use abbreviation [f ]x0,R := [f ]B(x0,R). This
estimate can be deduced from Theorem 2.9 (exercise). We can then repeat
the same arguments as in Theorem 2.11 and get

∫

B(x0,r)

|∇u− [∇u]x0,r|2dx ≤ c
( r
R

)n+2
∫

B(x0,R)

|∇u− [∇u]x0,R|2dx+

+c

∫

B(x0,R)

|∇(u− v)|2dx.

For the error v − u, we have the same estimate

∫

B(x0,R)

|∇(u− v)|2dx ≤ 1

ν2
sup

x∈B(x0,R)

|a(x)− a(x0)|2
∫

B(x0,R)

|∇u|2dx.

But, since a is Hölder continuous,

∫

B(x0,R)

|∇(u− v)|2dx ≤ cR2α

∫

B(x0,R)

|∇u|2dx = cR2αΦ(x0, R) (4.2.27)

and
∫

B(x0,R)

|∇(u− v)|2dx ≤ cR2αΨ(x0, R) + cR2α|B(R)|(|[∇u]x0,R)|2 ≤ (4.2.28)
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≤ cR2αΨ(x0, R) + cR2αΦ(x0, R),

where

Ψ(x0, R) :=

∫

B(x0,R)

|∇u− [∇u]x0,R|2dx.

Then repeating arguments of the previous theorem and using arguments
(4.2.27) and (4.2.28), we find

Φ(x0, r) ≤ c
[( r
R

)n
+R2α

]
Φ(x0, R) (4.2.29)

and

Ψ(x0, r) ≤ c
[( r
R

)n+2

+R2α
]
Ψ(x0, R) + cR2αΦ(x0, R) (4.2.30)

for any 0 < r ≤ R.
Now, fix an arbitrary subdomain Ω0 ⋐ Ω and let

R0 :=
1

2
min{ε

1
2α
0 , dist(Ω0, ∂Ω}.

Then, by Lemma 2.13, we can deduce from (4.2.29)

Φ(x0, R) ≤ cRn−2(α−β)

for any 0 < R ≤ R0. But then (4.2.28) gives us:

Ψ(x0, r) ≤ c
[( r
R

)n+2

+R2α
]
Ψ(x0, R) + cRn+2β (4.2.31)

for any 0 < r ≤ R ≤ R0. Now, we need a generalisation of Lemma 2.13:

Lemma 2.15. Let Ξ : [0, R0] → [0,∞[ be an increasing function having the
following property:

Ξ(r) ≤ c
[( r
R

)α
+ ε

]
Ξ(R) + ARβ

for any 0 < r ≤ R ≤ R0 with some positive constants c, A, α, β, and ε
satisfying the condition α > β. Show that there exists a constant ε1(c, A, α, β)
such that if ε ≤ ε1, then

Ξ(r) ≤ c1

[( r

R0

)β
Ξ(R0) + Arβ

]

for all 0 < r ≤ R0 and for some positive constant c1(c, α, β).
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So, there exists ε1 > 0 such that

Ψ(x0, R) ≤ A1R
2β

for any 0 < R ≤ R1 :=
1
2
min{ε

1
2α
1 , R0}, for any x0 ∈ Ω0, and for some positive

constant A1. Now, the statement of the theorem follows from Campanato’s
condition, see Lemma 4.2.4. ✷



Appendix A

Functional Analysis

Background

A.1 Normed Spaces

Definition 1.1. Let X be a real or complex vector space. A norm on X is
a function ‖ · ‖ : X → R satisfying

(N1) ‖x‖ ≥ 0, ‖x‖ = 0 ⇔ x = 0

(N2) ‖αx‖ = |α|‖x‖ ∀x ∈ X, ∀α ∈ R(orC)

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀x, y ∈ X.

(X, ‖ · ‖) is then called a normed space.

Remark 1.2. If instead of (N1) one only has

(SN1) ‖x‖ ≥ 0 and x = 0 ⇒ ‖x‖ = 0

then ‖x‖ is a called semi-norm.

Examples

I. RN , x = (x1, x2, ..., xN ) = (xi) ∈ R
N

‖x‖1 =
N∑

n=1

|xn|

‖x‖∞ = sup
1≤n≤N

|xn|

‖x‖2 =
( N∑

n=1

|xn|2
) 1

2
.

