
C4.1 Further Functional Analysis – Problem Sheet 0

This problem sheet is not for handing in. It is intended for revision and consolida-
tion, during the long vacation and the beginning of Week 1 of MT, of some important
concepts in Functional Analysis. Solutions are provided.

1. Let X be a normed vector space. Prove that X is a Banach space if and only if
every absolutely convergent series with terms in X converges to a limit in X.

2. Given an example of Banach spaces X, Y and a bounded linear operator T : X → Y
such that RanT is not closed in Y .

3. Let Xn, n ≥ 1, be normed vector spaces. Consider the vector space X of sequences
(xn)∞n=1 such that xn ∈ Xn, n ≥ 1, and

∑∞
n=1 ‖xn‖ <∞, endowed with the norm

‖x‖ =
∞∑
n=1

‖xn‖, x = (xn)∞n=1 ∈ X.

(a) Prove that if Xn is complete for each n ≥ 1 then so is X.

(b) Let X∗n denote the dual space of Xn, n ≥ 1. Show that the dual space X∗ of X
is isometrically isomorphic to the vector space Y of all sequences (fn)∞n=1 such
that fn ∈ X∗n, n ≥ 1, and supn≥1 ‖fn‖ <∞, endowed with the norm given by
‖f‖ = supn≥1 ‖fn‖, f = (fn)∞n=1 ∈ Y .

[Think about the proof that the dual space of `1 is isometrically isomorphic
to `∞. If you’ve not seen this result in your earlier courses, this problem will
probably be hard, and I’d encourage you instead to spend time considering
finding out about dual spaces of `p for 1 ≤ p <∞ and for c0.]

4. Let X be a Banach space.

(a) What does it mean to say that an operator T ∈ B(X) is invertible?

(b) Suppose that T ∈ B(X) and that ‖T‖ < 1. Show that I − T is invertible.

(c) Let S, T ∈ B(X) and suppose that T is invertible and that ‖S‖ < ‖T−1‖−1.
Prove that S + T is invertible and that

(S + T )−1 =
∞∑
n=1

(−1)n(T−1S)nT−1,

where the series converges in the norm of B(X).

(d) Deduce that the set of invertible operators is an open subset of B(X) and that
the spectrum

σ(T ) = {λ ∈ F : λ− T is not invertible}

of any operator T ∈ B(X) is a compact subset of the field F.

(e) Given a non-empty compact subset K of F, show that there exist a Banach
space X and T ∈ B(X) such that σ(T ) = K. What can you say if K is empty?
[Does it make a difference whether F is C or R?]

5. Let X be a Banach space, Y a normed vector space and let T ∈ B(X, Y ).
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(a) Suppose there exist ε ∈ (0, 1) and M > 0 such that dist(y, T (B◦X(M))) < ε
for all y ∈ B◦Y . Prove that B◦Y ⊆ T (B◦X(M(1− ε)−1)). [Take y1 = y ∈ B◦Y and
take x1 ∈ B◦X(M) with ‖Tx1 − y1‖ < ε. Now take y2 = Tx1 − y1. How well
can you approximate y2 by something in the range of T?]

(b) Deduce that if T (B◦X(M)) contains a dense subset ofB◦Y thenB◦Y ⊆ T (B◦X(M)).

[This is the successive approximation lemma - if you get stuck, you might have a
look at the proof of the open mapping theorem from B.4.2.]

SAW MT20
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Solutions

1. Suppose first that X is complete and let xn ∈ X, n ≥ 1, be such that
∑∞

n=1 ‖xn‖ <
∞. If we let sn =

∑n
k=1 xk, n ≥ 1, then for n ≥ m ≥ 1 we have

‖sn − sm‖ ≤
n∑

k=m+1

‖xk‖ ≤
∞∑

k=m+1

‖xk‖ → 0, m→∞,

so the sequence (sn)∞n=1 is Cauchy and therefore convergent.

Conversely, suppose that every absolutely convergent series in X converges to a
limit in X, and let (xn)∞n=1 be a Cauchy sequence in X. Then we can find a
subsequence (xnk

)∞k=1 such that ‖xnk
− xnl

‖ ≤ 2−k for l ≥ k ≥ 1. Let y1 = xn1 and
yk = xnk

− xnk−1
, k ≥ 2. Then the series

∑∞
k=1 yk is absolutely convergent, and

hence by assumption there exists x ∈ X such that ‖y1+· · ·+yk−x‖ → 0 as k →∞.
Since y1 + · · · + yk = xnk

, k ≥ 1, it follows that the original sequence (xn)∞n=1 has
a convergent subsequence. Recalling that any sequence which is Cauchy and has a
convergent subsequence must be convergent,1 we deduce that X is complete.

2. Consider X = Y = `2, and define T by T ((xn)∞n=1 = (xn/n)∞n=1. Then T is easily
checked to be a bounded linear map (indeed ‖T‖ = 1). Since RanT contains
the dense subspace of all finitely supported sequences in `2, RanT is dense in `2.
So RanT will be closed if and only if T is surjective. But taking yn = 1/n and
y = (yn)∞n=1, we have that y /∈ RanT as if T ((xn)) = y, then xn = 1 for all n, and
this sequence (xn)∞n=1 does not lie in `2.

