
C4.1 Further Functional Analysis – Problem Sheet 4

For classes in Week 8 of MT

• This example sheet is based on the material up to section 13 of the notes together
with Appendix A; the relevant video material is covered in the videos numbered
up to 15.1.

• Please send comments, corrections, clarifications to stuart.white@maths.ox.ac.uk.

• Please hand in the questions in Section B. You may also hand in the questions
in Section A, or exactly one question from Section C (but not both).

1 Section A

1. Let X and Y be normed spaces T ∈ B(X, Y ). Fill in the details required to show
that T is compact if and only if for every bounded sequence (xn)∞n=1, there is a
subsequence (xnk

)k such that (Txnk
)k converges.

2. Show that c0 embeds isometrically into K(`2). Deduce that K(`2) is not reflexive.

3. This question aims to revise your knowledge of the spectrum of self-adjoint op-
erators on a Hilbert space. If you’ve not seen it before, then the second and
fourth parts probably won’t be warm up exercises. Let X be a Hilbert space
and T ∈ B(X).

(a) Show that if T is self-adjoint, then eigenvectors of T corresponding to dis-
tinct eigenvalues are orthogonal.

(b) Show that T is surjective if and only if the adjoint T ? is bounded below.
Use this to show that if λ ∈ σ(T ) then there is a sequence (xn)∞n=1 in SX

such that (Txn, xn) → λ. [Mea cupla: the original version of this question
was if and only if. This was very silly, and is obviously not true (it fails in
2 dimensions)!]

(c) Deduce that the spectrum of a self-adjoint operator is contained in R.

(d) If T is self-adjoint show that ‖T‖ = supx∈SX
|(Tx, x)| and deduce that

r(T ) = ‖T‖.

2 Section B

4. (a) Let X and Y be normed vector spaces and let T ∈ B(X, Y ). We say that T is
completely continuous if, for every weakly convergent sequence (xn) in X, the
sequence (Txn) is norm-convergent in Y .

(i) Show that if T is compact then T is completely continuous.

(ii) Prove that the converse of (i) holds if X is reflexive. [You may, if you
wish, assume in addition that X is separable.]

(iii) Exhibit an operator which is completely continuous but not compact.
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(b) Let 1 < p <∞. Show that B(`p, `1) = K(`p, `1). Is B(c0, `
p) = K(c0, `

p)?

5. Let X and Y be normed vector spaces and let T ∈ B(X, Y ). We say that T is
weakly compact if the weak closure of T (BX) is weakly compact.

(a) Show that T is weakly compact if and only if RanT ∗∗ ⊆ JY (Y ).

(b) Prove that if T is weakly compact then T ∗ is weakly compact, and that if Y
is complete then the converse holds too.

6. Let K ∈ L2(R2) and consider the map T sending x ∈ L2(R) to the function Tx
defined by

(Tx)(t) =

∫
R
K(s, t)x(s) ds

whenever t ∈ R is such that the integral exists.

(a) Show that T is a well-defined element of B(L2(R)) with ‖T‖ ≤ ‖K‖L2(R2).

(b) Prove that T is compact. [You may use the fact that indicator functions of
bounded rectangles span a dense subspace of L2(R2).]

7. LetX, Y be Banach spaces and suppose that T ∈ B(X, Y ). Show that T is Fredholm
if and only if T ∗ is and that, if both operators are Fredholm, then indT+indT ∗ = 0.

8. Let X, Y and Z be Banach spaces and let S ∈ B(Y, Z) and T ∈ B(X, Y ).

(a) Show that if S, T are both Fredholm then so is ST and indST = indS+indT.

(b) Suppose now that ST is Fredholm. Prove that S is Fredholm if and only if T
is Fredholm. Give an example in which neither S nor T is Fredholm.

(c) Show that if X = Y = Z and ST = TS then ST is Fredholm if and only if S
and T are both Fredholm.

9. LetX be the complex Banach space `1 and consider the left-shift operator T ∈ B(X)
given by Tx = (xn+1)n≥1 for x = (xn)n≥1 ∈ X. Moreover let Γ = {λ ∈ C : |λ| = 1}.
(a) Show that for λ ∈ C the operator T − λ is Fredholm if and only if λ 6∈ Γ, and

determine the index ind(T − λ) whenever it is defined.

(b) Let p be a complex polynomial. Prove that p(T ) is Fredholm if and only if
p−1({0}) ∩ Γ = ∅ and that, if this condition is satisfied, then

ind p(T ) =
1

2πi

∮
Γ

p′(λ)

p(λ)
dλ.

10. Let X be a Banach space and let {xn : n ≥ 1} be a Schauder basis for X with basis
projections Pn, n ≥ 1, and let

9x9 = sup{‖Pnx‖ : n ≥ 1}, x ∈ X.

Prove that 9 · 9 defines a complete norm on X.

11. Let X be a separable Hilbert space. An operator T ∈ B(X) is a Hilbert-Schmidt
operator if there is an orthonormal basis (en)∞n=1 for X such that

∑∞
n=1 ‖T (en)‖2 <

∞.
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(a) Show that if (en)∞n=1 and (fm)∞m=1 are orthonormal bases forX, then
∑

m ‖T (fm)‖2 =∑
n ‖T (en)‖2 for any T ∈ B(X).

(b) Show that every Hilbert-Schmidt operator is compact.

(c) Give a characterisation in terms of eigenvalues and multiplicities of when a
compact self-adjoint operator is Hilbert-Schmidt.