77
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II. lp, x = (x1, x2, ...) = (xi) ∈ lp, 1 ≤ p ≤ ∞,

‖x‖p =
( ∞∑

n=1

|xn|p
) 1

p

, 1 ≤ p <∞

‖x‖∞ = sup
1≤n<∞

|xn|, p = ∞.

III. f ∈ C(Ω), f : Ω → R,

‖f‖∞ = sup
x∈Ω

|f(x)|

‖f‖2 =
(∫

Ω

|f(x)|2dx
) 1

2
.

IV. C1([a, b]), f : [a, b] → R,

‖f‖C1([a,b]) = sup
x∈[a,b]

(|f(x)|+ |f ′(x)|)

‖f‖ = sup
x∈[a,b]

|f ′(x)| (semi-norm).

Definition 1.3. Let X be a real or complex vector space. An inner (scalar)
product on X is a function (·, ·) : X ×X → R (or C) satisfying

(I1) (x, x) ≥ 0, (x, x) = 0 ⇔ x = 0

(I2) (x, y) = (y, x) ∀x, y ∈ X

(I3) x 7→ (x, y) is linear for each fixed y ∈ X.

(X, (·, ·)) is then called a pre-Hilbert space.

Remark 1.4. If instead of (I1) one only has

(SI1) (x, x) ≥ 0 (A.1.1)

then (·, ·) is a called semi-indefinite scalar product.

From the Cauchy-Schwarz inequality

|(x, y)| ≤ (x, x)
1
2 (y, y)

1
2 ,

it follows
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Lemma 1.5. If (·, ·) is (semi-indefinite) scalar product, then ‖x‖ = (x, x)
1
2 ,

x ∈ X, is (semi-) norm.

Examples

I. (x, y) =
∞∑
i=1

xiyi is a scalar product on l2.

II. (f, g) =
∫
Ω

f(x)g(x)dx, ∀f, g ∈ C(Ω), is a scalar product on C(Ω).

A.2 Completeness

Definition 2.1. A Banach space is a normed space (X, ‖·‖) that is complete:
if {x(i)} is a Cauchy sequence, i.e., ‖x(i) − x(j)‖ → 0 as i and j tend to ∞,
then x(i) is convergent, i.e., there exists x ∈ X such that ‖x(i) − x‖ → 0 as i
tends to ∞.

Definition 2.2. A pre-Hilbert space is a Hilbert space if it is a Banach space
with respect to the norm ‖x‖ = (x, x)

1
2 .

Examples

I. The space of all continuous functions f : Ω → R equipped with ‖ · ‖∞ is
denoted by C(Ω). It is a Banach space. The proof relies upon two facts:
convergence with respect to the norm ‖ · ‖∞ is equivalent to uniform conver-
gence and on the Weierstrass theorem on the limit of uniformly converging
continuous functions.

II. Now assume that the space of continuous functions is equipped with ‖·‖2.
This is an example of a normed space that is not Banach one. To see that
let n = 1, Ω = (−1, 1), and fi(x) = ix if x ∈ [−1/i, 1/i], fi(x) = −1
if x ∈ [−1,−1/i), and fi(x) = 1 if x ∈ (1/i, 1]. It is a Cauchy sequence
(explain why). Suppose that there exists f ∈ C(Ω) such that

1∫

−1

|fi(x)− f(x)|2dx→ 0 as i→ ∞.

Since fi and f are uniformly bounded, it is easy to see (explain why) that
f(x) = −1 for x ∈ (−1, 0) and f(x) = 1 for x ∈ (0, 1), which means that f
is discontinuous at x = 0.
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A.3 Separability

In the normed space (X, ‖ ·‖), topology is defined with the help of the metric
generated by the norm: ̺(x, y) = ‖x− y‖ is the distance between x ∈ X and
y ∈ X. With this metric, we can define open ball and neighborhoods, open
and closed sets, interior and closure of a given sets, etc.

Definition 3.1. Let (X, ‖ · ‖) be a normed space. It is separable, if there
exists a countable set A ∈ X with the following property. For any x ∈ X and
for any positive number ε, there exists a ∈ A such that ‖x− a‖ < ε.