3. (a) Suppose that the spaces Xn, n ≥ 1, are complete and let (x(k))∞k=1 be a Cauchy

sequence in X, writing x(k) = (x
(k)
n )∞k=1. Moreover let ε > 0. Then there exists

K ≥ 1 such that

∞∑
n=1

‖x(k)n − x(`)n ‖ = ‖x(k) − x(`)‖ < ε, k, ` ≥ K.

In particular, for each fixed n ≥ 1 the sequence (x
(k)
n )∞k=1 is Cauchy in Xn. Since

each Xn is complete there exist xn ∈ Xn, n ≥ 1, such that ‖x(k)n − xn‖ → 0 as
k →∞. Let x = (xn)∞n=1. For k ≥ K we have

N∑
n=1

‖x(k)n − xn‖ = lim
`→∞

N∑
n=1

‖x(k)n − x(`)n ‖ ≤ ε, N ≥ 1.

Taking limits as N →∞,

∞∑
n=1

‖x(k)n − xn‖ ≤ ε.

So x(k) − x ∈ X for k ≥ K and in particular x ∈ X. We also obtain that
‖x(k) − x‖ ≤ ε for k ≥ K, so X is complete, as required.

1by a 2ε argument, which I leave you to recall / fill in.
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(b) Let

(Φy)(x) =
∞∑
n=1

fn(xn)

for x = (xn)∞n=1 ∈ X and y = (fn)∞n=1 ∈ Y . Note first that the series on the
right-hand side is (absolutely) convergent because

N∑
n=1

|fn(xn)| ≤ max
1≤n≤N

‖fn‖
N∑

n=1

‖xn‖ ≤ ‖y‖‖x‖, N ≥ 1.

Moreover, letting N → ∞ we see that |(Φy)(x)| ≤ ‖y‖‖x‖ for x ∈ X, y ∈ Y .
Thus for each fixed y ∈ Y , Φy defines a bounded linear2 map X → F with
‖Φy‖ ≤ ‖y‖. Hence, Φ is a well-defined linear3 map from Y into X∗.

Fix y = (fn)∞n=1 ∈ Y . For n ≥ 1 and z ∈ Xn let en(z) ∈ X denote the sequence
with z in the n-th position and zeros elsewhere. Then for n ≥ 1 and z ∈ Xn we
have ‖en(z)‖ = ‖z‖ and |(Φy)(en(z))| = |fn(z)|, and hence

‖Φy‖ ≥ sup
z∈BXn

|fn(z)| = ‖fn‖, n ≥ 1.

It follows that ‖Φy‖ ≥ ‖y‖, so Φ is an isometry and in particular injective.
It remains to show that Φ is surjective. Given f ∈ X∗ we may define the
bounded linear functionals fn ∈ X∗n, n ≥ 1, by fn(z) = f(en(z)), z ∈ Xn. Then
‖fn‖ ≤ ‖f‖, n ≥ 1, so the sequence y = (fn)∞n=1 lies in Y . Furthermore, given
xn ∈ Xn, n ≥ 1, we have

(Φy)(x1, . . . , xN , 0, 0, . . . ) =
N∑

n=1

fn(xn) = f(x1, . . . , xN , 0, 0, . . . ), N ≥ 1,

so Φy agrees with f on the subspace Z of X consisting of all finitely supported
sequences. Since Z is dense4 in X it follows from continuity of Φy and f that
Φy = f , so Φ is surjective, as required.

What we’ve done here is form the `1-direct sum X of the sequence (Xn)∞n=1 of
Banach spaces, and the `∞ direct sum Y of the spaces (X∗n)∞n=1, and then show
that X∗ is canonically isometrically isomorphic to Y . The proof is essentially
the same as the canonical isometric isomorphism between `1 and `∞ which you
may well have seen previously.

How would you define `p direct sums of Banach spaces, and the c0 sum, and
what would you expect the duals to be?

4. (a) An operator T ∈ B(X) is invertible if there exists an operator S ∈ B(X) such
that ST = TS = I, the identity operator on X. In this case we write S = T−1.

2this is an easy check
3another easy check
4check this
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(b) Since X is complete so is B(X). If T ∈ B(X) satisfies ‖T‖ < 1, then the series∑∞
n=0 T

n is absolutely convergent and therefore convergent in B(X). Denote
the limit by S and let Sn = I+· · ·+T n−1, n ≥ 1. Then (I−T )Sn = Sn(I−T ) =
I − T n, n ≥ 1, and hence

‖S(I−T )−I‖ ≤ ‖(S−Sn)(I−T )‖+‖T n‖ ≤ ‖S−Sn‖‖I−T‖+‖T‖n, n ≥ 1.

Letting n→∞ we see that S(I − T ) = I. Similarly (I − T )S = I, so I − T is
invertible with inverse S.

