
C4.1 Further Functional Analysis – Problem Sheet 2

For classes in Week 4 of MT

• This example sheet is based on the material up to section 6 of the notes together
with Appendix A; the relevant video material is covered in the videos up to and
including 7.1.

• Please send comments, corrections, clarifications to stuart.white@maths.ox.ac.uk.

• Please hand in the questions in Section B. You may also hand in the questions
in Section A, or exactly one question from Section C (but not both).

1 Section A

1. Let X and Y be normed spaces and T ∈ B(X, Y )

(a) Show (ran T )◦ = ker T ∗.

(b) Use the Hahn-Banach theorem to show (ran T ∗)◦ = ker T .

2. Let X be a normed space.

(a) Let C ⊂ X be convex set. Show that the closure, C is convex.

(b) Given a subset A ⊂ X, show that

{
n∑

i=1

λiai : n ∈ N, ai ∈ A, λi ≥ 0,
∑
i

λi = 1}

is the smallest convex subset of X containing A. This is known as the
convex hull of A, and denoted co(A).

(c) Let C1, C2 ⊆ X be closed convex sets. Show that co(C1 ∪ C2) is closed.

Mea culpa. This problem is not true — intituition for infinite di-
mensional convex geometry is misleading. Philip’s proposed counter
example works perfectly. Take two closed subspaces Y and Z of a
normed space X whose sum Y + Z is not closed as given on problem
sheet 1. Then co(Y ∪ Z) = Y + Z (containment from left to right
is as Y + Z is convex; but given any y ∈ Y and z ∈ Z, we have
y + z = (2y + 2z)/2 ∈ co(Y ∪ Z).

(d) Given a subset A ⊂ X, show that co(A) is the smallest closed convex subset
of X containing A. This is known as the closed convex hull of A, denoted
co(A).

[You will perhaps find the closed convex hull construction, and in particular
the version in (c) useful elsewhere on the example sheet. This cryptic remark
is certainly less helpful than intended too – let’s make sure to take the closed
convex hull in 6c.]
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2 Section B

3. Let X be a normed vector space and let Y be a subspace of X.

(a) Suppose that Y is finite-dimensional. Show that Y is complemented in X, and
that if Z is any closed subspace of X such that X = Y ⊕Z algebraically, then
X is in fact the topological direct sum of Y and Z.

(b) What can you say if Y has finite codimension in X? [Recall that the codimen-
sion of Y in X is the dimension of the quotient vector space X/Y .]

4. (a) Let X be a Banach space and suppose that {xn : n ≥ 1} is a bounded subset of
X. Show that there exists a unique operator T ∈ B(`1, X) such that Ten = xn
for all n ≥ 1 and ‖T‖ = supn≥1 ‖xn‖.

(b) Prove that if X is a separable Banach space then X ∼= `1/Y for some closed
subspace Y of `1.

(c) Deduce that `1 contains closed subspaces which are uncomplemented.

[You may assume that any closed infinite-dimensional subspace of `1 has non-
separable dual. We might prove this at the end of the course.]

5. (a) Let X be an infinite dimensional real normed space, and f : X → R a linear
functional. Show that if there is an open ball B0

X(x0, r) such that f(x) > 0
for x ∈ B0

X(x0, r), then f is continuous. Deduce that if f is unbounded, then
ker f is dense in X.

(b) Use the previous result to show that any infinite dimensional normed space X
can be decomposed into a union A ∪ B of disjoint convex sets, with both A
and B dense in X.

6. (a) Let C be a convex absorbing subset of a normed space. Show

{x ∈ X : pC(x) < 1} ⊆ C ⊆ {x ∈ X : pC(x) ≤ 1},

with equality in the first inclusion when C is open, and equality in the second
when C is closed.

(b) Let C be a convex balanced subset of a normed space, which contains a neigh-
bourhood of 0 and is bounded. Show that pC gives an equivalent norm on
X.

(c) Let Y be a subspace of a normed space (X, ·), and let 9 · 9 be an equivalent
norm on Y . Show that 9 · 9 can be extended to an equivalent norm on X.