Examples

I. lp, with 1 ≤ p <∞, is separable but l∞ is not.
II. C(Ω) is separable. The idea of a proof in the simplest case Ω = (0, 1)
is as follows. Consider a countable set A consisting of all piece-wise linear
functions on [0, 1] with a finite number of vertices at points having rational
coordinates in the plane and show that it is required.

A.4 Compactness

Definition 4.1. Let (X, ‖ · ‖) be a normed space. We say that K ⊂ X is
a compact set of X if any open covering of K contains a finite subcovering.
We say that the set K is precompact if its closure is compact.

Definition 4.2. Let (X, ‖ · ‖) be a normed space. We say that K ⊂ X is
a sequentially compact set of X if any sequence of K contains a converging
subsequence whose limit belongs to K.

Theorem 4.3. Let (X, ‖ · ‖) be a normed space and K ⊂ X. K is compact
if and only if K is sequentially compact.

Lemma 4.4. Let (X, ‖ · ‖) be a normed space and K ⊂ X be compact. Then
K is bounded and closed.

Theorem 4.5. (Hausdorff) Let (X, ‖·‖) be a Banach space. K is precompact
if and only if for ε > 0 there exists a finite ε-net, i.e., K ∈ ⋃m

j=1BX(xj, ε)
for some xj ∈ X. Here, BX(x, ̺) is an open ball of X with radius ̺ centered
at point x.

Examples

I. Finite-dimensional spaces



A.5. LINEAR OPERATORS 81

Lemma 4.6. (Heine-Borel) Any bounded closed set of a finite-dimensional
space is compact.

II. Claim: The unit closed ball of l2 is not compact. Indeed, let x(j) = (x
(j)
i )

with x
(j)
i = 0 if i 6= j and x

(j)
i = 1 if i = j. Since ‖x(j) − x(i)‖2 =

√
2 if i 6= j,

the sequence x(j) does not contain a converging subsequence.
III. C(Ω),

Theorem 4.7. (Ascoli-Arzela) A sequence {f (j)}∞j=1 of C(Ω) contains a con-

verging subsequence if and only if {f (j)}∞j=1 has the following properties:

(i) {f (j)}∞j=1 is uniformly bounded, i.e., sup
j

‖f (j)‖∞ <∞

(ii) {f (j)}∞j=1 is equi-continuous, i.e., for any ε > 0, there exists τ > 0 such

that |f (j)(x) − f (j)(y)| < ε for any natural j and for any x, y ∈ Ω with
|x− y| < τ .

A.5 Linear Operators

Let (X, ‖·‖X) and (Y, ‖·‖Y ) be a normed space. A linear operator A : X → Y
is bounded if

‖Ax‖Y ≤ C‖x‖X , ∀x ∈ X.

Lemma 5.1. A linear operator A : X → Y is continuous on X if and only
if it is bounded.

The least constant for which the latter inequality is called the norm of A
and denoted as follows

‖A‖ := inf{C : ‖Ax‖Y ≤ C‖x‖X , ∀x ∈ X}.
Moreover,

‖A‖ = sup{‖Ax‖Y : ‖x‖X ≤ 1}.
Theorem 5.2. (Uniform Boundedness Principle, Banach-Steinhaus)) Let
An : X → Y be a sequence of linear operators and x be a B-space. Then

sup
n

‖An‖ <∞

if and only if
sup
n

‖Anx‖ <∞

for each x ∈ X.
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The linear space B(X, Y ) of all linear bounded operators : X → Y is
a B-space itself provided Y is B-space with respect to the operator norm
defined above.

A.6 Duality

Let (X, ‖ · ‖X) be a normed space. A linear operator T : X → R (or C) is
called a linear functional and is bounded if

|T (x)| ≤ C‖x‖X , ∀x ∈ X.

Lemma 6.1. Linear functional T : X → R (or C) is continuous on X if
and only if it is bounded.

Definition 6.2. A dual space X∗ is the space of all continuous linear func-
tional on X. We denote by x∗ its elements and the action x∗ on x is denoted
by x∗(x) or < x∗, x >.