(c) If S, T ∈ B(X) and T is invertible, then S+T = T (I+T−1S). LetQ = I+T−1S.
If ‖S‖ < ‖T−1‖−1, then ‖ST−1‖ < 1 and part (b) gives that Q is invertible. If
we let R = Q−1T−1, then R ∈ B(X) and (S + T )R = R(S + T ) = I, so S + T
is invertible. The formula for (S + T )−1 follows from the argument in part (b).

(d) It is clear from part (c) that the set of invertible operators is an open subset
of B(X). If λ ∈ F \ σ(T ), then λ − T is invertible, and hence for µ ∈ F such
that |µ − λ| < ‖(λ − T )−1‖−1 the operator µ − T is invertible by part (c).
Hence F \ σ(T ) is open, so σ(T ) is closed. Since λ − T = λ(I − λ−1T ) for
λ 6= 0, it follows from part (b) that λ − T is invertible when |λ| > ‖T‖. Thus
σ(T ) ⊆ {λ ∈ F : |λ| ≤ ‖T‖}. In particular, σ(T ) is bounded and hence
compact.

(e) If K is non-empty, we may consider a dense subset K0 of K which is at most
countably infinite. Suppose that K0 = {λn : n ∈ N}, where the sequence
(λn)∞n=1 is eventually constant in case K0 is finite. Now let X = `1 and let
T : X → X be given by T ((xn)∞n=1) = (λnxn)∞n=1 for (xn)∞n=1 ∈ X. Then5

T ∈ B(X) and each λn, n ≥ 1, is an eigenvalue of T , so K0 ⊆ σ(T ). Since the
spectrum is closed it follows that K ⊆ σ(T ). If λ ∈ F\K, then δ = dist(λ,K) >
0. Thus the sequence ((λ−λn)−1)∞n=1 is bounded, so similarly defines a bounded
operator S ∈ B(X) by S((xn)∞n=1) = ((λ− λn)−1xn)∞n=1. It’s easy to check that
S is the inverse of λ− T , so λ 6∈ σ(T ). Thus σ(T ) = K.

If K is empty and F = C then K cannot be the spectrum of any operator
T ∈ B(X), since over the complex field the spectrum is always non-empty.6 On
the other hand, if F = R we may consider X = R2 with the Euclidean norm,
say, and T (x, y) = (y,−x) for (x, y) ∈ X. Then X is a Banach space and
T ∈ B(X). The characteristic polynomial of T is cT (λ) = λ2 + 1, so σ(T ) = ∅.

For many of us most of this exercise will be bookwork from an earlier course.
However if not, spectral theory will not be a major part of this course only
really appearing towards the end of section 12. The difference between the real
and complex field in (e), is one of the main reasons why many mathematicians
studying operators on Hilbert or Banach spaces, typically prefer to work with
complex scalars. When one’s just looking at Banach spaces, and not focusing on
the operators between them, this matters less, and one often uses real scalars

5Notice that this works because the sequence (λn)∞n=1 is bounded.
6This is a deep result using the Hahn-Banach theorem to obtain Banach space versions of results

from complex analysis.
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(having the slight advantage that one doesn’t need to take real parts in the
separation theorems).

5. (a) Let y ∈ B◦Y . We recursively define sequences (xn)∞n=1 in X and (yn)∞n=1 in Y
as follows. Set y1 = y and let x1 ∈ B◦X(M) be such that ‖Tx1 − y1‖ < ε.
Supposing we have xn ∈ X and yn ∈ Y such that ‖yn‖ < εn−1, ‖xn‖ < Mεn−1

and ‖Txn−yn‖ < εn, we set yn+1 = yn−Txn. Since ε−n‖yn+1‖ < 1 there exists
x′n+1 ∈ B◦X(M) such that ‖Tx′n+1− ε−nyn+1‖ < ε. If we let xn+1 = εnx′n+1 then
‖xn+1‖ < Mεn and we may continue inductively. Since

∑∞
n=1 ‖xn‖ <∞ and X

is complete, the series
∑∞

n=1 xn converges to some x ∈ X satisfying

‖x‖ ≤
∞∑
n=1

‖xn‖ <
M

1− ε
.

Moreover ∥∥∥∥y − n∑
k=1

Txk

∥∥∥∥ = ‖yn+1‖ < εn → 0, n→∞.

By continuity of T we obtain that Tx = y.

(b) If T (B◦X(M)) contains a dense subset of B◦Y , then B◦Y ⊆ T (B◦X(M)) + B◦Y (ε)
and hence by the first part B◦Y (1− ε) ⊆ T (B◦X(M)) for all ε ∈ (0, 1). It follows
that

B◦Y =
⋃

ε∈(0,1)

B◦Y (1− ε) ⊆ T (B◦X(M)).

Part (a) is the successive approximation lemma; it’ll appear at the end of sec-
tion 4 of the lecture notes and is in the video 4.3. This trick of repeatedly
approximating to obtain an exact solution is a useful idea in analysis, and is
well worth filing away.
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