
C4.1 Further Functional Analysis – Problem Sheet 3

For classes in Week 6 of MT

• This example sheet is based on the material up to section 9 of the notes together
with Appendix A; the relevant video material is covered in the videos numbered
up to 10. Videos numbered 9 and 10 will be available by Mon 9 Nov.

• Please send comments, corrections, clarifications to stuart.white@maths.ox.ac.uk.

• Please hand in the questions in Section B. You may also hand in the questions
in Section A, or exactly one question from Section C (but not both).

1 Section A

Hopefully all of these are correct this week!

1. Let X be a normed space. Prove that a sequence (xn)∞n=1 in X converges weakly
to x ∈ X if and only if f(xn)→ f(x) as n→∞ for all f ∈ X∗.

2. Let X be a vector space, and Y ⊂ X ′ a subspace. What conditions on Y ensure
that the σ(X, Y ) topology is Hausdorff? Check that the weak topology on X and
weak∗-topology on X∗ are Hausdorff. Which of these requires the Hahn-Banach
theorem?

3. Let C be a convex subset of a vector space X, and Y ⊂ X ′ a subspace. Show
that the closure of C in the σ(X, Y )-topology is convex.

2 Section B

4. Let X be a real normed vector space and let x0 ∈ SX . For x ∈ X, define the
functions Fx, Gx : R→ R by

Fx(t) = t− ‖tx0 − x‖ and Gx(t) = ‖tx0 + x‖ − t.

(a) Show, for each x ∈ X, that Fx is bounded above and non-decreasing and that
Gx is bounded below and non-increasing. Show also that Fx(s) ≤ Gx(t) for
all x ∈ X and s, t ∈ R.

(b) Let the functions a, b : X → R be defined by

a(x) = lim
t→∞

Fx(t) and b(x) = lim
t→∞

Gx(t).

Given x ∈ X, show that there exists f ∈ SX∗ such that f(x0) = 1 and f(x) = c
if and only if a(x) ≤ c ≤ b(x). [Set Y = span{x0, x} and use the one-step
extension argument in the proof of the real Hahn-Banach extension theorem.]

(c) Deduce that the norm is smooth at x0 if and only if there exists a unique
f ∈ SX∗ such that f(x0) = 1.
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5. Let X be a real normed vector space.

(a) Using the previous question or otherwise, prove:

i. that if the norm of X∗ is strictly convex then the norm of X is smooth;

ii. that if the norm of X∗ is smooth then the norm of X is strictly convex;

(b) Show that the converse statements to (ai) and (aii) hold if X is reflexive.

6. Let X be a normed vector space. This question asks you to finish the proof of
Proposition 9.5, and now we have a bit more machinery than in lectures, I suggest
doing it in a slightly different order, as you can use the Banach-Alaoglu theorem
to speed up the proof (recall that every continuous bijection from a compact space
into a Hausdorff space is a homeomorphism).

(a) Show that if X is separable then the weak∗ topology on BX∗ is metrisable, i.e.
complete the job started in lectures.

(b) Deduce that if X∗ is separable then the weak topology on BX is metrisable.

7. Let X = `2 and let M = {n1/2en : n ≥ 1} ⊆ X. Show that 0 lies in the weak
closure of M but that there exists no sequence (xn) with terms in M such that
xn → 0 weakly as n→∞. What does this tell you about metrisability of the weak
topology on the space X?

8. (a) Let X be a normed vector space and let C a convex subset of X. Use a Hahn-
Banach theorem to show that C has the same closure with respect to the norm
and weak topologies.1

(b) Deduce that if (xn)∞n=1 is a sequence in a normed space converging weakly
to x ∈ X, then there is a sequence of finite convex combinations of the xn’s
converging in norm to x. Illustrate this result for X = `p with 1 < p <∞ and
en ∈ `p the standard vector with 1 in the n-the position.

9. Let (xn) be a sequence in `1 with terms xn = (xn(j))j≥1, n ≥ 1, and suppose that
xn → 0 weakly as n → ∞. Show that if ‖xn‖1 6→ 0 as n → ∞ then there exist
ε > 0 and a subsequence (xnk

) such that ‖xnk
‖1 ≥ 5ε, k ≥ 1, and moreover

pk−1∑
j=1

|xnk
(j)| < ε and

∞∑
j=qk+1

|xnk
(j)| < ε

for positive integers pk, qk such that pk < qk < pk+1, k ≥ 1.

Explain why this leads to a contradiction, and deduce that `1 has the Schur property.

[We will use the Schur property of `1 a few times on the next example sheet.]

10. Let T : X → Y be a linear map between normed spaces. Show that T is norm
continuous if and only if it is weakly continuous (i.e. it is continuous with respect
to the weak topologies on X and Y ).