X∗ is a Banach space with respect to the dual norm

‖x∗‖X∗ = sup{x∗(x) : ‖x‖X = 1}.

Examples: representation of linear functionals in certain spaces

I. RN , there exists isometric (preserves norm) isomorphism (linear mapping:
one-to-one and onto)π : (RN)∗ → R

N so that πx∗ = x (isometry: ‖x‖RN =
‖x∗‖(RN )∗) with

x∗(y) =
N∑

i=1

xiyi ∀y ∈ R
N .

So, we have (RN)∗ ∼= R
N (up to isometric isomorphism). In what follows, in

such cases, we are going to use a simpler notation (RN)∗ = R
N .

II. Let U be a Hilbert space with a scalar product (·, ·), there exists isometric
isomorphism U∗ → U , so that πu∗ = u with

u∗(v) = (u, v) ∀v ∈ U.

So, we have U∗ = U .
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III. lp with 1 ≤ p < ∞, there exists isometric isomorphism π : (lp)∗ → lp
′

,
p′ = p

p−1
’ so that πx∗ = x with

x∗(y) =
∞∑

i=1

xiyi ∀y ∈ lp.

So, we have (lp)∗ = lp
′

.
By definition X∗∗ = (X∗)∗, each x ∈ X generates a functional x∗∗x in the

following way
x∗∗x (x∗) = x∗(x), ∀x∗ ∈ X∗.

So, the latter identity defines a mapping τ : X → X∗∗ so that τx = x∗∗x . It is

known that τ is isometric isomorphism from X onto X̃ = τ(X). Obviously,

X̃ is a subspace of X∗∗. A space X is called reflexive if X∗∗ = X̃.
Examples. R

N , U , and lp with 1 < p < ∞ are reflexive but l1, l∞, and
C(Ω) are not.

Let (X, ‖ · ‖X) be a B-space (Banach space). Let x(j) be a sequence in
X. We say that x(j) converges to x ∈ X strongly as j → ∞ (x(j) → x) if
‖x(j) − x‖X → 0. We say that x(j) converges to x ∈ X weakly (x(j) ⇀ x)
if x∗(x(j)) → x∗(x) as j → ∞ for any x∗ ∈ X∗. Finally, we say that a

sequence x∗(j) ∈ X∗ converges to x∗ ∈ X∗ weakly-(∗) as j → ∞ (x∗(j)
∗
⇀ x∗)

if x∗(j)(x) → x∗(x) for any x ∈ X.

Remark 6.3. A consequence of the Banach-Steinhaus theorem, see 5.2, is
as follows. Assume that x(j) ⇀ x (x∗(j)

∗
⇀ x∗), then

sup
j

‖x(j)‖X(sup
j

‖x∗(j)‖X∗) <∞.

Moreover,
lim inf
j→∞

‖x(j)‖X(‖x∗(j)‖X∗) ≥ ‖x‖X(‖x∗‖X∗).

Examples

I. lp with 1 ≤ p <∞.

x(j) ⇀ x⇔
∞∑

i=1

yix
(j)
i →

∞∑

i=1

yixi ∀y = (yi) ∈ lp
′

II. l∞.

x(j)
∗
⇀ x⇔

∞∑

i=1

yix
(j)
i →

∞∑

i=1

yixi ∀y = (yi) ∈ l1
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Strong convergence implies weak convergence but opposite in general is
wrong. Indeed, consider l2 with the sequence described by the claim right af-
ter Lemma 4.6. In fact, this sequence converges weakly to zero (explain why).
The weak convergence implies the strong convergence in finite-dimensional
spaces. Sequences of X∗, converging weakly, converges weakly-(∗), the op-
posite statement is true, in general, in reflexive B-spaces only.

We know that in finite-dimensional spaces bounded sequences are pre-
compact, i.e., any bounded sequence contains a convergent subsequence. For
the infinite-dimensional case, such a statement in general is not true. How-
ever, if we replace strong convergence by weak or weak-(∗) convergence, the
corresponding statement turns out to be true in a number of cases interesting
for applications.

Theorem 6.4. (Banach-Alaoglu) Let (X, ‖·‖X) be a separable B-space. Sup-
pose that

sup
j

‖x∗(j)‖X∗ <∞.

