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Chapter 1

Introduction

1.1 Why Functional Analysis Methods are im-
portant for PDE’s?

Let us consider an important example: a linear PDE (partial differential
equation) of elliptic type

Lu = —(ajjuy); +bu; +cu=f+g; in €. (1.1.1)

Here, Q is a domain in R™, n > 2, u is unknown function, u; = du/dz;,
a = (a;;) is a given symmetric matrix field, b = (b;) and g = (g;) are given
vector valued functions, ¢ and f are given scalar functions, and summation
over repeated indices running from 1 to n is adopted. It is assumed that the
matrix a satisfies the ellipticity (uniform ellipticity) condition

vi<a<v 'l (vl <&at <vEf VEERY)

with a positive constant v. Here, I is the identity matrix.
Equations (1.1.1) can be re-written in the following invariant form

—div(aVu) +b-Vu+cu= f+divg  in Q.

In general, equation (1.1.1) may have infinitely many solutions. To select
a particular one, a boundary condition should be imposed on. An important
example is the Dirichlet boundary condition:

u = U on 0f). (1.1.2)
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Problem (1.1.1), (1.1.2) is called the Dirichlet boundary value problem. A
classical solution to (1.1.1), (1.1.2) is a solution u, belonging to C?(Q)NC(Q).

The existence and the multiplicity of solutions to boundary value problem
(1.1.1), (1.1.2) are important issues in the theory of PDE’s. Unfortunately,
it might happen that there is no classical solution at all, in particular, if a,
b, ¢, f, and g are not smooth enough.

Several warning messages, indicating that the classical approach to the
aforesaid problems does not work, came from physics and the Calculus of
Variations in the first part of 20th century. In particular, to prove the exis-
tence of a minimizer, say, of the multiple integral

/ F(Vu)dz,

Q

one has to extend it to non-smooth functions and thus to assume that solu-
tions to the Euler-Lagrange equation for the integrand F' are not necessary
smooth. On the other hand, d-function (or Dirac function), introduced by
physicist P. Dirac, suggests that the notion of functions as well as solutions
should be revised.

That time, the main trend was to include PDE problems into the frame-
work of functional analysis. The principal objects in powerful functional
analytic schemes are function spaces and operators, acting there. Suitable
spaces such as Lebesgue and Sobolev spaces, in which differential operators
have reasonable properties, were discovered in the first part of 20th century.
Our course can be regarded as an introduction to the theory of spaces of func-
tions, having so-called weak derivatives, and includes the celebrated Sobolev
embedding theorems.

Having in hands "good” function spaces, we shall define the notion of
weak solutions, re-discovering old ideas of mechanics and the Calculus of
Variations. Namely, we replace our differential equation (1.1.1) with the
integral identity

L(u,v) = /(aijquJ» + biu v+ cuv)dr = /(fv — g;v;)dx,
Q Q

being valid for any test function v that is sufficiently smooth and vanishes in
a neighbourhood of the boundary of 2. If all functions in the above identity
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are sufficiently smooth, we may integrate by parts there and derive

L(u,v) = / (Luyvdz = / (f + div g)vdz

Q Q

for the same test functions v. The latter identity shows that all classical
solutions are weak solutions as well.

It turns out that the existence of weak solutions is a relatively simple
consequence of well-known theorems of functional analysis.

Methods of functional analysis give modern and powerful tools to treat
problems related to PDE’s and, nowadays, it is difficult to imagine modern
mathematics of PDE’s without them.
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Chapter 2

Lebesgue and Sobolev Spaces

2.1 Lebesgue’s Spaces

2.1.1 Spaces LP(E) and LP(FE)

Let 1 <p < oo and F € R™ be measurable. For simplicity, we always assume
that Lebesgue’s measure of F is finite, i.e., |[E| := u(E) < oo, although many
statements hold true without this restriction.

Define for a measurable function f : F — R

Il = ([ 15az)’

if p < oo and
[ flloc, == esssup [ f(x)]
zel

if p = oco. Here,

esssup |f(z)] :=inf{c > 0: |f| < cae. inE}.
el

We let then
LP(E):={f: fis measurable and || f||, r < co}.

LP(FE) is a vector space. Indeed, if f,g are measurable in E and A € R,
then f + Ag is measurable. In addition, |f + Ag|P < 2P7(|f|P + |A]P|g[F) for
1 <p<oo. So, f+A\geLP(E).
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Lemma 1.1. (Hélder inequality) Let f € LP(E), and g € L (E) with 1/p+
1/p' =1. Then fg € L'(E) and

R
7

| [ ] < ( [15@pan)’ ([ i)

E

PROOF Sheet 1.
With the help of Holder inequality, we can easily prove the following
version of Theorem 4.1 of Appendix B on dominated convergence.

Theorem 1.2. Let f,,, m = 1,2, ..., be a sequence of measurable functions
in E. Suppose that
(i) fmn — [ a.e. in E;
(1) sup,, || fmllp.e < 00 for some p > 1.
Then f € LP(E) and ||f — fmllqg = 0 as m — oo and for any 1 < q < p.

PRrOOF By Fatou’s lemma, f € LP(E). Let v > 0 and E,, = {x € E :
| fm(z) — f(x)| > ~}. By Theorem 2.3 (Lebesgue) of Appendix B, |E,,| — 0
as m — oo. By Holder inequality,

Hf - meg,E = “f - meZ,E\Em + Hf - meZ,Em <

q

<AIEN Enl + [Enl" "2 f = fulll 5, <
_ 9
< ANE| + |En|" " c(p, @) sup || ], -

Passing to the limit as m — oo, we find

. 1
limsup || f — finllge < Y|E|7.

m—o0
Letting v tend to 0, we complete the proof. O

Lemma 1.3. (Minkowski inequality)

1

([ 1@+ g@par)” < ( [1s@par) + ( [lopdr)”

E
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PROOF Sheet 1.

Note || f||,ze = 0 implies f = 0 a.e. in E and thus, from Lemma 1.3, it
follows that || f||, = is a semi-norm in £P(E).

To work with semi-norms is inconvenient and, in order to avoid this, we
introduce equivalence classes in the following natural way. Two measurable
functions f and ¢ are equivalent in F (f ~ g) if f = g a.e. in E. An
equivalence class generated by a measurable function f is denoted by [f].
The space of all equivalence classes whose representatives are integrable with
power p is denoted by LP(FE). However, in what follows, we shall denote an
equivalence class [f] by the function that generates it, i.e., simply by f. Null
element of LP(E) consists of all functions that are equal to zero a.e. in E
and, hence, L?(FE) is a normed space.

Theorem 1.4. LP(E) is a Banach space.

PROOF (for 1 < p < 00, p = oo is an exercise). Let f,,, m = 1,2,..., be a
Cauchy sequence in LP(FE). In particular, this implies

em = sup || fx — fnllp.e — 0
k>m

as m — o00. One can find a subsequence ¢,,, such that ¢,,,, <27, s=1,2,....
Then, by Holder inequality,

1 1
1L,E S ’Elp/ Hfms-}—l - fms p,E S €mS‘E|P,

Hfms-H - fms

and thus the series

dx

E/ foldo + f} E/ T

converges. By Beppo Levi theorem (see Theorem 4.2) of Appendix B, the
series

|fm1| + Z |fms+1 - fms
s=1

converges a.e. in E and the series

fml + Z(fms+1 - fms>
s=1
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convergence a.e. in E absolutely. The later means that

Sj = fml +fm2 - fm1 + +fmj+1 - fmj = fmj+1

converges a.e. in I to a measurable function f. So, for sufficiently large 7,
we have

gfn 2 /|fm] _fmlpdx
E

and | frm, — fm|? = |f — fm[? a.e. in E. By Fatou’s lemma (see Lemma 4.3)
of Appendix B,

2 [ 1f = gl
E
for any m. This completes the proof. O

2.1.2 Sets that are dense in LP(F)

Let T' = {E;}T., be a partition of E, ie., E = L, £, E; N E, = 0 if
j# k. f:E — Risa simple function if there exists a partition 7" such that
f(x) =¢; for x € E;.

Theorem 1.5. Let 1 < p < oco. The set of all simple functions in E is dense
in LP(E).

PROOF The proof is based on Lebesgue’s partition, on Sheet 1.
Theorem 1.6. Let 1 < p < co. C(R") is dense in LP(E).
We start with two auxiliary lemmata.
Lemma 1.7. Let A C R” and o(z,A) = ;gg |x — z|. Then |o(x, A) —
oy, A < |z —y].
PrOOF We have for z € A
oz, A) <o — 2| <o —yl+y — 2,

which implies o(z, A) < |z — y| + o(y, A). Replacing x with y and y with z,
we complete the proof. O
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Lemma 1.8. Let 1 < p < oo and Ey C E be two measurable sets in R™.
Given € > 0, there exists a function g € C(R") such that ||xg, — 9llp.e < €,
where xg,(x) =1 if x € Ey and xg,(z) =0 if v € E '\ Ey.

PROOF Since FEj is measurable, there exist a closed set F' C Ey and an open
set O D Ej such that |O\ F| < (¢/2)P. We let

o(z,R"\ O)
@ F) + o@, R\ 0) ~

0<g(z):=
%
for x € R™. Obviously, g is continuous function in R”. And

1
X8, = gllpr <2/O\ F|? <e. O

PROOF OF THEOREM 1.6 (Sheet 1. Hint: First approximate a function
by simple functions and then approximate simple functions by continuous
functions)

Corollary 1.9. LP(E) is separable if 1 < p < oo.

Indeed, let @ be an open cube such that £ C Q). Since C(Q) is separable,
we find a countable set {fx}32, C C(Q) that is dense in C'(Q)) with respect
to L>®-norm. By Theorem 1.6, given € > 0 and given f € LP(F), there exist

a function g € C(Q) such that || f — g||,.z < €/2 and a function f; such that

lg = Filloc@ < 19— Filloo@|Q1F < /2. So, 1 = fillps < & O

However, L*°(E) is not separable (on problem sheet). Arguments are as
follows. Let 7' be a countable partition of E, i.e., T = {E;}2,, E = U2, £,
E;NE;=0if i # j. We fix it. Define Xy C L>®(F) so that f € X if and
only if f € L>®(F) and f(z) = ¢; for x € E;, i = 1,2,.... The mapping
7 Xo — [ defined by 7f = ¢ = (¢;) is an isometric isomorphism. If L>(FE)
is separable, then X is separable as well (Explain why, see remark below).
But this implies separability of [*°, which is wrong. O

Remark 1.10. Let (X, || ||) be a separable normed space and Xy be a subset
of X. Then Xy is separable.

Indeed, there exists a countable set {x)}2, that is dense in X. Let £,, > 0
tend to zero as m goes to co. We can find z;,, € X, such that

||l’k — kaH < 5m/3 + Q(I’k,Xo).
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To show that {z,,} is dense in X, take an arbitrary e and sufficiently large
m so that ¢, < . Now, let x € X,. First, we can find z;, such that
|z — x| < /3. We have

& = 2mll < [l = 2l + 171 = 2nll < /3 + £ /3 + o, Xo) <
<2/3+4 ||z —z|| <e. O

Theorem 1.11. (integral continuity or continuity of translations) Let E be
a measurable bounded set of R" and 1 < p < co. Let f € LP(F) be extended
by zero from E to the whole R™. Then for any e > 0, there exists 6 > 0 such
that

1

16+ = 1O = [ 1@+ ) = fla)Pde)” <=

whenever |h| < 0.

ProoOr We fix a large cube @) such that E + h C @ for any h € R" such

that |h| < 1. Since f € LP(Q), given ¢ > 0, there exists a function g € C(Q)
such that ||f — g||,.0 < &. Since ¢ is uniformly continuous in @), there exists

0 < 6 < 1 such that |g(x + h) — g(z)] < 5]E|_% as long as x,z + h € Q and
|h| < 0. So,

IFC+h) = FOllpe < 1f = gllpern +1lgC+h) = gC)llpe + g = fllp.z

1
<2/f = gllp.a + g + 1) = 9()loc,e| E]P < 3e. D

2.1.3 Linear Functionals and Weak Convergence
in LP(F)
Lemma 1.12. Let f € LY (E). Then || f|ly.z = I, where

Fimsup{ [ f@)g(@)ds: lgle =1}

E

PrROOF By Holder inequality, I(g) := [ f(z)g(x)dz < ||flly.r if [|glpe =1
E

and thus [ S Hpr/’E.
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Consider first the case 1 < p < co. Define

go(x) = Signf(fv)lf(flf)\p/_1/||f!|§/,1; (9o(x) = signf(z) if p = o0).

It is easy check that ||go|l,z = 1 and I > I(go) = || f|ly.e- This completes
the proof for the case 1 < p < oo.

If p = 1, then, given ¢ > 0, define a set E. = {z € F : |f(x)] >
| flloo.z —€} and a function go(x) = xg.(x)signf(x)/|E.|. Simple calculations
show that ||go|1 g =1 and I > I(go) > ||f||oc.z — €. Passing ¢ — 0, we get
the statement of the lemma for p = 1. O

Theorem 1.13. (Riesz) Let 1 < p < co. There ezists isometric isomorphism
7 (LP(E)) — LP'(E), p = -5, so that 7T = f with

T(g) = / f@)g(z)de Vg e L(E). (2.1.1)

E
So, we have (LP(E))* = L¥(E).

From the Riesz representation theorem, it follows that the space LP(E)
is reflexive provided 1 < p < oo.

Proposition 1.14. Assume that

SUp || finllp, 5 < o0
m

If 1 <p < oo, there exists a subsequence fy,, such that
S = f

as k — oo, i.e., for any g € L' (E),
/fmkgdx — /fgd:v (2.1.2)
E E

as k — o0.
If p = oo there exists a subsequence f,, such that

fmk = f7
i.e., (2.1.2) holds true for any g € L'(E).

PRrOOF It is a direct consequence of Theorems 6.4 and 6.5 of Appendix A
and Theorem 1.13.
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2.1.4 Mollification in LP((2)

Define a function for non-negative ¢ as h(t) = 0 if ¢ > 1 and h(t) = exp{;5}
if 0 <t < 1. We also let wi(z) = ci(n)h(|z|*), z € R™, with constant ¢

chosen so that
/ wy(z)dx = 1.

RTL

For positive p, we define a mollifier as w,(z) = ginwl(i) that is an in-
finitely differentiable function and equal to 0 outside B(g). By scaling and
by shift, we have for any z € R™:

/wg(w —y)dy = / wo(z — y)dy = 1.
R™ B(z,0)
Let Q be a domain in R" and f € L'(Q) be extended by zero to the whole
R™. A mollification of f is
fule) = (o ) = [ wila =) f0)dy
Q

It is an infinitely differentiable function in R™ (explain why) and vanishes
outside Q¢ := {z € R™: dist(z,Q) < o}.

Our aim is to show that we can approximate functions from LP(€2) with
the help of mollification.

Lemma 1.15. Let f € LP(Q) and 1 < p < o0.

[ fellpe < [1Fllp.0-

PROOF Let 1 < p < co. We apply Holder inequality in the following way

Fo()] < / Wi & — ) F)ldy
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< ([ e =an)” ( [ate - piswrar)’

Q Q
We know

/wg(x —y)dy < 1.
Q
It remains to apply Tonelli’s theorem and conclude

1ol = / folz)Pdz < / dz / wolit — )| () Pdy
Q Q Q
- / )Py / wole — y)dr < / @y = |12

Cases p = 1 and p = oo are considered in the same way (explain why). O

Theorem 1.16. Let f € LP(2) and 1 < p < co. Then f, = f in LP(QQ) as
o— 0.