12. Prove Theorem 14.4: if X is a Banach space with a Schauder basis, then every
compact operator on X is a norm limit of finite rank operators. 1

[See lectures for a hint]

3 Section C

This section consists of extensional exercises. While some, particularly on later sheets,
might be (quite a lot) harder than the main exercises for the course, they won’t all
be. Some have been moved here compared to last year’s sheets to keep the core sheet
length under control (both for you and the TA!), and some are new. There is no
requirement to do any of these exercises, and they’re included for your enjoyment and
to let you know what else is true.

It is unlikely we will have time to discuss any of these exercises in the classes;
though if there is particular demand we will see what we can do. I will be happy
to discuss these questions in office hours (with notice), but only I’ve after I’ve taken
questions on the lectures and other more core questions. You may hand in exactly one
section C question in for marking if you wish (and only if you do not hand in section
A).

1. (a) Let X be a Banach space and suppose that {xn : n ≥ 1} ⊆ X \ {0} spans a
dense subspace of X. Prove that {xn : n ≥ 1} is a Schauder basis for X if
and only if there exists a constant M > 0 such that∥∥∥∥ m∑

k=1

λkxk

∥∥∥∥ ≤M

∥∥∥∥ n∑
k=1

λkxk

∥∥∥∥
for all n ≥ m ≥ 1 and λ1, . . . , λn ∈ F.

(b) Let X be a Banach space which admits a Schauder basis {xn : n ≥ 1} with
associated basis functionals fn ∈ X∗, n ≥ 1.

(i) Show that the set {fn : n ≥ 1} is basic, which is to say that it forms a
Schauder basis for its closed linear span.

(ii) Assuming that X∗ admits a Schauder basis, is {fn : n ≥ 1} necessarily
a Schauder basis for X∗?

(c) (i) Let F be a finite dimensional subspace of a normed space X. Let ε > 0
and fix an ε/2 net y1, . . . , yk for the unit sphere SF , and for each i choose
fi ∈ SX∗ with fi(yi) = 1. Show that any x ∈ SX with fi(x) = 0 for all
i satisfies ‖y‖ ≤ (1 + ε)‖y + λx‖ for all y ∈ F and all λ ∈ F.

1Additional exercise. Show that regardless of separability, every compact operator on a Hilbert
space is a limit of finite rank operators.
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(ii) Use the previous part repeatedly to show that any infinite dimensional
Banach space contains a basic sequence.

2. Suppose that K ∈ L2(R2) is a complex-valued function such that K(s, t) =
K(t, s) for all s, t ∈ R, and let λ ∈ C \ {0}. Given y ∈ L2(R) we wish to find
x ∈ L2(R) such that, as an identity in L2(R), we have

λx(t)−
∫
R
K(s, t)x(s) ds = y(t), t ∈ R.

Find criteria for existence and uniqueness of solutions x ∈ L2(R), and in the case
where there is a unique solution for arbitrary y ∈ L2(R) express x as a series.

3. Let X be a Banach space with a Schauder basis {xn : n ≥ 1} with associated
basis projections Pn and basis functionals fn ∈ X∗, n ≥ 1.

(a) Somewhat giving away the answer to the last part of the previous question,
show that for each n ∈ N,

‖f |Span{xi:i>n} ≤ ‖f − P
∗
nf‖ ≤ (1 +K)‖f |Span{xi:i>n},

where K is the basis constant. Deduce that Span{fn : n ∈ N} = X∗ if and
only if for every f ∈ X∗,

‖f |Span{ei:i>n}‖ → 0,

as n → ∞. [In this case we say that {xn : n ≥ 1} is a shrinking Schauder
basis.].

(b) Let f ∈ X∗. Observe that P ∗nf → f weak∗, and use this to deduce that if
X is reflexive, then {xn : n ≥ 1} is shrinking.

(c) Suppose that {xi : i ∈ N} is shrinking. Let Y be the space of all sequences
(an)∞n=1 equipped with ‖(an)‖ = supn ‖

∑n
i=1 aixi‖. Verify that this is a

norm on Y , and that T : X∗∗ → Y given by (Tφ) = (φ(fn)∞n=1) is an
isomorphism. Show too that if the basis constant is 1, then T is isometric.
[For context, think about what is going on with the canonical basis of c0.].

(d) Deduce that X is a reflexive space if and only if {xi : i ∈ N is shrink-
ing and for all sequence of scalars (an)∞n=1,

∑∞
i=1 aixi converges whenever

supn ‖
∑n

i=1 aixi‖ <∞.

4. The James space is the space X consisting of all sequences of real numbers
(an)∞n=1 such that an → 0 and

‖(an)‖ = sup
k≥2

sup
n1<n2<···<nk

( k−1∑
i=1

(ani
− ani+1

)2
)1/2

<∞.

(a) Show that X is a Banach space, and that the elements en (which have a 1
in the n-th position and zeros elsewhere) form a Schauder basis for X with
basis constant 1.
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(b) Suppose, with the aim of reaching a contradiction, that {en : n ∈ N} is not
shrinking in the sense of the previous question. Use 11(a), to find f ∈ X∗
with ‖f‖ = 1, ε > 0, a real sequence (an)∞n=1 and p1 < q1 < p2 < q2 < . . .
such that the elements xn =

∑qn
i=pn

aiei ∈ X have ‖xn‖ = 1 and f(xn) > ε
for all n. By considering

bn =

{
an/n, pn ≤ n ≤ qn

0, otherwise
,

or otherwise reach a contradiction, and deduce that {en : n ∈ N} is shrink-
ing.

(c) Given a real sequence (an) such that supn ‖
∑n

i=1 aiei‖ < ∞, show that
limn→∞ an exists. Use question C.3 to deduce that JX(X) is has co-dimension
1 in X∗∗.

(d) Show that X is isomorphic to X∗∗.

(e) In C.1(b)(ii), your example probably had the property the dual space was
not separable. Can you now give an example with a separable dual space?

SAW MT 2020
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