Then there exists a subsequence x∗(jk) such that

x∗(jk)
∗
⇀ x∗ ∈ X∗

as k → ∞.

Proof On Sheet 1.

We can get rid of separability, if we assume that X is reflexive.

Theorem 6.5. Let (X, ‖ · ‖X) be a reflexive B-space. Then any bounded
sequence in X contains a weakly converging subsequence.

Under the assumption that X∗ is separable, the latter statement easily
follows from Theorem 6.4 applied to X∗∗ = X.

A.7 Fredholm Alternative

Definition 7.1. Let U be a Hilbert space. An operator K : U → U is
compact or completely continuous if the image (under the action of K) of
any bounded set is precompact.
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Theorem 7.2. Let K : U → U be compact. Either the non-homogeneous
equation

u−Ku = f

is uniquely solvable for any f ∈ U or else the equation

u−Ku = 0

has non-trivial (non-zero) solutions.

Proof Suppose that homogeneous equation has the only trivial solution and
let us show that the non-homogeneous equation has a solution for any f ∈ U ,
i.e., V := (I −K)(U) = {v ∈ U : v = u−Ku, u ∈ U} = U .

Let us first show that V is closed. Let vm ∈ V and vm → v. We shall prove
that v ∈ V . By definition, there exists um ∈ U such that vm = um−Kum. Let
us show that um is bounded. If not, WLOG, we may assume that ‖um‖ → ∞.
Setting v′m = vm/‖um‖ and u′m = um/‖um‖, we observe that v′m → 0 and u′m
is bounded. If so, by Theorem 6.5, there exists s subsequence u′mk

such that
u′mk

⇀ u′ ∈ U . Passing to the limit in the identity v′mk
= u′mk

−Ku′mk
, we

find u′ −Ku′ = 0 and thus by assumption u′ = 0. On the other hand, since
K is compact, Ku′mk

→ Ku′ and, therefore, u′mk
→ u′, which implies (since

‖u′m‖ = 1) ‖u′‖ = 1. This is a contradiction. Since um is bounded, we can
apply Theorem 6.5 again and get umk

→ u ∈ U . Then taking the limit in
vmk

= umk
−Kumk

and find that v ∈ V .
Assume V ⊂ U (strong inclusion). Now, let us construct a sequence of

subspaces of U , letting Vk = (I −K)(Vk−1), k = 1, 2, ..., and V0 = V . Since
operator I−K is one-to-one, we have strong inclusion Vk ⊂ Vk−1, k = 1, 2, ....
Indeed, to this end, it is sufficient to show that V2 = (I − K)2(V0) ⊂ V1 =
(I−K)(V0). Assume that V2 = V1. We know that there exists u ∈ V0\V1. But
since (I−K)u ∈ V1 = V2, there exists u1 ∈ U such that (I−K)u = (I−K)2u1.
Since the operator I −K is one-to-one, we find u = (I −K)u1 ∈ V1. This is
a contradiction.

Next, decompose Vk into an orthogonal sum so that Vk = Vk+1 ⊕ V ⊥
k+1,

V ⊥
k+1 := {w ∈ Vk : (w, v) = 0 ∀v ∈ Vk+1}. We can then select a sequence
wk ∈ V ⊥

k+1 such that ‖wk‖ = 1. Observing, for k > l, wk − Kwk ∈ Vl+1,
wl −Kwl ∈ Vl+1, and wk ∈ Vl+1, we find

Kwl −Kwk = wl + α,

where α = −wk + (wk −Kwk)− (wl −Kwl) ∈ Vl+1 and thus

‖Kwl −Kwk‖2 = ‖wl‖2 + ‖α‖2 ≥ 1.
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Since sequence wk is bounded, sequence Kwk must be precompact, which
contradicts the last estimate. ✷

What happens if the equation u = Ku has non-trivial solutions? First, as
it has been shown in the proof of the Fredholm Alternative, the set (I−K)(U)
is closed and thus from the general operator theory it follows that

(I −K)(U) = (ker(I −K∗))⊥,

where the adjoint operator K∗ is defined so that

(Ku, v) = (u,K∗v) ∀u, v ∈ U,

I stands for the identity operator in U , and

(ker(I −K∗))⊥ = {v ∈ U : (u, v) = 0 ∀u ∈ U u = K∗u}.