PROOF For any z € €2, we have (f is extended by zero outside ()

/wg y)dy — f(x) =

— [ e iy f@) = [ o= i) - fa)dy
B(z,0) B(z,0)
and thus
Folz) — (2)] < / wol — )| f () — £()|dy

B(z,0)

e / wo2)|f (& + 2) — f(2)|d=.
B(o)

Repeating arguments used in the proof of Lemma 1.15, we find

/‘fg |pdx</da:/wg(z)|f(a:+z)—f(x)]pdz

Q B(o)
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= [ w2z [ 1@ +2) - s@pds

B(o) Q
and, therefore,
1fe = fllpa < sup 1fC+2) = FO)lpe (2.1.3)
z|I<o

By Theorem 1.11, the right hand side of (2.1.3) tends to 0 as ¢ — 0. O

Theorem 1.17. (Riesz) Let F be a subset in LP(Y). Let 1 < p < co. F is
precompact in LP(S2) if and only if
(i)sup || fllpe = M < o0

feF

(ii)itelg sup IF(-+2) = FO)llpe =t 0(e) = 0 as 0 = 0.

PrRoOOF We start with a proof of sufficient conditions of compactness. Let us
denote by F, the set of all f, with f € F and show that for each fixed ¢ > 0
this family satisfies all conditions of Ascoli-Arzela theorem, see Theorem 4.7
of Appendix A. First, this family is uniformly bounded, i.e.,

sup [ fo(2)] < c(o, QDN fllpo < eM.

z€Q

It is equi-continuous, since

Falr) — folas)] < / wolr — ) — wal2 — )| (w)ldy
Q

< c(o, [Q)|z1 = wal[| fllp.o < eM |2y — 5]

for any x; and x5 from .
We take an arbitrary ¢ > 0 and choose ¢ > 0 so that d(0) < /2 and

fix it. For this o > 0, the family F, is precompact in C(£2). By Hausdorff’s

theorem, see Theorem 4.5 of Appendix A, there exists a finite ¢/ (2\9\%)—116‘5
{h; € C(Q)}7L, and we are going to show that it is e-net for 7. Indeed, for
(f), € F,, there exists h; such that

1
1fo = hillpa < Q7 [fo = hillcon < /2
and thus, by (2.1.3) and by our choice of o > 0,

1f = hillpe < 1f = follpo + 1fo = hillna < e
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Now, we are in a position to prove necessary conditions. Let ) be a large
cube so that Q +h C @ for any |h| < 1. Let Fg consists of all functions
f € LP(Q) such that f(z) = g(x) if x € Q for some g € F and f(z) = 0 if
z € @\ Q. Obviously, if F is precompact in LP(£2), then F is precompact
in LP(Q).

By Hausdorft’s theorem, there exists a finite 1-net of Fq, say, f;, j =
1,2,...,m. Then by the definition, given f € Fg, there exists f; from this
1-net such that || f — f;|/,0 <1 and thus we have

1 fllpe < Ifillpe +1< sup [[fillpg +1=M
1<j<m

for any f € F. So, uniform boundedness is proved.

Next, for an arbitrary € > 0, we have e-net of Fo, say, f;, 7 =1,2,...,m.
So, for f € Fg, there exists f; from e-net of Fg such that ||f — f;ll,0 < e
Then, for |h| < o.

1fC+h) = fO)lpe <
<[fC+h) = fiC+ Do+ 150 +h) = fiG)ba+ 115 = fllpo =
= 1f = fillposn + 115G+ ) =[Ol + 15 = fllpe <
<2055 = fline + sup sup [f;(+h) = £;()llpe <

<j<m |h|<o

<2+ sup sup || f;(-+h) = f;0)llpe

1<j<m |h|<p
It follows from Theorem 1.11, that the second term on the right hand side of
the latter inequality tends to 0 as ¢ — 0. So,

limsupsup sup [|f(- +h) = f(*)[[po < 2¢.
0—0  feF |hl<o

By arbitrariness of ¢,

limsup sup || f(- + h) — f(*)||po = 0.0
=0 reF |nj<p

2.2 Distributions

2.2.1 Spaces of Differentiable Functions

Definition 2.1. A n-dimensional vector o = (o, g, ..., av,) = (o) with non-
negative integer components is a multi-index of order n. |a| = aj+ag+...+ay,
15 a length of «.
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For x € R", we let % := 2?25?20 = [[_, 2. Summation over
multi-indices is denoted as

k k
g g, ;:5 E aa:E E Aoy ,a,... 00

|a| <k i=0 |a|=i =0 o1+ag+...+on=1

In this notation, a polynomial of order k of n variables can be written as
Pi(z) :== > pax®.

o<k
Denote D; = 0/0x;, Dif = 0f /0x;, Df = 0%/0x% and introduce a formal
n-dimensional vector D = (Dq, Ds, ..., D,,) so that

a1tag+...an
0

Daf: DlangéQDgnf: axalaxag axan
1 2 cee n

f

EXERCISE Prove that D®DPf = DSDf.
Let Q be a domain (open connected set) in R™. For bounded €2, C*(Q)
is a B-space with norm

Ifllex = > max|Df()]

o<k *

For f : R" — R, define suppf := {x € R*: |f(z)| > 0}. We say that
f is compactly supported in € if suppf is compact and contained in ). By
definition, C}(Q) consists of all f : R® — R being continuously differentiable
up to order k and having a compact support in €2. The important case
is a linear space C§°(€2) consisting of all infinitely differentiable functions
compactly supported in . For example, the function h(t) = 0 if |[t| > 1 and
h(t) = exp{m—=} if [t| < 1 is of C°(R).

2.2.2 Distributions

Definition 2.2. D(Q) is the space of test functions consisting of all functions
from C§°(2). It is endowed with the following notion of convergence. Let
om € CF(Q), m = 1,2,..., and ¢ € C*(Q), we say that v, — ¢ in
D(Q) as m — oo if there exists a compact K C 0 such that suppp,, C K
(Vm = 1,2,...), suppp C K, and D%p,, — D%p uniformly in K for any
multi-indices o.
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Definition 2.3. A distribution T on  is a linear contnuous functional T :
D(Q2) — R. The latter means: ¢, — ¢ in D(Q) = T(pm) = T(p) in R.
The set of all distributions is denoted D'(£).

Very often, the action T on ¢ € D() is also denoted by < T, ¢ >:=T(¢p).
EXAMPLES:
1. T is a regular distribution if there exists a function f € L;,.(Q2) such that
T(p) = [ fedz. A regular distribution is denoted also as T' = T7.

Q

Lemma 2.4. Ty =T, if and only if f = g a.e. in (L.

PROOF Ty =T, & [(f — g)pdz =0 for any ¢ € C5°(€2). The result follows
QO
from Lemma 2.5 below. O
Lemma 2.5. Let f € L%OC(Q) and [ fodr =0 for p € C(Q). Then f =0
)
in €.

Proor Without loss of generality, we may assume that €2 is bounded and
f € LYQ). Define Q, = {x € Q : dist(z,092) > p}. Fix gy > 0. Then,
for 0 < p < 0o, the function y — w,(z —y) € C°(Q) for x € Q,,. By the
assumption, f,(x) = 0 for all x € Q,,. From Theorem 1.16, it follows that
f=0ae. in Q, and thusin Q. O

2. A bounded Radon measure T is a distribution satisfying

T ()| < Ml¢]loo0

for any ¢ € D(Q). Given a € €, the Dirac d-function is a distribution
T(p) = pla), ¢ € D(Q). Let us show that the Dirac J-function is not a
regular distribution. If yes, there exists f € L; () such that [, fedz = ¢(a)
for any ¢ € C§°(Q2). By Lemma 2.5, f = 0 a.e. in Q\ {a} and thus f =0 a.e.
in Q, which implies ¢(a) = 0 for any ¢ € C§°(£2). This is a contradiction.
Nevertheless, physicists often use the formal notation d,(x) for ”density” so
that p(a) = [, da(x)¢(x)dz. However, this is just formal notation since the

right hand side of the last "identity” makes no sense.

Remark 2.6. We say that a sequence {1;} of D'(2) converges to T' in the
sense of distributions if Tj(p) — T(p) for any ¢ € C°(2). Obviously, T is
a linear functional in D(Q) and, moreover, T € D'(QY), which is a bit more
difficult to prove.
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2.2.3 Distributional Derivatives

Any distribution has partial derivatives of any order in the following way.
Let T be a distribution on €2 and consider the linear functional S(y) =
(—=D)MT(D2p), p € D(Q). Tt is easy to check that S is continuous on D(S2).

Definition 2.7. A distributional deriwvative of a distribution T is a distribu-
tion S denoted by DT, i.e., S = DT.

Definition 2.7 is in accordance with the classical notion of partial deriva-
tives. Indeed, suppose that f € Cl°/(Q), then integration by parts gives

(—D)ITH(DY) = (1)l | fD%pdx = | D feoda
e |

Q

for any ¢ € C5°(€2). So, we conclude that in this case

Dan - TDaf.
ExXAMPLE: Fundamental solution to Laplace’s equation.
Let, for = # 0,
1
f(z) = E

for n > 3. Direct calculations shows that
Af(x)=0 (2.2.1)

if z € R"\ {0}. Let us find ATy on R™. By the definition, AT (p) = T¢(Ap)
for all ¢ € D(2). Then

ATy (e /fA(pda: = hm / fApdx.
R”\B( )

So, after double integration by parts, we show

ATy(p) = —lim ( f - af ©)dS + hm / eAfdx,

e—0
OB() Rn\B(e)
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where v is the outward unit normal to the surface 0B(g). The last term on
the right hand side vanishes by (2.2.1) and thus

) 1
—xiul-dS —(n—2) ll_r)l(l) g / dS.

dB(e) 0B(e)

Since the surface area of the ball B(¢) is equal to S,_1e""!, where S, _; is
the surface area of the unit ball in R™ and since ¢ is a smooth function, we
find after taking the limit as ¢ — 0 the following identity

ATy(p) = —(n = 2)S,-16(0). (2.2.2)
However, very often, physicists use the classical notation for (2.2.2)
—Af(z) = (n—2)S,_10(x), xr eR",

just mentioning that the latter relation is understood in the sense of distri-
butions.

2.3 Sobolev Spaces

2.3.1 Weak Derivatives
Let Q2 be a domain in R".

Definition 3.1. Let u € L%OC(Q). A regular distribution T, is a weak (or

Sobolev) derivative of w in Q if T, = D*T, and classical notation is used

v := D%u. In other words, v € L}OC(Q) is a weak derivative of u in € if

/vgpdw = (—1)l /uDaapdx, Vo € C5°(Q).

Q Q

If u € Cl*/(Q), then the integration by parts gives:
/Daugodx = (1)l /uDo‘gpd:U, Vo € C5°(92).
Q Q

So, by the uniqueness lemma, see Lemma 2.4, u has a weak derivative D%u
that coincides with the corresponding usual (classical) derivative.
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Let us list some elementary properties of weak derivatives:
1°. By Lemma 2.4, u has the only weak derivative D%u (if it does exist).
2°. Let u € L},.(Q) have a weak derivative D% in © and ' C Q. Then u has
a weak derivative D%u in £’ and this derivative coincides with the restriction
of the original weak derivative D*u to €)'.
3°. Let uy,up € L}, (Q) and D*uy, D*usy be the corresponding weak deriva-
tives of w1, us in €2, respectively. Then, for any ¢y, co € R, ciuy + coug has a
weak derivative in €2 and it is equal to ¢; D%u; + co D%us.
PrOOF OF 1° — 3° Exercise.

Let up, € L, (), m = 1,2, ..., and u € L}, (). We say that u,, — v in
L} .(Q) as m — o0 if u,, — u in Ll(K) for each compact K C €.

Lemma 3.2. Let uy, — u in Ly, (Q) and D*uy — v in Ly (). Then
v = D% in €.

PROOF By definition, for each m, we have
/ D%, pda = (—1)! / Um D*pdz, Y € C(9Q).
Q

Since ¢ is compactly supported in €2, we can take a limit for each fixed ¢

and show
/vgoda: = (—1)|a|/uDo‘g0dx.D

Q Q

2.3.2 Mollification of Functions with Weak Derivatives

Lemma 3.3. Let u € L*(Q) have a weak derivative D*u € L'(Q). Let x € Q
and 0 < o < dist(z,082). Then

Dfuy(x) = (D°u),(a).

PRrROOF For simplicity only, consider the case |a| = By assumptions,
B(z, 0) C Q and thus the function w,(z —-) € C§°(Q). Next

and
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We notice that

Ow, _ Ow,
a—xk(l" —y) = Em (z —y)
and, using the definition of weak derivatives, find
Ou, Ow, ou ou
—(x)=— [ —(z— dy = —y)—(y)dy = | =— .0
st() =~ [ G —pyutndy = [wla =05 -y = () @
Q Q
Lemma 3.4. Let 1 < p < 0o and u and D% be in LP(2). Then D%u, —
D®u in LIZ’OC(Q).

Proor We know that uw, = uw and (D%u), — D%u in LP(Q2). By previ-
ous lemma, for any compact K € Q and sufficiently small o, D%u,(x) =
(D%u),(x) for any x € K. This completes our proof. O

Proposition 3.5. Let u € L%OC(Q) and all the weak derivatives of the first
order vanish. Then u is a constant in §2.

PROOF Suppose first that  is a ball of radius r and u € L'(Q). Let us show
that u is a constant there. Let B be a ball of radius r — ¢ with the same
center as €. For 0 < o < ¢, by Lemma 3.3,
(z) = (%)g(x) —0, VeeB, k=12 .n
and thus u,(z) = ¢, for x € B. We know that u, — u in L'(B), which
implies that u is a constant in B. This constant is in fact independent of ¢
(explain why). Tending € — 0, we get that u is constant in €).

From this particular case and from the fact that €2 is connected, we can
deduce the statement, noticing that if two balls containing in €2 have an
intersection that u is a constant in the union of these balls. O.

Oug
833k

Theorem 3.6. Let ¢ : Q — Q be diffeomorphism of class C* and let a
locally integrable function x € Q0 — u(N:U) have all weak derivatives of the first
order in Q. Then the function y € Q — v(y) = u(¢p(y)) also has all weak
derivatives of the first order calculated according to the classical chain rule,
1.€.,

aSCi
w=¢(y) OYr,

) =Y o)

i=1

(y).

PROOF On sheet 2.
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2.3.3 Sobolev Spaces

Definition 3.7. Sobolev space W'P(§2) is a vector space of functions that are
integrable with power p and have all weak derivatives up to order | also being
integrable with power p.

This is a normed space with respect to the norm

1 1
Jullwesioy =l = (3 1D7ul0)” = (3 [ poupds)”

|| <1 la|<l 6

or equivalently
lullwee@ = Y 1D ullp0.

Jo| <
Theorem 3.8. W'P(Q) is a B-space.

PROOF Let ||ug — wml[pi0 — 0 as k,m — oco. Then || Dy — D*Up,||p0 — 0
for any |o| < I. Since LP(Q2) is a Banach space, there exist functions w® €
L*(Q) such that || D%, — w0 — 0. We let u = w’. By Lemma 3.2,
w® = D%y for all 0 < || <[ and thus ||u — w10 — 0 as m — co. O

For the space Wh2(€2), we introduce a special notation setting H'()) =
WH2(Q). Tt becomes a Hilbert space with a scalar product

(u,v) i) = Z D*uDvdx = Z(Dau, D) p2(q).

lal<l o la|<I

Theorem 3.9. Let ¢ : Q — Q be diffeomorphism of class C' so that the
mapping ¢ and all its derivatives up to order | are continuous in the closure
Q. Moreover, its Jacobian does not change the sign there. Then if x € () +—

u(x) € WH(Q) then y € Q — v(y) = u(¢(y)) € W' (Q) and there erist
positive constants ¢, and co depending only on ¢ and its derivatives such that

allullpre < ol 6 < cllullpie-
PROOF Easy consequence of chain rule.