7. Let X and Y be normed vector spaces and let T ∈ B(X, Y ). Suppose there exists
a constant r > 0 such that ‖T ∗f‖ ≥ r‖f‖ for all f ∈ Y ∗.
(a) Using the Hahn-Banach Separation Theorem, or otherwise, show that BY (r)

is contained in the closure of T (BX).

(b) If X is complete, deduce that T is a quotient operator, and that T is an
isometric quotient operator if T ∗ is an isometry.

[This question is asking you to complete the missing bits from Theorem 5.10.]
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8. Let X = `∞ and Sx = (xn+1) for x = (xn) ∈ X. Moreover, let T = I − S.

(a) Show that KerT = {(λ, λ, λ, . . . ) : λ ∈ F} and that RanT ∩KerT = {0}.
(b) Let Y = RanT ⊕KerT and let P : Y → Y be the projection onto KerT along

RanT . By considering the operators

An =
1

n

n−1∑
k=0

Sk, n ≥ 1,

or otherwise, show that P is bounded and that ‖P‖ = 1.

(c) Prove that there exists a functional f ∈ X∗ with ‖f‖ = 1 such that f(Sx) =
f(x) for all x ∈ X and

f(x) = lim
n→∞

xn

whenever x = (xn) ∈ c.1 Evaluate f(x) when x is a periodic sequence.

9. Let X be a normed vector space and let Y be a subspace of X.

(a) Writing Y ◦◦ = (Y ◦)◦ for the double annihilator of Y in X∗∗, show that there
exists an isometric isomorphism T : Y ∗∗ → Y ◦◦ such that T ◦ JY = JX |Y .

(b) Show that if X is reflexive and Y is closed, then both Y and X/Y are reflexive.

3 Section C

This section consists of extensional exercises. While some, particularly on later sheets,
might be (quite a lot) harder than the main exercises for the course, they won’t all
be. Some have been moved here compared to last year’s sheets to keep the core sheet
length under control (both for you and the TA!), and some are new. There is no
requirement to do any of these exercises, and they’re included for your enjoyment and
to let you know what else is true.

It is unlikely we will have time to discuss any of these exercises in the classes;
though if there is particular demand we will see what we can do. I will be happy
to discuss these questions in office hours (with notice), but only I’ve after I’ve taken
questions on the lectures and other more core questions. You may hand in exactly one
section C question in for marking if you wish (and only if you do not hand in section
A).

1. (a) Let X be a normed vector space and let P ∈ B(X∗∗∗) be given by P =
JX∗J∗X . Show that P is the projection onto JX∗(X∗) along JX(X)◦ and
that ‖P‖ = 1.

(b) (i) Show that if T ∈ B(`∞) with ‖T‖ = 1 and Ten = en, n ≥ 1, then
T = I.

(ii) Deduce that there does not exist a projection of norm 1 from `∞ onto
c0.

(iii) Prove that there is no normed vector space X such that X∗ ∼= c0.

1Recall that c is the subspace of `∞ consisting of convergent sequences.
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2. Given a normed vector space X, we say that X is injective 2 if whenever Y is a
subspace of a normed vector space Z and T ∈ B(Y,X) there exists an operator
S ∈ B(Z,X) such that ‖S‖ = ‖T‖ and S|Y = T .

(a) (i) Show that `∞ is injective

(ii) By proving first that any operator T ∈ B(`∞, c0) such that Ten = en,
n ≥ 1, must have norm ‖T‖ ≥ 2, or otherwise, show that c0 is not
injective.

(iii) Is c0 complemented in c, and if so what can you say about the norm
of a complementing projection?

(b) Suppose that X is an injective normed vector space, and Y is a subspace
of a normed vector space Z such that Y is isomorphic to X. Prove that Y
is complemented in Z.

3. Let Y and Z be closed subspaces of a Banach space X and suppose that X∗ =
Y ◦ ⊕ Z◦ as a topological direct sum. Show that X = Y ⊕ Z as a topological
direct sum.

SAW MT20

2The terminology comes from category theory; X is an injective object in the category of normed
spaces with contractive linear maps.
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