In other words, our non-homogeneous equation u − Ku = f has a solution
if and only if (f, v) = 0 for any v ∈ U satisfying the homogeneous equation
v = K∗v.
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Lebesgue’s Integration

B.1 Lebesgue’s Measure

Let a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) with ai ≤ bi, i = 1, 2, ..., n.
◦

P (a, b) =
∏n

i=1]ai, bi[ is an open parallelepiped, P (a, b) =
∏n

i=1[ai, bi] is a
closed parallelepiped. Any set P (a, b) satisfying

◦

P (a, b) ⊆ P (a, b) ⊆ P (a, b)

is a parallelepiped (n-dimensional).
The volume of P (a, b) is vol(P (a, b)) :=

∏n
i=1(bi − ai).

Definition 1.1. An (n-dimensional) outer measure of a set E ∈ R
n is

µ∗(E) := inf{
∞∑

i=1

vol(
◦

P i) : E ⊆
∞⋃

i=1

◦

P i}

Lemma 1.2.

(i) µ∗(E) ∈ [0,∞], E ⊆ R
n,

(ii) µ∗(∅) = 0,

(iii) µ∗ is σ − subadditive :

µ∗(
∞⋃

i=1

Ei) ≤
∞∑

i=1

µ∗(Ei).

87
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Definition 1.3. A set E ∈ R
n is measurable (Lebesgue measurable) if for

any ε > 0 there exists an open set Oε such that E ⊆ Oε and µ
∗(Oε \E) < ε.

We then call µ∗(E) the Lebesgue measure of E and denote it by µ(E).

The Lebesgue measure is σ-additive, i.e., if Ei, i = 1, 2, ..., are measurable
and disjoint (Ei ∩ Ej = ∅, i 6= j) then

µ(
∞⋃

i=1

Ei) =
∞∑

i=1

µ(Ei).

The family of measurable sets in R
n is a σ-algebra that contains all open sets

and all null sets (E is a null set if for any positive ε there exists a countable
covering of E by open parallelepipeds whose summary volume is less than
ε).

B.2 Measurable Functions

Let E be a measurable set in R
n. A function f : E → R is measurable if for

α ∈ R the set {x ∈ E : f(x) ≥ α} is measurable.

Definition 2.1. (i) fm → f almost everywhere (a.e.) in E as m → ∞ if
fm(x) → f(x) for almost all (a.a.) x ∈ E.

(ii) Let {fm}∞m=1 and f be measurable and a.e. finite in E. fm → f in
measure if for any ε > 0

lim
m→∞

µ{x ∈ E : |fm(x)− f(x)| ≥ ε} = 0.

Lemma 2.2. Let fm is a sequence of measurable functions in E. If fm
converges to f a.e., then f is measurable in E.

Theorem 2.3. (Lebesgue) Let {fm}∞m=1 and f be measurable and a.e. finite
in E. Assume that µ(E) is finite and fm converges to f a.e. in E. Then fm
converges to f in measure.

Theorem 2.4. (Riesz) Let {fm}∞m=1 and f be measurable and a.e. finite in
E. Assume that µ(E) is finite and fm converges to f in measure in E. Then
there exists a subsequence fmk

converging to f a.e.
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B.3 Lebesgue’s Integral

Let E be measurable with µ(E) < ∞. A partition T is a finite family of
disjoint measurable sets whose union is E, i.e., T = {Ej}mj=1, Ei ∩ Ej = ∅ if

i 6= j, and E =
m⋃
j=1

Ej.

For a bounded function f : E → R, we let

S(T ) =
m∑

k=1

Mkµ(Ek), s(T ) =
m∑

k=1

mkµ(Ek),

Mk = sup
x∈Ek

f(x), mk = inf
x∈Ek

f(x).

Then we define upper and lower Lebesgue integrals:

I(E) = inf
T
S(T ) I(E) = sup

T
s(T ).

Definition 3.1. A bounded f : E → R is called Lebesgue integrable or
integrable over set E if upper and lower integrals coincide. The corresponding
value is called Lebesgue integral of f over E and denoted by

∫

E

f(x)dµ(x) (or simply

∫

E

f(x)dx).