Definition 3.10. For finite p, Wi*(Q) is the closure of C5°(Q) in WhP(€).
It is a B-space. We also define HL(Q) = Wi*(Q).
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Lemma 3.11. Let Q C Q and u € Wé’p(QN). Define u(x) = u(x) if v € Q
and U(z) =0 if z € Q\ Q. Then U € WP(Q) and il = llullipo-

PROOF By the definition, there exists a sequence u,, € C§°(£2) such that
|um—ullipo — 0asm — oo. Let us denote by u,, the extension of u,, by zero

to Q. Obviously, U, € C5°(Q) and of course ||ty — Ukl , 5 = [[tm — urllipo
and [[tml;,5 = [lumllipe. From the first identity, it follows that w, is a

Cauchy sequence in W'?(Q) and thus @ € W/?(€). The second identity
yields the statement of the lemma. O

Lemma 3.12. Let u € WP(Q). Then u, — u in WH(Q) as o — 0.
PROOF See Problem Sheet 2.

Proposition 3.13. (integration by parts) Let u € W' (Q) and v € Wé’p(Q)
so that 1/p+1/p' =1 with 1 < p < co. Then, for any |a| <1,

/ vDudx = (—1) / uD*vdzx. (2.3.1)

Q Q

PROOF Let v,, € C§°(f2) be an approximating sequence for v. Then, by
definition of weak derivatives, we have

/vaaudﬂc = (1)l /uDavmd:c.

0 0
We find (2.3.1) by tending m to co. O
Lemma 3.14. (Friedrichs inequality) Let u € WEP(Q). Then

ullpo < d'|ulp0, (2.3.2)

1
where d = diam$, |ul,;0 = (Zm\:l ||D°‘u||z’9) "

PROOF Obviously, it is sufficient to prove (2.3.2) for u € C§°(£2). Without
loss of generality, we may assume that Q C @, = {z = (z;) : 0 < z; <
d}. We extend u by zero to the cube @,. We let x = (y,x,), where y =
(1,22, ..., xpn_1). Then

" ou
u(y, z,) = E(y,t)dt'

0
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By Holder inequality,

Tn

lu(y, )] < (7’%(y,t)‘pdt>’l’</1p dt)

0

d
([ o a)’
0

Integrating the latter inequality over @),, and applying Tonelli’s theorem, we

find
/IUy,mnldw—/dmn / lu(y, z,)|Pdy <
0
< p’/dxn / dy —d"v /’;u(y,xn)

n
0 Qn 1 Qn

Since 1+ £ » = D, we have

([ ) <a(
@n Qn

Proceeding in the same way, we show that

/’ pd:c <d /‘
ox,, 8x2

Q7L
and so on. As a result,

(/\ur% <d( /\—] )" < a0

Corollary 3.15. || - ||l,u.0 and | - |,.0 are equivalent in WP(Q).

p

dx.

ou

p

da:) ’

Our next question is about density of smooth functions in Sobolev spaces.
We denote by WHP(Q) the closure of C=(2) in WP(€2). Obviously, W'P(Q)
is a subspace in W'P(Q). Very often, these two spaces coincide and this
depends on how ”good” or "bad” domain 2 is.

Definition 3.16. ) is a star-shaped domain if there exists a point xy € €2
such that, for any x € €1, the line segment, joining x and xq, is in €.
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Theorem 3.17. WZ7P(Q) = W'P(Q) for bounded star-shaped domains.

PROOF The idea of the proof is as follows. We extend a function u € WHP(Q)
outside of €2 so that the extension slightly differs from the original one and
then we approximate the extended function by mollification.

We may assume that xy = 0.

Lemma 3.18. Let f € LP(Q) with 1 < p < oo be extended by zero to the
whole R™. Then

1£C/N = FOlloni= [ 1#/0) = f@Pdz)” 50 ash1.

PROOF On problem sheet 3, similar to the proof of the integral continuity,
see Theorem 1.11.

Let us proceed with a proof of Theorem 3.17. We restrict ourselves to the
case [ = 1. For A > 1, we let Q) = ¢,(2) where ¢,(z) = Az. Define uy(x) =
u(y), setting x = \y € Q, for y € Q. By Theorem 3.9, uy, € Whr(£,) and

Ouy, 1 0u
dre T Noge !

By the lemma above,

IEQ)\.

y::zc//\7

lux — ullp10 —0 as A — 1.

Now, consider mollification of u,, i.e.,

(un)o(z) = / wole — y)ur(y)dy.

Obviously, (uy), € C*(€2) and we know, see Lemma 3.4, that
l(ur)o — urllpar0 — 0 as o — 0.

Given k € N, we first find Ay > 1 such that |luy, — ul/,1.0 < 1/k and find
or > 0 such that ||(ux,)e, —Urllp1.0 < 1/k. Letting uy := (uy, ),,, we deduce
from the triangle inequality that |juy — ul[,10 < 2/k — 0 as k — oco. So,
sequence uy, is required. O

Definition 3.19. A domain ) is locally star-shaped if for any x € 052, there
exists a neighborhood O, such that the domain Q N O, is star-shaped.

Theorem 3.20. Let €2 be a bounded locally star-shaped domain. Then
WhH(Q) = WH(Q)
provided 1 < p < 0.
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2.3.4 Extension of Functions with Weak Derivatives

Let y be a Cartesian system of coordinates in R"™.

Cy(Rv h) = {y = (ylayn) € R™: y/ = (ylay27 "'7yn—1)a |y/| < R7 |yn| < h}
is a right circle cylinder.

Definition 3.21. Let x be a Cartesian system of coordinates in R". A
Lipschitz domain (or domain with Lipschitz boundary) 2 is a domain with
the boundary 0 satisfying the following property. For any xoq € 0S), there
exist positive numbers L, R, a Cartesian system of coordinates y centred at
the point zo, and a function ¢ : {|y'| < R} — R such that:

(i) 02N Cy(R,2LR) = {y € R" : y, = ¢(y), [v'| < R}

(1)) QN Cy(R,2LR) ={y € R": |[y'| < R, ¢(y') < yn < 2LR}

(#i) function ¢ is Lipschitz continuous with the Lipschitz constant L, i.e.,
6(y') — &()| < Lly' = 2| fory/, 2" e R"7L, |y < R, 2] < R.

Remark 3.22. Numbers R, L, and function ¢ may depend on xy € Of).
Relationship between old (global) and new (local) Cartesian coordinates x
and y is given by y = Q(x — x¢) with an orthogonal matriz Q.

Remark 3.23. Any Lipschitz domain is locally star-shaped.

Remark 3.24. A Lipschitz domain is of class C* if the function ¢ of Defi-
nition 3.21 belongs to C*{|y'| < R}.

EXAMPLES

Theorem 3.25. Let Q) be a Lipschitz domain and 2y be a domain such that
Q € Q. For anyu € WHP(Q), there exists a function v € Wy () with the
following properties:

(i) v(x) = u(z), x € Q

(1) ||v][p1.a, < cl|ullp1.o with a constant depending only on n, p, 2, and €.
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The First Embedding Theorem

3.1 Sobolev embedding of W!(Q) into L(Q)

Let By and Bs; be two B-spaces. We say that By is embedded into B if
By C By. The embedding of By into Bj is continuous if there exists a
constant ¢ such that ||u|lg, < c||ul|p, for any u € By. When talking about
embedding, we always keep in mind continuous embedding. Trivial examples
are:

(i) By = LP*(Q)), By = LP2(Q)) for p; < py if Q is a bounded domain
(i) By = LP(Q)), B, = W'r(Q)
Embedding is called compact if any set bounded in By is precompact in Bj.

Lemma 1.1. Let n > 1. For any u € C5(R"),

n—1

(/\UInnldx) t< ﬁ </|Diu|dx>i, (3.1.1)
R =1 pn

where D; = 0/0x;.
PROOF Proof is by induction on n. Let n = 2. Then

1

0
u(xl,xg):/a—?(t,@)dt

—00

and thus

x1 0o
ou
lu(z, 22)| < / ’E(t,xg) dry < / | Dyuldz:.

00 au
< _
dt - / ‘axl (xl’l.Q)

31
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The same arguments give

[e.e]

(i, 22)| < / | Dot dzs.

—00

From the latter bounds, it follows that

/|u| dx</dx/|D1u|dx1/|D2u|dx2
R? —00

By Tonelli’s theorem the right hand side of the last inequality is

/|D1u|dx/|D2u|dx.
R2 R?

Now, assume that our statement is valid for n — 1 and let us show its
validity for n. In the way as in 2D case, one can prove that

|u(x)|§/|Diu|dxi, i=1,2..n. (3.1.2)

—0o0

Next, letting «' = (21, 2, ..., Tn_1), we have, by Tonelli’s theorem,

/|u nnlda::/d:cn / ||| 71 da. (3.1.3)
Rn —00 Rn—1

By Holder inequality and by induction

1
[t < ([ uiEnta) T ( a
Rn—1

Rn—1 Rn—1

<(/|u|dz’>nllij< / |Diu|das'>nll.
Rn—1 =1 Rn-1

Using (3.1.3) and (3.1.2), we derive from the last estimate

nl
/|u|n Tde < /dxn / /|D u|d:17dxn o / |Du|d;p —

Rn—1 —c0

n—2
n—1

L—éd /> n—1
n— €T S
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a7 n—1 1
= (/ |Dnu|dx> " /dan( / |Diu|dx’> "
Rn —00 i=1 Rn—1

Applying Hélder inequality one more time to the second multiplier on the
right hand side of the latter inequality, we complete the proof of the lemma.
O

Theorem 1.2. (Gagliardo-Nirenberg inequality) Let 2 be an arbitrary do-
main in R™ and let 1 < p < n. For any u € Wy (Q),

p(n—1)

3.14
n—p \U!p,m, ( )

lullze <

where p = n"—f;.
ProOOF We shall prove the theorem for the case p > 1. The case p =1 is an
exercise.

We let v = 7=, It is easy to check that 1 /k > 1. For an arbitrary

u € C(Q) extended by zero to the whole R”, define v = |u|~. Since
Dy = Lul=Tsign(u) Dyu, v € CA(R"). By Lemma 1.1,

foll 20 < TT ([ 1D0liz)" (3.1.5)
=1 Q

After direct calculations, we see

1
[l 220 = llully.o-

For the right hand side of (3.1.5), we apply Hélder inequality

1 1

/|D,-v|dx _ —/|u|n1|Diu|dx <
K

Q Q

p—1

1 5 1_q\_P_ 5 1 1y
< ([ 1Dapds)” ( [Qulr ) T < Sulalula'
Q

Q

Now, from (3.1.5) and from two latter bounds, we get required inequality
(3.1.4) for u € CF°(Q).
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If u e VVO1 P(Q), then, by the definition, there exists a sequence u,, €
C5°(€2) such that ||u—1um||p1.0 — 0asm — co. So, it is a Cauchy sequence in
W1P(Q) and, by inequality (3.1.4) for smooth compactly supported functions,
is a Cauchy sequence in LP(Q2). Then we finish our proof by taking the limit
in (3.1.4) with v = u,,. O

Corollary 1.3. (Poincaré inequality) For any u € Wy (),
1
[ullz0 < e(n)[Q][ul21.0.

PROOF Let us find p for whichp=2. It isp = nQ—fQ < 2. So, by (3.1.4),
2(n—1) 2(n—1) & 20\ BR
fullaa < 2= Hul 0 = 22 ( [ > D ) ™
Q =

It remains to apply Holder inequality for sums and integrals and complete
the proof. O

Theorem 1.4. (Sobolev) Let 2 be a bounded domain with Lipschitz boundary
and let 1 < p <n. Then:

(i) if 1 < p < n then Sobolev space WP(Q) is embedded (continuously) into
Lebesgue space L1(Y) for any q € [1, np—fp];

(ii) if p = n then Sobolev space WP(Q) is embedded (continuously) into
Lebesgue space L1(Q) for any 1 < ¢ < oc.

PROOF. Let us fix a bounded domain €2y so that 2 &€ €2y. Then for any
u € Wh(Q), there exists a function v € W, ?(Qg) such that
(i) v=wuin Q
(i) ollpn.0n < (2, 0, Dl
Obviously, by (3.1.4), we have

(n—1)p (n—1)p
[ullp.o < [[vlpay < E— V100 £ ——vllpr0, <
p
n—1
e s

To finish the proof of the first part of the theorem, it is sufficient to note
that ||ull;0 < |Q|%7%”U,Hﬁﬂ The second part follows from the first one and
obvious continuous embedding W1?(Q) into W4(2) provided 1 < g < p. O

Our next question is under which assumptions the above continuous em-
beddings are compact. We start with the following theorem
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Theorem 1.5. (Rellich-Kondrachov) Let Q@ C R™ be a bounded Lipschitz
domain. Then W'P(Q) is compactly embedded into LP(S2).

PrROOF We shall prove the theorem for finite p.
Let u € Cg°(R™). Fix an arbitrary vector z € R™ and define the function
¥(t) = u(x +tz). Then

u(z + 2) — u(x) = 9(1) — 9(0) = / —(t)dt,
where .
FAUED LIRS

Next, we have

1
I ::/|u(:c+z) —u(x)|pdx:/dw‘/ZDiu(:c—i—tz)zidt‘p.
P o =1

R

Then we apply Holder inequality for integrals and sums:

1 1
p P
I< /das/‘ZDiu(w—l—tz)zi dt Snp’/dw/Z\Diu(ﬂc+t2)|p|zi|pdt
g D=l o i=1

R

1
S P / / > |Dyu(x + tz)|Pdudt.

0 rn =1

After change of variables y = x + tz, we find
||U( + Z) - u(')”p,R” < CQ(n;p)|Z||u|p,17R" (3.1.6)

for any u € Cg°(R").

Now, let U be a bounded set in W'?(Q), i.e., ||ull,1.0 < M < oo for any
u € U. We fix a bounded domain Qg such that Q € Q. Define V.C W, 7(Q)
as follows: v € V if and only if there exists u € U such that v = u in Q
and ||v]lp1.0, < cz(n,p,Q, Q)||ullp10. So, V is also bounded in WhP(£y)

and therefore in LP()). Next, by the definition of W, ?(Qy), there exists a
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sequence v, € C5°(€) is converging to v in WP(Qy) and thus in LP(£2)
and even in LP(R"). Since (3.1.6) gives:

[om (- 4 2) = vm(lpo < c2(n, P)I2][Vmlp,1.00,

(3.1.6) is valid for any function v € W, ?(Q) and, therefore,
[o(- 4+ 2) =v()llpay < [[o(- +2) = v()llprn < ca(n, p)l2|[vlp1,00 < cacs|z|M

for any v € V and for any z € R". Hence, by Theorem 1.17, the set V is
precompact in LP(2) and therefore the set U is precompact in LP(Q2). O

Theorem 1.6. (Sobolev-Kondrachov) Let @ C R™ be a bounded Lipschitz
domain. Then W1P(Q) is compactly embedded into L4(Q2) with any 1 < q < P,
np

where}_ozn—_pif1§p<nand]_):ooifp:n.

PRroOF Consider the case 1 < p < n only. The case p = n is an exercise. Let
U be a bounded set in W?(Q) and u,, is an arbitrary sequence in U. By
Theorem 1.5, there exists a subsequence w,,, such that ||u,,, — ul|l,o — 0 as
k — oo for some u € W'?(Q) and thus u,,, — u in measure in 2. On the
other hand, by Theorem 1.4, this sequence is bounded in LP(£2). Then, by
Theorem 1.2, we show that w,,, — u in LI(Q) with ¢ < p. O

3.2 Traces of functions with weak derivatives

3.2.1 Surface Integral

Let  be a bounded domain of class C'. Going back to Definition 3.21,
note that cylinders Cy(R(z),2L(x)R(x)) for x € 0f2 are an open cover of the
compact 0€2. By the Heine-Borel lemma, there exists a finite subcover, i.e.,

09 C | Cy, (Ri, 2Ly Ry,),
k=1
where Ry = R(z®), Ly = L(z®), yg) = Qx(x —2¥)), and @y is an orthogo-
nal matrix. Denote that Sy, = {|y{;,| < Ry} C R""'. Under our assumptions,
the function ¢y, the graph of which is a part of 9, belongs to C'(S}). For
this subcover, there exists a finite partition of unity ¥ € C5°(R™) such that
0 <9 <1andsupp? C Oy, (Ri,2LkRy), k=1,2,...,m, and ) Jy(x) =1
k=1

for all z € 99.