1This is one of my personal favourite versions of the Hahn-Banach theorem. You might want to
use it in the proof of C5(a)⇒(b).
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3 Section C

This section consists of extensional exercises. While some, particularly on later sheets,
might be (quite a lot) harder than the main exercises for the course, they won’t all
be. Some have been moved here compared to last year’s sheets to keep the core sheet
length under control (both for you and the TA!), and some are new. There is no
requirement to do any of these exercises, and they’re included for your enjoyment and
to let you know what else is true.

It is unlikely we will have time to discuss any of these exercises in the classes;
though if there is particular demand we will see what we can do. I will be happy
to discuss these questions in office hours (with notice), but only I’ve after I’ve taken
questions on the lectures and other more core questions. You may hand in exactly one
section C question in for marking if you wish (and only if you do not hand in section
A).

1. (a) Let (Ω,Σ, µ) be a finite measure space.

(i) Given f ∈ L1(Ω)∗, show that there exists y ∈ L2(Ω) such that

f(x) =

∫
Ω

x(t)y(t) dµ(t)

for all x ∈ L2(Ω).

(ii) For r > 0 let Ωr = {t ∈ Ω : |y(t)| ≥ r}. By considering the functions

xr(t) =
y(t)

|y(t)|
1Ωr(t), t ∈ Ω,

show that µ(Ωr) = 0 for r > ‖f‖, so that y ∈ L∞(Ω) with ‖y‖∞ ≤ ‖f‖.
(iii) Deduce that L1(Ω)∗ ∼= L∞(Ω).

(b) Sketch an argument showing how this approach can be extended to prove
that L1(Ω)∗ ∼= L∞(Ω) when (Ω,Σ, µ) is a σ-finite measure space.

2. Show that L1([0, 1]) does not have the Schur property so that `1 and L1([0, 1])
are not isomorphic. Banach spaces.2

3. Let X be a Banach space.

(a) Suppose that X is non-reflexive and let φ ∈ X∗∗ \ JX(X). Show that
J∗∗X (φ) 6= JX∗∗(φ) but that

(J∗∗X φ)(JX∗f) = (JX∗∗φ)(JX∗f) = φ(f), f ∈ X∗.

Deduce that ‖J∗∗X (φ) + JX∗∗(φ)‖ = 2‖φ‖.
(b) Prove that if X∗∗∗∗ is strictly convex then X must be reflexive.

2in contrast to L2([0, 1]) and `2 which are both separable infinite dimensional Hilbert spaces, so
isometrically isomorphic, or `∞ and L∞[0, 1] which are isomorphic (as shown by Pelczynski) but not
isometrically isomorphic.
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4. (a) Let X be a normed vector space and suppose that M is a bounded subset of
X. Denoting by N the weak∗ closure of JX(M) in X∗∗, show that diamN =
diamM .

(b) Let X be a Banach space and suppose that φ ∈ X∗∗ has the property that for
every ε > 0 there exists M ⊆ X with diamM < ε such that φ is contained
in the weak∗ closure of JX(M). Prove that φ ∈ JX(X).

(c) Let X be a uniformly convex normed vector space. Show that for every ε > 0
there exists δ > 0 such that

diam
{
x ∈ BX : Re f(x) > 1− δ

}
< ε

for all f ∈ SX∗ .

(d) Prove that any uniformly convex Banach space is reflexive.

5. Let G be a countable discrete group and consider the Banach space `∞(G) =
{f : G → R : ‖f‖∞ = supg∈G |f(g)| < ∞}. We have an action of G on `∞(G)
given by (g · f)(h) = f(g−1h) for f ∈ `∞(G) and g, h ∈ G. One definition
of amenability for G is that there exists µ ∈ `∞(G)∗ such that ‖µ‖ = µ(1) = 1
(where by 1 ∈ `∞(G), we mean the constant function with value 1) µ(g·f) = µ(f)
for all f ∈ `∞(G) and µ(f) ≥ 0 when f ≥ 0. Such a µ is called an invariant
mean for G.

We also have an action of G on `1(G), defined in exactly the same way as above,
i.e. (g · ν)(h) = ν(g−1h) for ν ∈ `1(G) and g, h ∈ G. Prove that the following
are equivalent:

(a) G is amenable.

(b) there exists a sequence (νn)∞n=1 of probability measures on G (i.e. elements
of `1(G) with ‖νn‖1 = 1 and νn(g) ≥ 0 for all g ∈ G) such that limn→∞ ‖g ·
νn − νn‖1 = 0 for all g ∈ G.

(c) For every finite subset S of G, and ε > 0 there exists a finite subset F of G
such that

|sF4F |
|F |

< ε,

for s ∈ S. (Here A4B denotes the symmetric difference (A \B) ∪ (B \A)
of two sets, and sF = {sf : f ∈ F}.).

In (c), the set F is called a Følner set for (F, ε). By exhibiting Følner sets or
otherwise show that Z is amenable.

SAW MT20
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