Theorem 3.2. Any bounded measurable function is integrable over bounded
measurable set.

Next step is to define Lebesgue’s integral for non-negative measurable
functions. To this end, let us introduce a truncation of f ≥ 0 as fN(x) =
min{N, f(x)}. By Theorem 3.2, fN is integrable and a sequence

IN =

∫

E

fN(x)dx

is increasing as N → ∞.

Definition 3.3. Let f be non-negative and measurable in E. If IN is a
bounded sequence, then f is integrable in E. lim

N→∞
IN is called Lebesgue’s

integral of f in E and denoted by the same symbols as in Definition 3.1.
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In the same way, we can define Lebesgue’s integral of non-negative mea-
surable function f : E → R for any measurable set E (not necessarily having
bounded measure). Let R > 0 and define fR(x) = f(x) if x ∈ E ∩B(R) and
fR(x) = 0 if x ∈ E \B(R). Then, we can consider

IR =

∫

E∩B(R)

f(x)dx.

Definition 3.4. Let f be non-negative and measurable in E. If IR is a
bounded sequence, then f is integrable in E. lim

R→∞
IR is called Lebesgue’s

integral of f in E and denoted by the same symbols as in Definition 3.1.

For arbitrary measurable function f : E → R, defined in arbitrary mea-
surable set E, we proceed as follows. Setting

f+ =
1

2
(|f |+ f), f− =

1

2
(|f | − f).

Definition 3.5. A measurable function f : E → R is integrable in E if f+
and f− are integrable there and

∫

E

f(x)dx =

∫

E

f+(x)dx−
∫

E

f−(x)dx

is Lebesgue’s integral of f in E.

Theorem 3.6. f is integrable in E if and only if |f | is integrable in E and

∣∣∣
∫

E

f(x)dx
∣∣∣ ≤

∫

E

|f(x)|dx.

We denote by L1(E), the linear space of all functions integrable in E. Let
us list some properties of Lebesgue’s integral.

Theorem 3.7. (Absolute continuity of Lebesgue’s integral as a function of
sets) Let f ∈ L1(E). For any ε > 0, there exists δ(ε) > 0 such that

∣∣∣
∫

E0

f(x)dx
∣∣∣ ≤

∫

E0

|f(x)|dx < ε

provided µ(E0) < δ(ε) and E0 ⊆ E.
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Theorem 3.8. (σ-additivity) Let E =
⋃∞
k=1Ek, Ek ∩ Em = ∅ if k 6= m.

(i) If f ∈ L1(E), then f ∈ L1(Ek) for any k and

∫

E

f(x)dx =
∞∑

k=1

∫

Ek

f(x)dx. (B.3.1)

(ii) If f ∈ L1(Ek) for any k and

∞∑

k=1

∫

Ek

|f(x)|dx <∞,

then f ∈ L1(E) and (B.3.1) holds.

B.4 Sequences of Integrable Functions

The main theorem of this subsection is as follows.

Theorem 4.1. (Dominated convergence, Lebesgue) Let fm, m = 1, 2, ..., be
a sequence of measurable functions in E. Suppose that
(i) fm → f a.e. in E;
(ii) |fm| ≤ F a.e. in E for all m and for some F ∈ L1(E).

Then f ∈ L1(E) and

lim
m→∞

∫

E

fm(x)dx =

∫

E

f(x)dx. (B.4.2)

Theorem 4.2. (Beppo Levi) Let fm ∈ L1(E), m = 1, 2, ..., satisfying the
conditions:
(i) supm

∫
E

fmdx <∞;

(ii) fm ≤ fm+1 a.e. in E for any m.
Then

(i) there exists f ∈ L1(E) such that fm → f a.e. in E as m→ ∞;
(ii) (B.4.2) holds.

Lemma 4.3. (Fatou’s) Let fm ∈ L1(E) and fm ≥ 0 a.e. in E for all m ∈ N .
Let fm → f a.e. in E and supm

∫
E
fmdx ≤ M < ∞. Then f ∈ L1(E) and∫

E
fdx ≤M .