(k)
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Definition 2.1. f: 9Q — R is Lebesque integrable in O if the value

z:z/mm@m%mm%mwww

k=1 Sy

2

n—1
¢
i dyz k)

1+
i=1 ayll'(k)

(yzk))

s finite

All the integrals in the above definition are taken with respect to Lebesgue
measure in R"1. If f is integrable in 9, we shall write

égde =1.

One can show that the integral is well-defined, i.e., independent of the choice
of subcover. We also can introduce a surface Lebesgue measure and mea-
surable (with respect to this measure) sets as follows. Let I' C 9Q and xr
be its characteristic function. If xr is integrable, then the set I' is called
measurable and the corresponding integral is called its surface measure. It
is a natural generalisation of the surface area. _

We say that f: ' C 002 — R is integrable in I' if its extension f : 02 — R
by zero to the whole 02 is integrable in 02 and we let

F/ fds :ag fds.

For functions integrable in I', the same statements as for functions integrable
in R™ are valid as well. We also can introduce Lebesgue space LP(I).

Remark 2.2. All the statements and constructions remains to be true for
domains with Lipschitz boundary.

3.2.2 Traces of functions from Sobolev Spaces

Lemma 2.3. Let Q be a domain of class C* and let 1 < p < oo. There exists
a constant c(n,p,)) such that

lullpon < cllullpag, Ve C'@). (3.2.1)
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ProOOF We shall consider the case p > 1. The case p = 1 is an exercise.
To avoid technical difficulties and demonstrate the essence of the matter,
consider the following particular case. Assume that 02 contains a flat part
I'={z=(2,z,): |2'| <r, z, =0} and prove instead of (3.2.1) a simpler
inequality

[ullpr < cllulpig,  Vue CH@). (3.2.2

Let h > 0 be so small that Q := {x = (¢, z,) : |¢/| <r,0<z, <h} CQ.
Fix a function n € C§°(R) so that n(t) = 1 for [t| < h/3 and n(t) = 0 for
|t| > 2h/3. Then we have

M%@P-—/%M@M%m%#-

After applying Holder inequality, we find

% 0
lu(z!,0)]P < ¢ /|um :pn|dxn /‘ uxa?n

da:n> +

h
+c / lu(z', x,)|Pdz,,.
0

To complete the proof, it is sufficient to integrate the latter inequality over
I, then apply consequently Holder inequality and Young inequality (ab <
a/p+v'/p). O

Let us define a linear operator v : C*(Q) € WP(Q) — LP(99) so that
yu = ulpq. By (3.2.1), this operator can be considered as a linear bounded
operator from WP(Q) into LP(92) with domain of definition D(y) = C'(Q),
which is dense in W?(£2). Its operator norm

Moy = sup{livullpoe = we D), ullpro <1}

is finite. It is known from the Functional Analysis that such an oper-
ator admits unique continuation 3 to the whole W?(Q2). The operator
3 : WhP(Q) — LP(0Q) has the following important properties:
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() [l = [7lpey < e(n,p, )
(ii) Yu = yu for all u € C*(Q).

7 is the trace operator, acting on W1?(Q) into LP(9€2), and Ju is the trace
of a function u € WHP(Q). For the trace of u, we use the classical notation,
L.e., Ju = u|gq. It should be understood in the sense described above.

Lemma 2.4. Let Q be a bounded domain of class C* and let 1 < p < oo.

Then we have
/uDivdx = /uvyidS— /vDiudaj (3.2.3)

Q oN Q

for all u € W'™(Q) and for all v € W' (Q) with p/ = =t

7 as usual. Here, v
is the unit outward normal to the surface Of).

PROOF (3.2.3) is valid for all u, v from C1(Q). Therefore, we can write (3.2.3)
for sequences of smooth functions approximating functions u € WH?(2) and
v € WH'(Q) and then take the limit using continuity of the trace operator
with respect to strong convergence in Sobolev spaces. O

Corollary 2.5. Let Q be a bounded domain of class C* and 1 < p < oo.
Suppose that u € WP(Q) with ulsq = 0. Let Q C Qo and @ is an extension
of u by zero from Q2 to Qq. Then @ € WP(Qy).

PROOF On problem sheet 3.

Remark 2.6. Let W) P(Q) = {u € WP(Q) : ulypq = 0}. In fact, WiP(Q) C
Wy (Q) (explain why). However, under our assumptions on Q (it is of class

Ch), Wo(Q) = Wy (€).

Remark 2.7. All above statements can be extended to bounded domains with
Lipschitz boundaries.
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Chapter 4

Functional Methods for PDE’s

4.1 Methods of Functional Analysis for PDE’s

4.1.1 Notation

There are several ways to denote partial derivatives. Here, it is a list of some

of them
ou

8[Ek
In the rest of the course, the last notation will be used mostly both for
classical and weak derivatives.

Another important thing is the so-called nabla-operator V. So, the action
of this operator on u is the gradient of u and denoted by Vu. This makes our
notation closer to physical notation, in which fundamental equations of the
physics are invariant (independent of a coordinate system). In particular, in
Cartesian coordinates x = (z), Vu = (u1,uz, ..., u,) = (uyg). We also let
A : B = spAT B for two n x n matrices A and B. So that A : B = A;;B;;,
where summation over repeated indices running from 1 to n is adopted. And
for a given vector-valued field a = (ay), we denote diva = ay.

Now, we can consider two types of differential operators in 2. The first
one has a divergence form:

= Dyu = 0y = Uy, = Ug.

Lu = —div(aVu) +b- Vu + cu,

where a is a symmetric matrix-valued field, b is a vector-valued field, ¢ is a
scalar field in €. The second type has a non-divergence form:

Nu:=—a:V*u+b-Vu+c.

41
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In this course, we are going to deal with differential operators in the
divergence form only.
EXAMPLE
1. Laplace operator: here, a = I := (8;;), b =0, and ¢ = 0. Then —Lu =
divVu = Au = uy;.
2. Helmholtz operator: —Lu = Au + k*u

4.1.2 Dirichlet Boundary Value Problems
for Elliptic Equation

We always assume that a symmetric matrix a € L*°(Q;R"*") satisfies the
ellipticity condition

NP <€ alwe < SfeP,  VEeR® (4.1.1)
a.e. in () with a positive constant v.
Definition 1.1. A function u € C*(Q) N C(Q) satisfying
Lu = f+ divg in € (4.1.2)

u = 1 on OS2 (4.1.3)

with given f, g, and ug is called a classical solution to boundary value problem

(4.1.2), (4.1.3).

Of course, a necessary condition for the existence of a classical solution
to boundary value problem (4.1.2), (4.1.3) is sufficient smoothness of given
functions a, b, ¢, f, g, and ug. However, even under these conditions on
the data of the problem, it is not so easy to prove the existence of classical
solutions especially in the case of variable coefficients a, b, and ¢. On the
other hand, there are quite a number of interesting and physically relevant
cases, in which those coefficients are not smooth enough.

The modern way to tackle the solvability issue, which is, by the way,
closely connected with modern ways to approximate solutions, is as follows.
The classical set-up of boundary value problems is replaced with a weak
setting based on integral identities rather than point-wise equations. This
allows us to use powerful methods of functional analysis in order to prove
existence theorems and develop a rigorous foundation of solving problems



4.1. METHODS OF FUNCTIONAL ANALYSIS FOR PDE’S 43

approximately, for example, by the finite-difference method or the finite ele-
ment method.
In what follows, we always assume that

lal = vVa:ac L), [b:=Vb-be L¥(Q), ceL®Q), (414)
f e L*(Q), lg| € L*(), (4.1.5)
uy € H(Q) := WH(Q), (4.1.6)
and ellipticity condition (4.1.1) holds.

Definition 1.2. A function u € H}(Q) + uo is a weak (or generalized) so-
lution to boundary value problem (4.1.2), (4.1.3) if it satisfies the integral
(variational) identity

L(u,w) = /(fw — g - Vw)dz, w e C5o(9), (4.1.7)
Q
where L(u,w) := [((aVu) - Vw + b Vuw + cuw)dz.
0

Variational identity (4.1.7) is motivated by the following formal identity

/(Lu — f —divg)wdz =0, w e Cy°(92),
Q
which can be obtained by means of a single integration by parts involving

the terms wdiv(aVu) and wdiv g.

Boundary condition (4.1.3) is satisfied in the sense of traces, i.e., u —uy €
H; ().

Remark 1.3. If u is a weak solution, then variational identity (4.1.7) holds
true for any test functions w € H}(Q). (Ezplain why)

Theorem 1.4. (uniqueness implies existence) Let given functions a, b, and ¢
satisfy conditions (4.1.1) and (4.1.4). Suppose, in addition, that any function
v € HY(Q) subject to the identity

L(v,w) =0, Yw € Ci°(92),

must be equal to zero. Then, for any f, g, and ug, satisfying conditions
(4.1.5) and (4.1.6), boundary value problem (4.1.2), (4.1.3) has a unique

weak solution.
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PROOF We are going to reduce the problem in question to Theorem 7.2. Our
Hilbert space is going to be U = H} (). By Poincaré inequality, | - |2.1.0 is
a norm on U that is equivalent to the standard norm || - ||2,1,0, see Corollary
3.15. The ellipticity condition gives the following bounds

1
2 1
\/;|U/|271’Q S IUIQ’LQ = </VU : CLVU) ’ S W|u|27179.
Q

They imply that I-I5; o is a norm in U as well and it is equivalent to the
norm || - [[2.1,0. The norm I- Iy, g is generated by the scalar product

[u,v] = /(aVu) -Vvdr = /Vu-aVvdx, u,v e U.
Q Q

Then our bilinear form £ can be presented as follows
L(u,v) = [u,v] — Ly(u,v),

where
Lyi(u,v) =— /(vb -Vu + cuv)dz, u,v € U.
Q

By Cauchy-Schwartz inequality, by Poincaré inequality, see Corollary 1.3,
and by the above equivalence of norms, we

|L1(u, )] < Ci(||v]l2.0ll Vullzo+llv]2.olluln) < Codulsy olulsy g, Vu,v € U.

So, given u € U, the linear functional v — L;(u, v) is bounded in U. By Riesz
theorem on representation of linear functional in Hilbert space, there exist a
unique K(u) € U such that £;(u,v) = [K(u),v] for any u,v € U. It is easy
to check that K : U — U is a bounded linear operator (indeed, IKuls; o <
CoIuly g o). Our aim is to show that K is a compact operator. To this end,
we should show that, for any bounded sequence u,,, the sequence Ku,, is
precompact. WLOG, we may assume that u,, — uin U and thus Ku,, — Ku
in U. If not, using a boundedness of u,, and a sufficient condition of weak
compactness in Hilbert spaces, select a required subsequence, which could be
denoted again by u,,. By Reillich-Kondrachov theorem, the embedding of U
into L?(Q2) is compact and we also may assume that u,, — v and Ku,, — Ku
in L?(Q2). Then, denoting w,, = Ku,, and w = Ku, we show

LK (twn — w)I3 1 o = [K(tm — u), wn — w] = L1 (U — U, Wy, — w) =
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= /((wm —w)b - V(ty —u) + c(wn, — w) (U, — u))dz

Q
< Cillwm = w20l Vi = Vullpo + [wm = wlla oflum = ull20) = 0

as m — oo. Indeed, a sequence ||Vu,, — Vul|s,q is bounded as Vu,, — Vu —
0 in L*(Q) and ||uy — ull2g + ||wm — w|l20 — 0 by compact embedding
mentioned above.

Finally, let us notice that

w — —L(ug, w —|—/fw g - Vw)dz
Q

is a linear bounded functional in U (explain why) and thus, by Riesz theorem,
there exists F' € U such that

[F,w] = —L(ug,w —|—/fw g-Vw)dx, YweU.
Q

By our assumptions, the equation w — Kw = 0 (& L(u,v) = [u — Ku,v]
u,v € U) has the only trivial solution and, hence, by Fredholm Alternative,
there exists a unique @ € U such that u— Ku = F. According to our notation
this is equivalent to the following identity

[, w] — [Ku,w] = [F,w], Yw e U

or
L(a,w) = —L(ug,w) + /(fw —g-Vw)dz, Yw € U.
0

This means that © = ug + u is a required unique weak solution to boundary
value problem (4.1.2), (4.1.3). O

Corollary 1.5. Assume that our bilinear form L is coercive in the following
sense: there exists a positive constant C' such that

L(w,w) > Cllwl]3q, Yw e C5°(Q). (4.1.8)

Then boundary value problem (4.1.2), (4.1.3) has a unique weak solution.
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Indeed, coercivity condition holds for all w € H{(f2) (explain why). Now,
let v € H}(Q) satisfy the identity £(v,w) = 0 for all w € C§°(2) and thus for
all w € H}(Q). If we take a test function w = v, coercivity condition (4.1.8)
implies ||v]|2.o = 0 and, hence, v = 0. Now, the statement of the corollary
follows from the above theorem. O
ExAaMPLE Let divb < 0 and ¢ > 0. We need to spell out how we understand
divb < 0 with b = (b;) € Lj (). By definition, a distribution 7' > 0 if
and only if T'(¢) > 0 for any ¢ € C§°(Q2) and ¢ > 0. So, divb < 0 means
that div 7}, < 0, which in turn means that div7,(¢) = —T,(Ve) < 0 for any
non-negative ¢ € C5°(Q2). Hence,

1 1
/wb -Vwdx = /wbiw,idx = §/bi(w2),idx = §Tb(V\w|2) >0
Q 0 0
for any w € C§°(§2). Then we find with the help of Poincaré inequality that

L(w,w) = /(Vw -aVw + wb - Vw + cw?)dr > 1/||Vw||§,Q > C||w||3Q
Q
for any w € C§°(2).
It is interesting what happens if the main assumption of Theorem 1.4 is
violated.

Theorem 1.6. Assume that there exists vy € Hy(Q) such that vy is not
wdentically zero and

E(Uo, U)) =0

for allw € C§°(R2). Then boundary value problem (4.1.2), (4.1.83) has a weak
solution provided f, g, and ug satisfy compatibility conditions (4.1.5) and
(4.1.6), and

L(ug,v) = /(fv —g-Vv)dx
9)
for any v € HY(Q) having the property

L(w,v) =0  Yw e C5°(N).

Remark 1.7. The identity L(w,v) = 0 for Yw € C§°(2) is a weak form of
the following homogeneous boundary value problem

—div(aVv) — div(bv) + cv =0
in 2 and v =0 on the boundary Of).
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Proor The statement follows from a remark to Fredholm Alternative
and the following identity

Li(v,w) = [Kv,w] = [v, K*w]

being valid for any v and w in H}(Q). O

4.1.3 Variational Method

In some case, the existence of a weak solution to boundary value problems
can be proved as a result of a variational approach. Let us consider the

simplest case
—div(aVu) = f (4.1.9)

in 2 and
u=>0 (4.1.10)

on 0f).
We start with the following abstract version of the Weierstrass theorem.

Theorem 1.8. Let V' be a reflexive Banach space. Assume that we are given
a functional I :' V —| — 0o, 00], having the following properties:
(i) sequentially weak lower semi-continuity: for any sequence v™ such that
v"™ — v, the following holds
liminf 7(v™) > I(v),
m—0o0
(i) coercivity: if ||[v™||y — oo, then I(v™) — +00.
Suppose, further, that I(vi) < +oo for some vy € V.. Then, there exists
w eV such that
I(u)=A:=inf I —00.
(u) inf (v) > —o0
PROOF Let v be a minimising sequence, i.e., [(v™) — A. According
to our assumptions, A < 4o00. By the coercivity condition, ||v™||y; must be
bounded. Since V is reflexive, there exists a subsequence still denoted by v™
such that v — u € V. By weak lower semi-continuity,

A= lim I(v™) > I(u) > —o0.
So, I(u) =A. O

The question to be raised is how one can check sequential weak lower
semi-continuity.
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Lemma 1.9. Let V be a Banach space. Let I be strongly lower semi-
continuous, i.e., v — v in V implies liminf I(v™) > I(v) and let I be
m—oQ
convez, 1.e.,
IAu+ (1 =Xov) <X (u)+ (1 —N)I(v)
for all u,v € V and for all 0 < X\ < 1. Then I is a sequentially weak lower
semi-continuous functional.

PROOF We are going to prove the lemma if V' = H is a Hilbert space. So
assume that v — v in H. Without loss of generality, we may assume that

lim 7(v™) = liminf I(v™).

m—o0 m— 00

By Banach-Sacks theorem, there exists a subsequence still denoted by v™
such that

in V. By convexity, we have
1 m
I(w™) < =Y I(*) = lim I(v™).
(") < — 3" 10F) = lim 1(")

It remains to notice that

O
Now, let us consider a functional

I(v) == % / (aV) - Vodz — Q/ fodz

Q

for V.= H}(Q). Tt is assumed that a satisfies the ellipticity condition (4.1.1)
and f € L?(Q). It is easy to check that the ellipticity condition provides
convexity of our functional. Moreover, since it is continuous in V', the func-
tional [ is sequentially weakly lower semi-continuous on V. Moreover, the
ellipticity condition

14
I(v) = 5[Vellza = [ fllzellvl20-
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Clearly, Poincare’s inequality implies the coercivity condition. So, by Theo-
rem 1.8, there exists u € V such that

I(u) = A := inf I(v).

veV

Our aim is to show that u is a weak solution to (4.1.9) and (4.1.10). To
this end, given w € C§°(2) and ¢ > 0, we derive from the last identity the
following

0<I(u+tw)—I(u) = t/((aVu) -Vw — fw)dx + g /(an) - Vwdz.

Dividing the latter inequality by ¢ and tending ¢ — 0, we get

0< /((aVu) -Vw — fw)dx

Q

for any w € C§°(€2). This certainly implies that u is a weak solution to
(4.1.9) and (4.1.10).

4.1.4 Spectrum of Elliptic Differential Operators un-
der Dirichlet Boundary Condition

Let us go back to our elliptic differential equations
Lu = —div(aVu) + b - Vu+ cu

with bounded coeflicients a = (a;;), b = (b;), and ¢ in a bounded domain
Q) C R3, where the matrix-valued function satisfies the standard ellipticity
condition. These are our standing assumptions. The corresponding bilinear
form is

L(u,v) = /(Vu ~aVu+b-Vuv + cuv)dx
Q
for any u,v € H'(Q).
Now, we restrict ourselves to the case homogeneous Dirichlet boundary

conditions. Formally, the latter means that we consider the above bilinear
form on H}(Q) x H(Q).
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We shall say that the bilinear form £ is symmetric in H}(Q) x H} () if
and only if
L(u,v) = L(v,u)

for any u,v € H}(Q2). Assume for a moment that a, b, and ¢ are smooth.
Then integration by parts gives:

L(u,v) = / (Lu)vdz = / u(L*v)dx

for any u,v € C§°(2), where
L*v = —div(aVv) — div(bv) + cv

and L* is called formally adjoint operator.
We can easily see that the bilinear form £ is symmetric if and only if
L = L*. Indeed, we have in the sense of distributions

L(u,v) = /(Lu)vd:c = /u(L*v)dx = L(v,u) =

for any u,v € C§°(2).
Obviously, the condition of symmetry holds if

b=0.

From now on we assume that the bilinear form £ is symmetric on U x U,
where U = Hj(f2), and that ¢ > 0 in Q. We know that for any f € L?(Q),
there exists a unique element v € U such that

L(u,v) = (f,v) = /fvd:v, Yo e U.

Q

So, we have a well-defined operator K : L*(Q) — L?*(Q2) defined by u = K f.
Obviously, it is a compact operator in L?(f2) (explain why). Let us show
that it is a symmetric operator. Indeed, for u = K f and v = Kg, we have

£<u7w> = (fv w)7 E(U7w) = (g7w>
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for any w € U. Hence,
(Kf,9) = (u,9) = (9,u) = L(v,u) = L(u,v) =

= (f;v) = (v, f) = (Kyg, f) = (, Kg)

for any f,g € L*(Q). Symmetry follows.
Now, we can apply the celebrated Hilbert-Schmidt theorem about spec-
trum of a symmetric compact operator. It reads the following.

Theorem 1.10. Let H be a Hilbert space and K : H — H be a symmetric
compact operator. There exists an orthonormal system {©,}N_, C H that
consists of eigenfunctions p,, belonging to eigenvalue fi, # 0, i.e., Ko, =
mPm, such that for any h € H one has a unique representation

N
h:Zcmgpm—i—h/

m=1

with ¢y, = (h, pm) and Kh' = 0.
Moreover, if N = oo, then i, — 0 as m — oo.

Let us discuss consequences of the Hilbert-Schmidt theorem for our par-
ticular case with H = L*(Q2). First of all, it is easy to see that the equation
Kh = 0 has the only trivial solution A = 0, i.e., u = 0 is not an eigenvalue
of the operator K. Hence, N = oo and {p,,}>°_, is an orthogonal basis in
L23(2). We let A\, = 1/pt,,. Then the identity K¢, = fim@m is equivalent to

L(pm; 0) = Am(Pm, v)
for any v € U. Here, of course, ||pm||2.0 = 1. By ellipticity conditions,
L(Omy ©m) = Am > 0.
One can numerate eigenvalues in the following way
D<A\ <A<..<Ap < ..

with A,, — oo. Here, a particular eigenvalue is repeated as many times as
its multiplicity that is the dimension of the subspace

{ueU: L(u,v)=Nu,v) YveU}.
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It is known that this dimension is finite.
As it follows from the Hilbert-Schmidt theorem, for any h € L*(Q),

h = Z CrmPm, Cm = (h7 (Pm>
m=1

and the series converges in L?(2).
Now, our aim is to show if h € U the above series converges in U as well.
To this end, let us introduce a scalar product as follows

[u,v] == L(u,v), u,veU.

We know that
N

|h — Z CmPmll2,0 = 0

m=1

as N — oo. By definition of eigenvalues,

[Spm’ h] = Am(gom, h) = AmCm-

Therefore,
N N
[h, Z CmPm] = Z A2 (4.1.11)
m=1 m=1
On the other hand, we can find
N N N
Ih — Z Cmpmly 0= [h— Z ConPmy b — Z CmPm) =
m=1 m=1 m=1
N
=TI, — > Amch, > 0.
m=1
Therefore, we can state that series
> A, (4.1.12)
m=1

converges and moreover

N N 00
1> cntmIsio= D Amch <Y Ancp, <IHI3,  < o0.

m=1 m=1 m=1
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N
Now, let gy = Y. ¢mpm. There exists a subsequence such that gy, converges

m=1
weakly to g in U. Then from (4.1.11) and (4.1.12), it follows that
[hg]l = > A
m=1

N
But Y ¢n@m — hin L3(Q) as N — oo and thus g = h. Hence,

m=1

> Anch, =1nL3,
m=1

and thus gy — h in U. That is all.

4.2 Smoothness of Weak Solutions

4.2.1 The Second Embedding Theorem
In what follows, we shall use the following notion for mean values: [u]q :=
i g{ udzx.

We start with a technical lemma that shows how we can approximate a
function at a point by mean values.

Lemma 2.1. Letu € L*(B(xg, R)). Assume that there exist positive constant
A and « such that, for all 0 <r < R,

1 o
V(an.r) = s / = [)peanlde < Ar®. (4.2.1)
B(zo,r)
Then there exists
l%[u]B(mo,r) =!Ug
and, for all 0 <r < R,
(U — [ B(ao,m | < AT (4.2.2)

with a constant ¢ depending on n and o only.
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PrROOF Let r < R, then we have

1
To,r - xQ,r S T/ AV - To,r d S
b0 = [ptaor| < e [ ul) = [l
B(zo,r)
< 2" (zg, 7).
Thus, for m > k > 0,
m—1
(W] B@osr/2m) = [UlB@orsom]| < D Wl B@or/aiet) = Ul Blag.r/20)
i=k
m—1 m—1 m—1
<2 W(r/2) < 2MADY (r/2)* =2'rAY (1/2)* =0 (4.2.3)
i=k i=k i=k

as k — oo. So, lim [u]p(zr/om) exists for any 0 < r < R. Let uy =
m—0o0

lim [u]g(ag,r/2m). Our aim is to show that lirr(l)[u] B(zo,r) = Uo- Indeed, given

m—0o0 r—s

ry — 0, we can find subsequence of my such that

R/2™H <pp < R/2™
for any k. Then we can repeat the above arguments to show that

So, [U]B(zg,re) — Uo-

To derive (4.2.2) from (4.2.3), it is sufficient to let k = 0 there and then
pass to the limit as m — oo. O

Now, assuming that  is bounded, we introduce Holder space C%(€2),
which consists of all continuous functions f : @ — R such that

[ullcaq@) = l|tllocn + [Uan < oo,

where
[u] Q= sup |U(ZE> — u(y)|
' z,y€Qx#y ‘I - y‘a

C(Q) is a Banach space, see Problem Sheet 4.
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Lemma 2.2. (Campanato) Let w € L*(B(R)). Assume that there exist
positive constant A and o such that

1 o
Ve r) = g / = [u] o |d < Ar (4.2.4)

B(zo,r)

for all B(xg,r) C B(R). Then, for any 0 < o < R,
||uHC°‘(B(Q)) < C(n,a,0,R)(A+ HUHLB(R))- (4.2.5)

PROOF First of all, by Lemma 2.1, lir%[u]g(w) exists for all z € B(R).
r—
The function z — lir% [t p(z,ry Delongs to the equivalence class v and in what
r—

follows we shall work with this particular representative which is going to be
denoted simply by wu.

Now, we let us fix a positive number p < R. Letting r = (R — 0)/2, we
deduce form Lemma 2.1 that for all x € B(p)

u(2)| < cAr + |[ulpien| < C(R — o 0)(A+ [ullpm).  (426)

To proceed further, we assume that z, and yo belong to the ball B(p)
and |zg — yo| < R — 0. Let zp = (o + yo)/2 and 2r = |z¢ — yo| > 0. Then

|u(z0) = u(yo)| < |ulzo) = [ulBao.n | + ulyo) = [ul o I+

U] Bo.r) = [l Beo.2n | + |[ulBer — [UlBez0.20)|
The first two terms on the right hand side can be estimated with the help of
(4.2.2). Both them give the right contribution. The third and fourth terms

are estimated in the same way. Let us treat the third one. So, we have, by
Corollary 2.4,

1
ooy = ool € Tz [ (o) = btz <
B(xzo,r)
<oy [ o) = e lds <
_— w(x) — |ulg(s.om|de <
= [Bao. )] p
B(z0,2r)

’B(Zo, 27’)’

——U(z,2r) < Ar® < Alzg — yo|“.
< By e 2r) < cln, ) Ar < cn, ) Alro — ol
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So,
|u(o) — ulyo)| < e(n, ) Alzo — yo|”
provided z and yo belong to the ball B(p) and |zo — yo| < R — 0. The last

restriction can be easily removed with the help of estimate (4.2.6). Indeed,
let 2o and yo are in B(p) but |xg — yo| > R — 0. Then

|0 — Yo\
(o) — u(yo)| < 2[ul|s,5(e) < 2<R——g> [ttlloo,50)-

Summarizing the above estimates, we arrive at (4.2.5). O

Lemma 2.3. (Poincaré-Sobolev) Let §2 be a bounded Lipschitz domain. Then
= [ulallpo < ctn,p, Dlulaa.  Yue WHQ). (4.2.7)

Here, [u]q := ﬁ [ udz.

Q
PROOF Our proof is based on the Reillich-Kondrachov theorem. Suppose
that the statement is false. Then for any m € N there exists u,, € WH?(Q)
such that ||u, — [umlallpa > m|um — [umlalpio. Letting vy, == (uy —
[umla)/l[tm = [um]allp.0, we have

|mllpa =1 > m|v,|p1.0, [Um]a = 0. (4.2.8)

From (4.2.8), it follows that v, is bounded in W'?(Q) and, by Reillich-
Kondrachov theorem, sequence v, is precompact in LP(2). Hence, there
exists a subsequence v,,, — v in LP(§2). The limit function v must have
the vanishing mean value, i.e., [v]o = 0 and satisfy the identity |[v|,o = 1.
In addition, from (4.2.8), we deduce that D;v,,, — 0 in LP(2) for all i =
1,2,...,n. Therefore, v has all the weak derivatives that are equal to zero.
So, v is a constant in €2. This constant must be equal to zero since v has
zero mean value in €. But this is in a contradiction with ||v||,o = 1. O

Corollary 2.4. If Q = B(xg, R), then

||U - [U]B(mo,R)Hp,B(mo,R) < C(nvp)R|u|p,1yB(xo,R)> Vu € WLP(B(:EU? R))

The corollary is proved by scaling. Change variables so that v(y) = u(x)
provided y = (z — z¢)/R, where y € B(0,1). Then we use Lemma 2.3 for
2 = B(0,1) and return to the old coordinates. O
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Theorem 2.5. Let 2 be a bounded domain with Lipschitz boundary and let
n < p < oo. Then the Sobolev space WP (Q) is continuously embedded into
space CP(Q) for any 0 < B<a=1—n/p.

Moreover, the embedding is compact if 0 < 3 < a.

PROOF Our first remark is follows. It is sufficient to prove continuity of
embedding W?(Q) into C*(Q). Indeed, continuity of others embeddings
follows from the fact C#(Q2) € C*(Q) if 8 < a (Explain why). The statement
about compactness can be deduced from the fact that C?(Q) is embedded
into C*(Q) if 8 < a, see Problem Sheet 4.

Let us take a number R > 0 so large that Q € B(R/2) and fix it. Let
v € WyP(B(R/2)) be an extension of a given function v € W'(Q) with the

following estimate

[Vllp.1,B0r/2) < (2, Rym,p)||ullp,.0 (4.2.9)

The function v can be extended to the whole ball B(R) by zero. This exten-
sion is still a function from W, ?(B(R)) and equal to zero in B(R)\ B(R/2).
We have from the Corollary 2.4 and from Holder inequality the following
estimate

1 /
|V — [V] Bz, [dT <
|B(r)| (mo.r)
B(.Z’(),T’)
1 1
< - r Pd )p < ) Q
- <|B<r>lB(/ N etz e s st
xo,T

for B(xg,r) C B(R). Then, by Lemma 2.2, v € C%(B(R/2)) with estimate
||U||oa(§(R/2)) < C(Q,R7n7p)(|7}’p,1,8(xo,R) + HUHLB(R))-

It remains to notice that

[ullce@ < vllce@r/2)
and by Hoélder inequality and by (4.2.9)
|U"P717B($0,R) + HUHLB(R) < C(Qv R7n7p)Hqu,LQ'

This completes the proof of the theorem. O
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4.2.2 Solvability in H>N H}

Let us consider the following elliptic differential operator of the form
Lu = —div(aVu) + b - Vu + cu

with coefficients satisfying our standing assumptions in a bounded domain
Q) with sufficiently smooth boundary, for example, of class C?. We assume
in addition that a is continuously differentiable in €2. Then

Va| < p < oo

in Q for some p. Our goal is to show that, for any f € L*(Q), the Dirichlet

boundary value problem
Lu=f

in €,
u’aQ =0

has a solution u that belongs to H?(Q).
We first notice that

LU, = —aijuvij + (bj — aij,i)uJ + cu
and then by our assumptions the operator L is bounded on H%(), i.e.,
[Lullz.0 < cllull220

for all u € H*(Q).

We also introduce the space
E(Q) ={veC*Q): v|sg =0}
and its closure in H?(Q), i.e.,
H(Q) = [£(Q)].

Clearly, H2(Q) is a subspace of Hj(2) N H?(Q) (exercise). Now, let us
consider the restriction of the operator L on H3(Q2). We denote it by the
same symbol L. Our aim is to show that R(L) := L(H3(Q)) = L*(2). This
would be an answer to the question of solvability of our Dirichlet boundary
value problem in H} N H>.

We start with an important auxiliary statement.
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Proposition 2.6. There ezists a constant C' depending on 2, v, p, ||b]|oc.q,
and ||c||coq such that

IV2ull3.0 < CUILull3 0 + [[ull30)
for any u € H2(Q).

Proof. By definition of the space H?(€2), it is sufficient to prove the estimate
of the proposition for functions u € £(2) only.

Just to understand the main idea better, we prove the proposition in the
the simplest case Lu = —Au. Let us fix Cartesian coordinates x = (z;) in
R™. After integration by parts, we have

2 12 _ o _
/|V u|“dr = /U,ijuﬁjdi’? = —/(Vj%ju,n’ — U iju V) ds + /U,n'u,jjdf’? =
Q

Q o0 Q

= —/]ds+/u’iiu7jjdx,

o0 Q

where

I:=v -VulAu—rv®Vu: Vu

and v is the unit outward normal to the surface 0f).

Let zg be an arbitrary point on the boundary 0f2. We also can find a
local Cartesian coordinates y centred at the point xy so that the axis y, has
the same direction as the unit outward normal v to 02 at the point zy. So,
we have y = QT (x — xy), where Q = (cy;) is an orthogonal matrix and Q7 is
transpose of it. Then we let

v(y) == w(Qy + o)
and the change of variables gives to us:

ou v 0*u 0%v

— = —Cks, = CitClks-
Ory  Oys " Oxpdx, Oy dy,

Now, since [ is invariant with respect to shifts and rotations, we have

I(x) = Qv v v v
O By Oy dy; 0y;0y,,
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Adopting summation over repeated Greek indices running from 1 to n — 1,
we find

ov 0% ov 0%
I(x0> = — .
ayn ayaaya ayﬁ ayﬁayn
We may assume that the boundary 02 in a neighbourhood of the point
zo (or y = 0) is a graph of the function ¢, i.e., y, = ©(y'), where ¢y =

(Y1, Y2, -y Yn—1). By our construction, ¢(0) = 0 and
¢
—7(0)=0
aya( )

with a =1,2,....,n — 1.
We know that h(y") = v(y', ¢(y')) = 0. Since

oh v v Oy
0= = + .
8ya 6ya ayn aya
It follows from the latter identity that
v

a—ya(O) == O

After further differentiations, we find

0= 0h _ 0% n 0%v 8<p+8v 0% N 0%v  Op
Ya0ys  OyaOys  0YaOyn Oys  Oyn 0YaOys ~ OYynOys OYa
&0 0p 0p
Az 9yp Oya
and, since
ou B @

the following is true

0%v ou 0%
Syt ) = "oy ) gy O
Hence,
ou 2 9%p

I(xo) = — 5(%) (0).

0Ya0Ya
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It is interesting to notice that if the domain 2 is convex then ¢ ,,(0) <0
for any point xq € 02 and, therefore, the following remarkable inequality is
valid:

IV2ull20 < [|Aul20

for any u € £(Q).
In general case, since the domain € is of class C?, there exists a constant
K independent of zy € 0f2 such that

0
Yo 0Yq

(0)} < K.

So, we have the inequality

/|V2u|2dx§K/|Vu|2ds+/|Au|2d:ﬂ.
Q o9 Q

By a simple modification of the proof of the theorem on traces, see Lemma
2.3, (explain what modification should be made) we have the following state-
ment: given € > 0, there exists a constant C'(e, 2) such that

/|Vu|2ds < E/]V2u\2dﬂc+0(€, Q)/|Vu|2dx.
o9 Q Q
Picking up ¢ by the identity Ke = 1/2, we easily find
1
5 / IV2ul*dr < C(K,&,9) / |Vul*dz + / |Aul?dz.
Q Q Q

On the other hand, integration by parts gives

/\Vu\zdx = —/uAudx < |lull2.allAu||2.0-
Q Q

The proposition follows. O

In what follows, we assume that the operator L satisfies the additional
condition

(Lu,u) = /uLudm = L(u,u) > 5”““%9
Q
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for some positive ¢, for any u € £(Q?) and thus for any u € H2 (). Then the
inequality of Proposition 2.6 takes the form

IV2ulloe < CllLul20

for any v € H?(Q2) with a constant C' independent of w.
Our main theorem is as follows.

Theorem 2.7. Assume that all above listed conditions on the operator L
hold. Suppose that there exists an elliptic operator Lo satisfying the same
condition as the operator L but with possibly different parameters ag, by, co,
Yo, Mo, and 0y. Assume that there ezists a set M C R(Lg) that is dense in
L3(9).

Then, for any T € [0,1], R(L,) = L*(2), where L, := Lo+ 7(L — Lo) :
H?(Q) — L*(Q). Moreover, L, is injective and there exists a bounded inverse
operator L1 : L*(Q) — H2(Q).

Let us discuss simple applications of Theorem 2.7.
Let 2 be a ball in R™. It is well known that all eigenfunctions of the
Laplace operator

—Au = \u

under the Dirichlet boundary conditions
u’ag =0

are infinitely smooth. Since those eigenfunctions are dense in L?*(f2), the
operator Ly = —A satisfies the assumptions of Theorem 2.7. Indeed, for any

f € L*), we have
F=> cmbm,
m=1

where {,, }2°_, is an orthonormal basis in L?(Q2) consisting of the eigenfunc-
tions of the Laplace operator under the Dirichlet boundary condition. The
solution of the problem

N
—Auy = E CmnPrms ulag =0
m=1
1S

N
u=— Z Cnpm ) Am € HE().
m=1
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Similar arguments work if 2 can be transformed into the ball B by smooth
non-degenerate change of variables y = ¢ (z) with ¢ € C3(Q). Let us show
how to construct such an operator Ly for the domain 2. Take two functions
u,v € H3(Q) and let v/(y) = u(z) and v'(y) = v(z) for y = ¢(x). We know
that u’,v" € H3(B). Then simply by chain rule, we find

ou' o'’ Ou Oxj, Ov 0wy
- 4.2.1
/ Jy; Oy; d / Ozy, Oy; Oxg Dy, Jaz, (4.2.10)
B Q

where J(x) = det(V(x)) is the Jacobian of the coordinate transformation
y = ¥(z) that satisfies the inequalities

O<a<J(x)<p<x

for all z € ). This identity suggests to introduce the operator Ly as follows:

Lou(z) = —%(aks(x)gz (‘r>>7

where a(z) = g(z)J(z),

0x,
y; Y

8xk
0y

(y)

o) = .
Ik ( ) y=v(z)

Therefore, (4.2.10) implies
ou' o'
dy= [ L dx.
dy; Oy Y / ofujvdz
B Q

To see that the matrix a satisfies the ellipticity condition, we let

d. =supsup |(Vyz(y) "¢l d-= lnf inf |(Vy(y))" €.

yeB lel=1 B =1

It is easy to see d_ > 0 and d; < oo (explain why). We can pick up v
sufficiently small so that 0 < vy < ad_ and fd, < 1.
Then we find

1 1 u@u
2d :/ /12 —ld <_/ /2d _/
ke = frwpriay< s fpay< oo [ G5y <
Q B B
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Next, let ¢! (y) is an eigenfunction of the Laplace operator under the
Dirichlet boundary condition in the ball B and let ¢,,(z) = ¢/, (y) provided
y = 1(z). Then from (4.2.10) it follows that

ael o'

)\m/Jgomvdx = )\m/go;nv'dy = dy = —/LOSDmwa
Qi y;
9) B B Q

and thus Loy, = AnJon, and ¢, € H2(Q).
Now, take f € L*(Q) and let f'(y) = f(z)/J(z). Given € > 0, we can

find N such that N
/]f’ — Z el |Pdy < e.
B m=1

After change of variables, we find

N N
£ > / o Zcmpm]szx = / If — chJgomPJ’ldx >
Q m=1 Q m=1

N
1
> B/|f - chJgom|2dx.
Q m=1

So, image of the operator Ly contains a set that is dense in L?(2). Hence, if
the operator L satisfies all the assumptions of Theorem 2.7 in such a domain
Q, then R(L) = L*(Q).

PROOF OF THEOREM 2.7 Let us describe some properties of the operator
L. First of all,

[L7]] < 7L+ (1 = )| Loll < max{|[L], | Lo} = c5 (4.2.11)
for any 7 € [0, 1]. Next,
(Lru,u) = 7(Lu,w) + (1= 7)(Lou,u) > (16 + (1= 7)do) ull30 >

> 51”'&”%75},

where §; = min{d, dp}. The latter, together with Cauchy-Schwarz inequality,
gives the estimate ||L,u||20 > d1||ul|2,q. Proposition 2.6 gives us

IV*ull2.0 < &l Lrulle
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with constant independent of 7. Moreover, by integration by parts,

[ Ivulde =~ [ Auude < |Vulaallulan < /6L ulfo
Q Q

Finally, we find
llull2.2.0 < cal|Lrul|2.0 (4.2.12)

with a constant ¢, that is independent of u € H3(2) and of 7 € [0,1]. So,
the operator L. is injective.

The theorem will be proven if we show that the operator L. is onto.
Then boundedness of the inverse operator follows from the estimate (4.2.12)
so that ||L7!|| < ¢4. First let us show that Ly is surjective. Indeed, for any
[ € L*(Q) there exists f,, € M such that f,, — f. Moreover, for each m,
there exists u,, € H2 () such that f,, = Lou,,. From estimate (4.2.12) for
7 =0, it follows that ||u,, — ug|l220 < ca||fin — fill2,0 and hence there exists
u € H2(Q) such that u,, — u in H?(Q) and by continuity of the operator
Lo we find Lou = f.

Now, the equation L,u = f can be re-written in the form (I+A)u = L' f,
where I is the identity operator in H2(Q) and A = 7Ly (L — Lo) : H2(Q) —
H?(Q). By (4.2.11) and (4.2.12), we have ||A|| < Tcs2¢5 = 7¢5. We know
(von Neumann) that the operator I + A has the bounded inverse operator if
|A|| < 1. So, for 7 € [0, 1] with 73 = 1/(2¢5), ||A]] < 1/2 and thus for the
same 7 the operator L, is surjective.

We then can represent the operator L, as follows: L, = L, +(1—7)(L—
Lo). The main equation takes then the form u+(7—7)L ' (L—Lo)u = L' f.
Repeating the same arguments as in the first step, we can show that L. is
surjective for all 7 € [0,27]. After a finite number of steps, we will be cover
the whole interval [0, 1]. Theorem 2.7 is proven.

4.2.3 Smoothness of Distributional Solutions

Theorem 2.8. Let u € L*(Q) and f € L*(Q) satisfy the Poisson equation
Au=—f
in the sense of distributions, i.e.,

AT, = =Ty (& /uAgodx = —/fg&d:v, Vo € C5°(9)).
Q Q
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Then u € W22(Q) and the following estimate is valid:
IVulla.go + V]2, < (2, Q0) (I fll20 + llull20) (4.2.13)

whenever €y € 1.

Proof. Fix an arbitrary ball w := B(zg, R) € 2. We can test the identity
that appears in the definition of distributional solution with a function v,
where ¢ € C§°(w) and v € £(w), and find

/gouAvdx = — /(f’v +4 - Vou)de,
where f' = pf +ulAp and ¢ = 2u - V.
We know that there exists a unique function w € HJ(w) such that

/Vw~Vvdx: —/(f/v+g'~VU)dac

w

for any v € H}(w). Since &(w) C H}(w), we find after integration by parts
in the second identity

/(ucp —w)Avdr =0

for any v € £(w) and therefore for any v € H? (w). By Theorem 2.7, we can
find v € HZ(w) such that —Av = up — w. This implies that w = up. The
function w obeys the estimate

IVwllzw < e(llf 2 + 19'l120)

From the latter, we can easily deduce the first statement of the theorem for
the first derivatives.

Since we know that Vu € H}.
the form

/gouAvdx: —/dex,

w w

where F' = ' —2div(uVy) € L*(w). Now, we can find w € H3 (w) such that

—Aw = F or equivalently
/wAvdx = —/dex

w w

(), we can re-write the first identity in
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for any v € £(w). Then we way repeat the above arguments and conclude w =
¢u. By Theorem 2.7, w satisfies the estimate | V2w||a,, < ¢||F|l2.. Selecting
a particular function ¢ and using the previous estimate, we complete the
proof of the theorem. O

Theorem 2.9. Let b =0, ¢ =0, a be a constant matriz and let u € L*(Q)
satisfy the equation div(aVu) = 0 in the sense of distributions, i.e.,

/udiv(an)d:U =0, Yw € C5°(Q).
Q

Then wu is infinitely differentiable inside ) and satisfies the estimate
lu(x)| < e(n, v, Qo, Q)||ull2.0, Vo € Qg € Q.

Proor STEP I. Here, we simply repeat arguments of the first step in the
proof of the previous statement replacing —Awu with —divaVu on balls and
then using covering by balls we can deduce the first energy estimate

/|Vu|2dx < C’l/|u|2dx. (4.2.14)
Q1 Q

STEP II Fix an arbitrary Lipschitz subdomain €y € 2 and find a sequence
domains €, k = 1,2, ..., such that Qy € ..... ENY1 EY E... €N €N
According to Step I, u € H*();) and estimate (4.2.14) holds. Now, for any
w € C§°(£21), we have

0= —/udiv(an,i)d:E = /ujdiv(an)d:E, i=1,2,...,n.
Ql Ql

We may repeat the same arguments as in Step I, replacing €2 with Qq,
with Qy, and u with u ;. This gives the following facts: u € H?(£2) and

/|V2u]2dacSC’Q/|VU|2d:E§C’102/|u|2dx.
Q2 2 Q

So, we can state that u € H*(€);,) and

/|Vku|2d:v§ C’k/|u|2das
Qo %)
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forany k =1,2,....
Now, let & = [n/2] + 1. Then applying the embedding Theorem 1.4

(k — 1) times, we get w € W'P(Qy) with any p > n if n is even and with

p = 71_22—&/2] > n if n is odd and the estimate ||ul|, 10, < Cllul2o holds.

It remains to apply the embedding Theorem 2.5 to get the estimate of the
theorem. O

4.2.4 More about Variable Coefficients

In this section, we are going to consider the simplest case of the elliptic
equation
—divaVu =0 (4.2.15)

in () provided that a is a symmetric matrix with bounded measurable entries
satisfying ellipticity condition

vI<a<v
for some positive v.

The best known result in this direction is:

Theorem 2.10. (DeGiorgi-Nash-Moser) Let b =0, ¢ = 0 and let u € H*(2)
satisfy the identity L(u,w) = 0 for any w € C§°(Q). Then u is Holder
continuous inside ) with an exponent depending on n and v only.

In what follows, we assume about a a bit more:

x — a(x) (4.2.16)

is continuous at any point x € €. Since our analysis will be essentially local,
we may assume that {2 € R” is bounded and

a€C(Q). (4.2.17)
Our main result is as follows:
Theorem 2.11. Let 4.2.17 hold. Let u € H'(Q) satisfy equation (4.2.15) in
the following weak sense
L(u,v) = /(aVu) -Vudr =0 (4.2.18)
Q

for any v € C*(QQ). Then for any 0 < a < 1 and for any Qy € €,
u € Ca(Qo)



4.2. SMOOTHNESS OF WEAK SOLUTIONS 69

We start a proof of Theorem 2.11 with auxiliary statements.
Lemma 2.12. (Morrey) Assume that u € H'(B(R)) and there exist two
constants A and « €]0, 1] such that

/ ’VU’QdCE S Arn—?—i—?a

B(zo,r)

for any B(xo,7) C B(R). Then, for any 0 < o < R, u € C%(B(p)), with the
estimate

ullce(Bio)) < Cn,a, 0, R)(VA+ ||ulli sw) (4.2.19)

PROOF Follows from Lemma 2.2, Holder inequality, and Poincare-Sobolev
inequality, see arguments in the proof of the second embedding theorem.

Lemma 2.13. Assume that an increasing function ® : [0, Ry] — [0,00]
satisfies the following property

O(r) < c[(}%)" +|e(r)

for any 0 <r < R < Ry with some positive constants ¢ and €.
For any 0 < v < n, there exists eg = eg(n, "y, c) such that if ¢ < &g then

r

o(r) < crln o) () 2(R)

for all 0 < r < Ry.
PrOOF Take 0 < 7 < 1 satisfying the condition
2et7 <1 (4.2.20)

and let
Eop = Tn.

Then for r = 7" Ry and R = 7°R,, we have
O(T"RY) < (" + £)®(T7Ry) <

<c(m"+ 60)<I>(TkR0) <
<er't" (14 507_")@(7kR0) <
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< 7m"D(T7Ry).
Iterating the last inequality in k starting with & = 0, we find
(7FRy) < TFO(Ry)
for any non-negative integer k. Given 0 < r < Ry, we can find k such that
™Ry <r < 1R,

which implies
r

k
T < —
_TR()

So,
() <O Ro) < (=) @(Ry). O
TRO
PROOF OF THEOREM 2.11 Our proof is based on the so-called method
of "frozen” coefficients. Take any ball B(zq, R) € €. Consider the following

auxiliary boundary value problem:
—div(a(zg)Vv) =0 (4.2.21)
in B(x, R) and
v="u (4.2.22)

on 0B(zo,R). We know that there exists a unique weak solution v €
H'(B(z, R)) to boundary value problem (4.2.21) and (4.2.22). Moreover,
the solution v is infinitely smooth inside of the ball B(zy, R) and satisfies the
estimate (explain why)

1

sup  |Vo(2)? < c(n,v)— / |Vv|?dx.

€B(z0,R/2) Rr
B($0,R)

So, if 0 < r < R/2, then
/ |Vv|?dr < c(%)n / IVo|?d,
B(zo,r) B(zo,R)
if R/2 <r < R, then

/|Wy?da:§(%)n / Vo[2d.

B(zo,r) B(zo,R)
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/]VM%@*SC(%)n / \Vo|dz

B(zo,r) B(zo,R)

forall 0 <r < R.
Now, we wish to compare our solution u with auxiliary one v:

/|Vu|2dx: / V(v +u—v)|*dr <

B(zo,r) B(zo,r)

And finally

<9 / Vol2de + 2 / V(= v)|2de <

B(zo,r) B(zo,r)

y(%)" / Vol2dz + 2 / IV (u — v)[2da.

B(zo,R) B(zo,R)

Using the same trick v = (v — u) + u, we show now

/ \Vul?de < c(%) / Vul?dz + ¢ / V(u—v)Pde (4.2.23)
B(zo,r) B(zo,R) B(zo,R)

for any 0 < r < R with a constant ¢ depending only on n and v. Now, we

need evaluate the second term on the right hand side of the latter inequality.

Indeed, according to the definition of weak solutions v and v, we find (explain
why)

0= / (a(x)Vu — a(xg)Vv) - V(u —v)dr =
B(xo,R)
= / ((a(x) — a(xo))Vu + a(ze)V(u — v)) -V(u—wv)de.
B(zo,R)

From the last identity and from the ellipticity condition, one can deduce

v / IV (u— v)|2dz < / (a(x) — alz0)) Va||V (1 — v)|de <
B(zo,R) B(zo,R)

1

<( [ @ - atopvape) ([ v opar)’

B(:Eo,R) B(:Eo,R)
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and thus

1

/ IV(u—v)Pde < —  sup |a(x) — a(xo)]® / |Vul*dx.
v z€B(zo,R)

B(zo,R) B(JC(),R)

And (4.2.23) can be transformed into the following one

/ \Vul*dz < c(n,v) [(%)n—k

B(zo,r)

+ sup |a(x)—a(x0)|2} / |Vul*dz (4.2.24)
x€B(z0,R)
B(zo,R)

forall 0 <r < R.

We take an arbitrary number 0 < av < 1 and let v = 2—2a. Then, using a
constant ¢ from (4.2.24) and the number v, we can find number £, of Lemma
2.13. This number depends on n, v, and «a only. By uniform continuity, we

can find ¢ such that
la(z) — alzo)| < V/eo (4.2.25)

provided z,zy € Q and |z — zo| < 4.
Now, let us take a ball B(z, R,) € Q with R, < ¢ and fix it. We then let
Ry = R, /4 and thus, for any zq € B(z,3/4R.,),

B([Eo, RO) - B(Za R*)
and (4.2.25) holds for any = € B(xg, Ry). If we let
O(r) = / |Vul*dz,
B(zo,r)
then we can derive from (4.2.24)
() < c(n,v)[(5) + 2o O(R)
for all 0 <r < R < Ry. Now, we are in position to apply Lemma 2.13

O(r) < c(n,v) <L> e

P(Ry) <
i (Fo) <



4.2. SMOOTHNESS OF WEAK SOLUTIONS 73

r

< n—2+2a 2d —C n—2+4+2a
~ C(TL,V) <EO) |VU| €T = l(nv v, q, R*7 HVUHZQ)T
Q

for any 0 < r < Ry.
Now, let us B(xg,r) C B(z,3/4R.). If r < Ry, then as it has been shown
above ®(zg,r) < C1r"= 2722 If r > Ry, then we argue as follows:

n—2+4+2«
< 20r < (— 2dx =
B(r) < /|Vu| i< () /|w da
Q Q

= Ca(n, a, R., | Vul|o0)r" 2.

So, for A = max{Cy, Cs},

/ ]Vu]Qda: S Arn—?—i—?a
B(zo,r)
provided B(zg,7) C B(z,3/4R.). By Lemma 2.12,
lllca(Be,r 2y < Cny v, Re/2,3/AR) (VA + |lull0) =
= C[)(TL, v, &, R*7 ||u||271,9)’
Given Qo € Q, let us take r = 5 min{4, dist(, 9Q)}. Then
||U||Ca(§(z,r/2)) < C:=co(n,v,a,m,[[ufl21.0)

for any z € Qy. Obviously ||ul/ecq, < C. Next, let zo,yo € Qo. If |20 — o] <
r/2, then |u(zo) — u(yo)| < Clzg — yol®. If |xo — yo| > /2, then

|z —?Jo’>“

u(eo) = ulw)| < 2ullo, < 20(

and thus
[ull gaayy < (1+2F%77)C.
([
In fact, if we assume that

a € C*Q) (4.2.26)

for some 0 < a < 1, then Theorem 2.11 can be essentially improved.



74 CHAPTER 4. FUNCTIONAL METHODS FOR PDE’S

Theorem 2.14. Let (4.2.26) and (4.2.18) hold. Then
Vu € Oﬂ(ﬁo)
for any 0 < B < a and for any Qy € Q.

PrRoOOF The plan of the proof is the same as in the previous theorem.
We “freeze” coefficients and consider auxiliary problem (4.2.21). But, in this
case, the different estimate for solutions to elliptic equations with constant
coefficients is used. Namely,

9 r\nt2 9
/ Vv — [V [7dx < ¢(n, V)<E> / Vv — [VU]yo.r| dx
B(zo,r) B(zo,R)
for any 0 < r < R. Here, we use abbreviation [fl.,,r = [f]B(wo,r)- This

estimate can be deduced from Theorem 2.9 (exercise). We can then repeat
the same arguments as in Theorem 2.11 and get

r

n+2
/ V= [Vl o < o ) / IVt — [Vt dar+

B(zo,r) B(zo,R)

+c / |V (u —v)[dz.
B(Z‘o,R)

For the error v — u, we have the same estimate

1

/ IV(u—v)Pde < —  sup |a(x) — a(xo)] / |Vul*d.
V” zeB(x0,R)

B(zo,R) B(zo,R)

But, since a is Holder continuous,
IV(u —v)’dr < cR*™ / |Vul?de = cR*® (2, R) (4.2.27)
B(zo,R) B(zo,R)
and

/ |V (u —v)[*de < cR**W(z0, R) + cR*|B(R)|(|[VUs.r)|* < (4.2.28)

B(zo,R)
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< cR* ¥ (zg, R) + cR**®(z0, R),
where
U(zg, R) := / (VU — [Vt 1l de.
B(zo,R)

Then repeating arguments of the previous theorem and using arguments
(4.2.27) and (4.2.28), we find

Oz, 1) < c[(%)n n Rﬂ (w0, R) (4.2.29)
and
U(x0, 1) < c[%)"” + RQC“] U(z0, R) + cR*® (0, R) (4.2.30)

for any 0 < r < R.
Now, fix an arbitrary subdomain €y € €2 and let

1
Ry := B min{eg”, dist(€2, 0Q}.
Then, by Lemma 2.13, we can deduce from (4.2.29)
®(z9, R) < cR"22=H)

for any 0 < R < Ry. But then (4.2.28) gives us:

r

(2o, 7) < c[(ﬁ)”+2 + R (o, R) + R (4.2.31)

for any 0 < r < R < Ry. Now, we need a generalisation of Lemma 2.13:
Lemma 2.15. Let = : [0, Ry] — [0, 00[ be an increasing function having the
following property:

r

E(r) < c[(ﬁ)a + 6} Z(R) + AR®

for any 0 < r < R < Ry with some positive constants ¢, A, «, B, and €
satisfying the condition a > . Show that there exists a constant e1(c, A, «, B)
such that if € < e, then

(r)<a [(RLO)BE(RO) + Arﬂ}

for all 0 < r < Ry and for some positive constant c1(c, a, 3).

[1]
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So, there exists €; > 0 such that

\1/(.730, R) S A1R26

1
forany 0 < R < Ry := %min{ef" , Ro}, for any zy € Qq, and for some positive
constant A;. Now, the statement of the theorem follows from Campanato’s
condition, see Lemma 4.2.4. O



Appendix A

Functional Analysis
Background

A.1 Normed Spaces

Definition 1.1. Let X be a real or complex vector space. A norm on X 1is
a function || - || : X — R satisfying

(N1) =zl =20, |z]|=0&2=0
(N2)  azx| = |o|||z] Ve X, VaeR(orC)
(N3) e +yll <zl + 1wl Vo,ye X
(X, || - ||) is then called a normed space.
Remark 1.2. If instead of (N1) one only has
(SN1) ||z|| >0 and r=0=|z|]|=0
then ||z|| is a called semi-norm.

EXAMPLES
LRY 2= (z1,29,...,2x5) = (2;) € RY

N
lally = > Jal
n=1

ol = sup_ o
1<n<N

N 1

2

ol = (D laal?)”.
n=1

7



78 APPENDIX A. FUNCTIONAL ANALYSIS BACKGROUND

I P, x=(x1,29,...) = (x;) € 1", 1 < p < 0,

o0 1
el = (D lal)”, 1<p<oo
n=1

[#]lc = sup [z, p=oo.
1<n<oo

I feC0[Q), f:Q =R,

[flls = sup|f(z)|

e = ( [Ir@pre)’.
( / )

V. C'([a,0]), f : [a.b] — R,
[fleraey = sup (If(@)|+[f(z)])

z€la,b]

£l = up |f'(z)| (semi-norm).
xreE|a,

Definition 1.3. Let X be a real or complex vector space. An inner (scalar)
product on X is a function (-,-) : X x X — R (or C) satisfying

(I11)  (z,z) >0, (z,2) =0 2=0

(12)  (zy)=(y2) VeyeX
(I3) x> (x,y) is linear for each fizred y € X.
(X, (+,)) is then called a pre-Hilbert space.
Remark 1.4. If instead of (I1) one only has
(S11)  (x,z) >0 (A.1.1)

then (-,-) is a called semi-indefinite scalar product.

From the Cauchy-Schwarz inequality

N

(2, 9)| < (z,2)3(y,y)3,

it follows
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Lemma 1.5. If (-,-) is (semi-indefinite) scalar product, then ||z| = (z,2)2,
xr € X, is (semi-) norm.

EXAMPLES
L. (w y) Z z;y; is a scalar product on 2.
f f(x)g(z)dx, Vf, g € C(Q), is a scalar product on C(Q).

A.2 Completeness

Definition 2.1. A Banach space is a normed space (X, ||-||) that is complete:
if {9} is a Cauchy sequence, i.c., |29 — 29| — 0 as i and j tend to oo,
then 2% is convergent, i.e., there exists v € X such that ||z — x| — 0 as i
tends to co.

Definition 2.2. A pre-Hilbert space zs a Hilbert space if it is a Banach space
with respect to the norm ||z| = (z,z)2.

EXAMPLES

I. The space of all continuous functions f : Q — R equipped with || - ||o is
denoted by C(Q). It is a Banach space. The proof relies upon two facts:
convergence with respect to the norm || - || is equivalent to uniform conver-

gence and on the Weierstrass theorem on the limit of uniformly converging
continuous functions.

II. Now assume that the space of continuous functions is equipped with || - ||2.
This is an example of a normed space that is not Banach one. To see that
let n =1, Q = (-1,1), and fi(z) = iz if x € [-1/i,1/i], fi(x) = —
if x € [-1,-1/i), and fi(z) = 1 if © € (1/i,1]. It is a Cauchy sequence
(explain why). Suppose that there exists f € C(Q2) such that

/|fz z)[2dz — 0 as i — 00.

Since f; and f are uniformly bounded, it is easy to see (explain why) that
f(z) = —1for x € (=1,0) and f(z) = 1 for x € (0,1), which means that f
is discontinuous at z = 0.
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A.3 Separability

In the normed space (X, || -]|), topology is defined with the help of the metric
generated by the norm: o(z,y) = ||z — y|| is the distance between x € X and
y € X. With this metric, we can define open ball and neighborhoods, open
and closed sets, interior and closure of a given sets, etc.

Definition 3.1. Let (X, || - ||) be a normed space. It is separable, if there
exists a countable set A € X with the following property. For any x € X and
for any positive number €, there exists a € A such that ||z — al| < e.

EXAMPLES

[. I”, with 1 < p < 00, is separable but [* is not.

II. C(Q) is separable. The idea of a proof in the simplest case Q = (0,1)
is as follows. Consider a countable set A consisting of all piece-wise linear
functions on [0, 1] with a finite number of vertices at points having rational

coordinates in the plane and show that it is required.

A.4 Compactness

Definition 4.1. Let (X, || - ||) be a normed space. We say that K C X is
a compact set of X if any open covering of K contains a finite subcovering.
We say that the set K is precompact if its closure is compact.

Definition 4.2. Let (X, || - ||) be a normed space. We say that K C X is
a sequentially compact set of X if any sequence of K contains a converging
subsequence whose limit belongs to K.

Theorem 4.3. Let (X, | -||) be a normed space and K C X. K is compact
if and only if K is sequentially compact.

Lemma 4.4. Let (X, ||-||) be a normed space and K C X be compact. Then
K is bounded and closed.

Theorem 4.5. (Hausdorff) Let (X, ||-]|) be a Banach space. K is precompact
if and only if for e > 0 there exists a finite e-net, i.e., K € |Jj_, Bx(zj,¢)
for some x; € X. Here, Bx(x, ) is an open ball of X with radius o centered
at point x.

EXAMPLES
I. Finite-dimensional spaces
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Lemma 4.6. (Heine-Borel) Any bounded closed set of a finite-dimensional
space 18 compact.

II. CLAIM: The unit closed ball of 1? is not compact. Indeed, let z\9) = (xgj))
with #7) = 0if i # j and #7) = 1 if i = j. Since |2 — 2@y = V2 if i # j,
the sequence z9) does not contain a converging subsequence.

111. C(Q),

Theorem 4.7. (Ascoli-Arzela) A sequence { f9}22, of C(Q) contains a con-
verging subsequence if and only if {f(j)}]?‘i1 has the following properties:
(1) {f(j)}]?’i1 is uniformly bounded, i.e., sup || f9 || < o0

J

(ii) {f0) 324 18 equi-continuous, i.e., for any € > 0, there exists 7 > 0 such
that |fO)(z) — fU(y)| < e for any natural j and for any x,y € Q with
|z —y| <.

A.5 Linear Operators

Let (X, ||||x) and (Y ||-||y) be a normed space. A linear operator A : X — Y
is bounded if
lAzly < Cllzy,  VeeX

Lemma 5.1. A linear operator A : X — Y is continuous on X if and only
iof it is bounded.

The least constant for which the latter inequality is called the norm of A
and denoted as follows

IA| == inf{C: ||Az|ly < Cllz|lx, Ve X).

Moreover,
[All = sup{[|Az]ly : [lz[x <1}

Theorem 5.2. (Uniform Boundedness Principle, Banach-Steinhaus)) Let
A, X =Y be a sequence of linear operators and x be a B-space. Then

sup || Al < o0
n

if and only if
sup ||A,z|| < oo

n

for each z € X.
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The linear space B(X,Y’) of all linear bounded operators : X — Y is
a B-space itself provided Y is B-space with respect to the operator norm

defined above.

A.6 Duality

Let (X, - |lx) be a normed space. A linear operator T': X — R (or C) is
called a linear functional and is bounded if

T(z)| < C|lz||x, Vo e X.

Lemma 6.1. Linear functional T : X — R (or C) is continuous on X if
and only if it is bounded.

Definition 6.2. A dual space X* is the space of all continuous linear func-
tional on X. We denote by x* its elements and the action z* on x is denoted
by x*(x) or < x*,x >.

X* is a Banach space with respect to the dual norm
|| x+ = sup{z"(z) : [lz[|x =1}

EXAMPLES: representation of linear functionals in certain spaces

I. RN, there exists isometric (preserves norm) isomorphism (linear mapping:
one-to-one and onto)7w : (RY)* — RY so that ma* = x (isometry: ||z|py =
|2*[|(mr)«) With

N
z*(y) = inyi vy € RY,
i=1

So, we have (RY)* 2 RY (up to isometric isomorphism). In what follows, in
such cases, we are going to use a simpler notation (RV)* = R¥.

II. Let U be a Hilbert space with a scalar product (-, -), there exists isometric
isomorphism U* — U, so that mu* = u with

u*(v) = (u,v) Vv e U.

So, we have U* = U.
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III. [» with 1 < p < oo, there exists isometric isomorphism 7 : (IP)* — [P,
p = p%l’ so that mo* = x with

z*(y) = leyl vy e I”.
i=1

So, we have (IP)* = [7".

By definition X** = (X*)*, each x € X generates a functional z** in the

following way

2 (x") = 2" (z), Va* e X*.
So, the latter identity defines a mapping 7 : X — X** so that 7o = z}*. It is
known that 7 is isometric isomorphism from X onto X = 7(X ). Obviously,
Xisa subspace of X**. A space X is called reflexive if X** = X.
ExAMPLES. R¥, U, and [? with 1 < p < oo are reflexive but I*, [*°, and
C(Q) are not.

Let (X, | - |lx) be a B-space (Banach space). Let V) be a sequence in
X. We say that zU) converges to € X strongly as j — oo (29 — x) if
|29) — z||x — 0. We say that 2) converges to 2 € X weakly (29 — z)
if 7*(zV)) — 2*(x) as j — oo for any 2* € X*. Finally, we say that a
sequence ) € X* converges to * € X* weakly-(x) as j — oo (z*0) = z*)
if 2*0)(z) — 2*(z) for any z € X.

Remark 6.3. A consequence of the Banach-Steinhaus theorem, see 5.2, is
as follows. Assume that 29 — x (x*0) X 2*) then

sup [l x (sup "9 x-) < 0.
J j

Moreover,

x+) 2 ||zl x (|27

lim inf [lo | (]|2*V] x+)-
J]—00

EXAMPLES
[. I” with 1 < p < o0.

9=z Zyixz(j) — Z%xz vy = (y;) € ¥
i=1 i=1

II. [°°.
I E) NN Zyix?) — Zyixi Yy = (y;) €'
=1 =1
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Strong convergence implies weak convergence but opposite in general is
wrong. Indeed, consider [? with the sequence described by the claim right af-
ter Lemma 4.6. In fact, this sequence converges weakly to zero (explain why).
The weak convergence implies the strong convergence in finite-dimensional
spaces. Sequences of X* converging weakly, converges weakly-(x), the op-
posite statement is true, in general, in reflexive B-spaces only.

We know that in finite-dimensional spaces bounded sequences are pre-
compact, i.e., any bounded sequence contains a convergent subsequence. For
the infinite-dimensional case, such a statement in general is not true. How-
ever, if we replace strong convergence by weak or weak-(x) convergence, the
corresponding statement turns out to be true in a number of cases interesting
for applications.

Theorem 6.4. (Banach-Alaoglu) Let (X, ||-||x) be a separable B-space. Sup-
pose that

sup ||z*|| x» < o0.
J

Then there exists a subsequence x*U%) such that
) g e X
as k — oo.

PRrROOF On Sheet 1.
We can get rid of separability, if we assume that X is reflexive.

Theorem 6.5. Let (X, || - ||x) be a reflexive B-space. Then any bounded
sequence in X contains a weakly converging subsequence.

Under the assumption that X* is separable, the latter statement easily
follows from Theorem 6.4 applied to X** = X.

A.7 Fredholm Alternative

Definition 7.1. Let U be a Hilbert space. An operator K : U — U is
compact or completely continuous if the image (under the action of K) of
any bounded set is precompact.
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Theorem 7.2. Let K : U — U be compact. Either the non-homogeneous
equation

u—Ku=f
1s uniquely solvable for any f € U or else the equation
u—Ku=20

has non-trivial (non-zero) solutions.

PROOF Suppose that homogeneous equation has the only trivial solution and
let us show that the non-homogeneous equation has a solution for any f € U,
e, Vi=I-K)(U)={veU: v=u—Ku,uecU}=U.

Let us first show that V' is closed. Let v,, € V and v,,, — v. We shall prove
that v € V. By definition, there exists u,, € U such that v,, = u,,— Ku,,. Let
us show that w,, is bounded. If not, WLOG, we may assume that ||u,,| — occ.
Setting v/, = vy /||um|| and w,, = w,,/||uml|, we observe that v/, — 0 and w/,
is bounded. If so, by Theorem 6.5, there exists s subsequence u,, such that
u,, — u' € U. Passing to the limit in the identity v,, = u;, — Kuy, , we
find v/ — Ku' = 0 and thus by assumption v’ = 0. On the other hand, since
K is compact, Ku;,, — Ku' and, therefore, u;, — u’, which implies (since
|ul,ll = 1) ||| = 1. This is a contradiction. Since u,, is bounded, we can
apply Theorem 6.5 again and get u,,, — u € U. Then taking the limit in
Upy, = U, — KUy, and find that v € V.

Assume V' C U (strong inclusion). Now, let us construct a sequence of
subspaces of U, letting Vi, = (I — K)(Vi_1), k =1,2,..., and Vj = V. Since
operator I — K is one-to-one, we have strong inclusion V}, C Vi1, k=1,2, ...
Indeed, to this end, it is sufficient to show that Vo = (I — K)*(Vp) C V; =
(I-K)(Vp). Assume that Vo = Vi. We know that there exists u € V5\ V. But
since (I—K)u € V; = Vs, there exists u; € U such that (I—K)u = (I—K)?u;.
Since the operator I — K is one-to-one, we find u = (I — K)u; € V;. This is
a contradiction.

Next, decompose Vj into an orthogonal sum so that Vi, = Vi1 & Vk%rl,
Vb, ={w e Vi : (w,v) = 0Vv € Viy1}. We can then select a sequence
wy € Vg5, such that ||wy]| = 1. Observing, for k > I, wy — Kwy € Vi1,
w; — Kw; € Vi1, and wy € Vi4q, we find

Kw, — Kwy = w; + a,
where o = —wy, + (wy — Kwy) — (w; — Kw;) € Vi1 and thus

1w = Kwi|* = [[wnl® + [Jaf|* > 1.
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Since sequence wy is bounded, sequence Kw; must be precompact, which
contradicts the last estimate. O

What happens if the equation © = Ku has non-trivial solutions? First, as
it has been shown in the proof of the Fredholm Alternative, the set (I —K)(U)
is closed and thus from the general operator theory it follows that

(I = K)(U) = (kex(I = K*))*,
where the adjoint operator K* is defined so that
(Ku,v) = (u, K*v) Yu,v € U,
I stands for the identity operator in U, and
(ker(I — K*)*={veU: (u,v)=0VueU u=K*u}.

In other words, our non-homogeneous equation © — Ku = f has a solution
if and only if (f,v) = 0 for any v € U satisfying the homogeneous equation
v = K"v.



Appendix B

Lebesgue’s Integration

B.1 Lebesgue’s Measure

Let a = (ay,as,...,a,) and b = (by,bs,...,b,) with a; < b;, i = 1,2,...,n.

P (a,b) = [Ii_,]ai, b;[ is an open parallelepiped, P(a,b) = ]\ [a: bi] is a
closed parallelepiped. Any set P(a,b) satisfying

P (a,b) C P(a,b) C P(a,b)

is a parallelepiped (n-dimensional).
The volume of P(a,b) is vol(P(a,b)) := [[i_,(bi — a;).

Definition 1.1. An (n-dimensional) outer measure of a set E € R™ is

iwH(E) =Y wol(Py): EC|] P}
=1 i=1
Lemma 1.2.
() w(B)elo], ECR,

(ii)  p(0) =0,
(1i1)  p* is o — subadditive

M*(U E;) < Z w(E;).
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Definition 1.3. A set E € R" is measurable (Lebesgue measurable) if for
any € > 0 there exists an open set O, such that E C O, and p*(O: \ E) < €.
We then call u*(E) the Lebesgue measure of E and denote it by p(E).

The Lebesgue measure is o-additive, i.e., if F;, i = 1,2, ..., are measurable
and disjoint (E; N E; =0, ¢ # j) then

plJE) =" (.

The family of measurable sets in R” is a g-algebra that contains all open sets
and all null sets (F is a null set if for any positive € there exists a countable
covering of E by open parallelepipeds whose summary volume is less than

£).

B.2 Measurable Functions

Let E be a measurable set in R™. A function f: E — R is measurable if for
a € R theset {x € E: f(xr) > a} is measurable.

Definition 2.1. (i) f,, — f almost everywhere (a.e.) in E as m — oo if
fm(x) — f(x) for almost all (a.a.) v € E.

(i1) Let {fm}>_, and f be measurable and a.e. finite in E. f,, — f in
measure if for any € > 0

Jim iz € B+ |fl) = f@)] = ¢} = 0.

Lemma 2.2. Let f,, is a sequence of measurable functions in E. If f,
converges to f a.e., then f is measurable in E.

Theorem 2.3. (Lebesgue) Let {f,,}5°_, and f be measurable and a.e. finite
in E. Assume that p(E) is finite and f,, converges to f a.e. in E. Then f,,
converges to [ in measure.

Theorem 2.4. (Riesz) Let {f,,}5°_ and f be measurable and a.e. finite in
E. Assume that u(E) is finite and f,, converges to f in measure in E. Then
there exists a subsequence f,,, converging to f a.e.
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B.3 Lebesgue’s Integral

Let E be measurable with u(E) < oo. A partition T is a finite family of
disjoint measurable sets whose union is F, i.e., T'= {E;}7,, E; N E; = 0 if
i#j,and E = |J Ej.

j=1
For a bounded function f : F — R, we let

=S M(B), S(T) =Y mun(EBy),

My = sup f(z), my = inf f(a).

z€E), zeEy
Then we define upper and lower Lebesgue integrals:

I(E) = il%f S(T)  IL(E)=sups(T).

T

Definition 3.1. A bounded f : E — R is called Lebesgue integrable or
integrable over set E if upper and lower integrals coincide. The corresponding
value is called Lebesque integral of f over E and denoted by

[ t@duta) (or simpty [ 5(oyiz).

Theorem 3.2. Any bounded measurable function is integrable over bounded
measurable set.

Next step is to define Lebesgue’s integral for non-negative measurable
functions. To this end, let us introduce a truncation of f > 0 as fy(x) =
min{ N, f(x)}. By Theorem 3.2, fy is integrable and a sequence

m:/hwm

is increasing as N — oo.

Definition 3.3. Let f be non-negative and measurable in E. If Iy is a
bounded sequence, then f is integrable in F. hm In s called Lebesque’s

integral of f in E and denoted by the same symbals as in Definition 3.1.
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In the same way, we can define Lebesgue’s integral of non-negative mea-
surable function f : E — R for any measurable set E (not necessarily having
bounded measure). Let R > 0 and define fr(x) = f(x) if x € EN B(R) and
fr(z) =0if z € £\ B(R). Then, we can consider

Ip = f(z)dz.
ENB(R)

Definition 3.4. Let f be non-negative and measurable in E. If Ir is a
bounded sequence, then f is integrable in E. lim Ir s called Lebesque’s

R—o0
integral of f in E and denoted by the same symbols as in Definition 3.1.

For arbitrary measurable function f : E — R, defined in arbitrary mea-
surable set F, we proceed as follows. Setting

1 1
fo=sUf1 . =500 1)

Definition 3.5. A measurable function f : E — R is integrable in E if f.
and f_ are integrable there and

[ t@ie= [ s [ @y

1s Lebesque’s integral of f in E.
Theorem 3.6. f is integrable in E if and only if |f| is integrable in E and

’/f(x)dx‘ S/\f(x)\dx.

We denote by L!(FE), the linear space of all functions integrable in F. Let
us list some properties of Lebesgue’s integral.

Theorem 3.7. (Absolute continuity of Lebesgue’s integral as a function of
sets) Let f € LY(E). For any € > 0, there exists 6(¢) > 0 such that

’/f(x)dx‘ §/|f(x)|dx<5

provided u(Ey) < () and Ey C E.
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Theorem 3.8. (c-additivity) Let E = J,o, Ex, Ex N Ep =0 if k # m.
(i) If f € LY(E), then f € LY(E) for any k and

/f(:r;)dx: Z/f(x)dx (B.3.1)
(ii) If f € LY(Ey) for any k and
|f(z)]dz < oo,
%/

then f € LYE) and (B.3.1) holds.

B.4 Sequences of Integrable Functions

The main theorem of this subsection is as follows.

Theorem 4.1. (Dominated convergence, Lebesque) Let f,,, m = 1,2, ..., be
a sequence of measurable functions in E. Suppose that
(i) fn — [ a.e. in E;
(ii) | frm| < F a.e. in E for all m and for some F € LY(E).
Then f € LY(E) and

m—o0
E

lim fm(:c)da::/f(x)dx. (B.4.2)

Theorem 4.2. (Beppo Levi) Let f,, € LY(E), m = 1,2,..., satisfying the
conditions:
(i) sup,, [ fmdx < oo;

E
(1) fin < fmi1 a.e. in E for any m.

Then
(i) there exists f € LY(E) such that f,, — f a.e. in E as m — oo;
(i1) (B.4.2) holds.

Lemma 4.3. (Fatou’s) Let f,, € L'(E) and f,, > 0 a.e. in E for allm € N
Let fo, = f a.e. in E and sup,, [, fmdx < M < oco. Then f € L1(E) and
[ fdx < M.



